JPS584922Y2 - Zinc oxide thin film production equipment - Google Patents

Zinc oxide thin film production equipment

Info

Publication number
JPS584922Y2
JPS584922Y2 JP17128878U JP17128878U JPS584922Y2 JP S584922 Y2 JPS584922 Y2 JP S584922Y2 JP 17128878 U JP17128878 U JP 17128878U JP 17128878 U JP17128878 U JP 17128878U JP S584922 Y2 JPS584922 Y2 JP S584922Y2
Authority
JP
Japan
Prior art keywords
electrode
zinc oxide
zinc
thin film
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17128878U
Other languages
Japanese (ja)
Other versions
JPS5587358U (en
Inventor
蒲谷芳比古
Original Assignee
東光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東光株式会社 filed Critical 東光株式会社
Priority to JP17128878U priority Critical patent/JPS584922Y2/en
Publication of JPS5587358U publication Critical patent/JPS5587358U/ja
Application granted granted Critical
Publication of JPS584922Y2 publication Critical patent/JPS584922Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【考案の詳細な説明】 本考案は、酸化亜鉛薄膜の製造装置の構造に掠るもので
、特に亜鉛と反応させる酸素ヲ輝性化す□る装置に関す
るものである。
[Detailed Description of the Invention] The present invention is based on the structure of an apparatus for producing a zinc oxide thin film, and particularly relates to an apparatus for making oxygen reacted with zinc luminescent.

・ □゛・。弾性表面波素子等に用いる圧電体と
q6て酸化亜鉛の薄膜が注目されている。
・ □゛・. Zinc oxide thin films are attracting attention as piezoelectric materials used in surface acoustic wave devices and the like.

この酸化亜鉛薄膜の製造方法としては従来スパッタリン
グ法が用いられている。
A sputtering method has conventionally been used as a method for manufacturing this zinc oxide thin film.

しかし、スパッタリング法は酸化亜鉛□の蒸着速度が遅
く、ターゲットから高エネルギー粒子が飛出して蒸着膜
を劣化させる欠点がある。
However, the sputtering method has the disadvantage that the rate of vapor deposition of zinc oxide □ is slow and that high-energy particles fly out from the target and deteriorate the vapor deposited film.

そこでスパッタリング法に代えてイオンブレーティング
法によって酸化亜鉛薄膜を得ることが考えられている。
Therefore, it has been considered to obtain a zinc oxide thin film by an ion-blating method instead of a sputtering method.

第1図&J その−例である高周波イオンブレーティン
グ法に用いる装置の概略図を示している。
FIG. 1 &J shows a schematic diagram of an apparatus used for the high frequency ion blating method, which is an example of the method.

ベルジャ10内に蒸発源11と基板ホルダ12を設けて
これらの間に直流電界を加える。
An evaporation source 11 and a substrate holder 12 are provided in the bell jar 10, and a DC electric field is applied between them.

蒸発源に亜鉛を入れこれを加熱して蒸気化する。Zinc is placed in the evaporation source and heated to vaporize it.

蒸気化した亜鉛は、電周波電極13によって形成される
プラズマ放電領域を通過するときにイオン化される。
The vaporized zinc is ionized as it passes through the plasma discharge region formed by the radio frequency electrode 13.

同時にベルジャ10内に導入された酸素□もプラズマ放
電領域でイオン化される。
At the same time, oxygen □ introduced into the bell jar 10 is also ionized in the plasma discharge region.

イオン化された粒子は、蒸発源11と基板ホルダ12の
間に加えられた直流電界によって加速され基板14に蒸
着して酸化亜鉛薄膜が形成される。
The ionized particles are accelerated by a DC electric field applied between the evaporation source 11 and the substrate holder 12 and are deposited on the substrate 14 to form a zinc oxide thin film.

プラズマ放電領域によって亜鉛と酸素をイオン化して反
応を促進するとともに加速するものである。
The plasma discharge region ionizes zinc and oxygen to promote and accelerate the reaction.

上記のイオンブレー亨°イング法には、次の様な欠点が
ある二先ず、ブラ妄マ中で亜鉛と酸素の反応を行なうた
め、その結果出来る酸化亜鉛の粒子が帯蝋工易□くなる
The above-mentioned ion brazing method has the following drawbacks.Firstly, since the reaction between zinc and oxygen is carried out in a brazing machine, the resulting zinc oxide particles become easier to process into a band wax. .

□この帯電した粒子が基板に付着すると基板が帯電し、
後から付着す□る粒子を反発して酸化亜鉛薄膜の形成の
障害となる。
□When these charged particles adhere to the substrate, the substrate becomes charged,
It repels particles that adhere later and becomes an obstacle to the formation of a zinc oxide thin film.

曾た、放電を生じさせるためにベルジャ内に導入した不
活性ガスのイオンが基板に衝撃を与えて、膜表面を荒す
とともに基板温度を上昇させる欠点を有す。
Another drawback is that the ions of the inert gas introduced into the belljar to generate discharge impact the substrate, roughening the film surface and raising the temperature of the substrate.

本考案は、上記の様な欠点を改良することを目的とし、
亜鉛蒸気と酸素の反応を促進し、しかもイオンによる膜
表面及び基板への影響を除去したmlヒ壷多警゛^1榊 の製造装置を得ることを目的とする。
The purpose of this invention is to improve the above-mentioned drawbacks,
The object of the present invention is to obtain an apparatus for producing a ml hot pot that promotes the reaction between zinc vapor and oxygen and eliminates the influence of ions on the film surface and substrate.

本考案に・よる酸化亜鉛薄膜の製造装置は、活性化され
た酸ネのみを亜鉛との反応領域に供結し、イオン化した
粒子が反応領域に流出することを防止する手段部具えた
装置である。
The zinc oxide thin film manufacturing apparatus according to the present invention is an apparatus equipped with a means for supplying only activated acid to the reaction area with zinc and preventing ionized particles from flowing into the reaction area. be.

以下図面悴従って説明する。The drawings will be explained below.

第2図は、本考案による酸化亜鉛薄膜の製造装置の概略
を示す図であする。
FIG. 2 is a diagram schematically showing an apparatus for producing a zinc oxide thin film according to the present invention.

ベルシャ20内に蒸発源21と基板ホルダ′22を対向
して配置する。
An evaporation source 21 and a substrate holder '22 are placed facing each other in the Belsha 20.

蒸発源21は密閉形のルツボな用いて、高圧蒸気をベル
ジャ内に噴出させるようにすると良い。
It is preferable that the evaporation source 21 be a closed crucible to eject high-pressure steam into a bell jar.

それによって亜鉛蒸気は一定の運動エネルギーを有して
基板に向って進むことになる。
This causes the zinc vapor to move toward the substrate with constant kinetic energy.

亜鉛蒸気が進行する領域に酸素を供給して、亜鉛と酸素
を反応させて酸化亜鉛とするが、亜鉛と酸素の反応を促
進するためには、酸素をイオン化すれば良い。
Oxygen is supplied to the region where zinc vapor advances, and zinc and oxygen react to form zinc oxide. In order to promote the reaction between zinc and oxygen, oxygen may be ionized.

そして、亜鉛と酸素の反応領域はプラズマ放電領域外と
することが好ましい。
Preferably, the reaction region between zinc and oxygen is outside the plasma discharge region.

本考案による酸化亜鉛薄膜の製造装置においてヲ東その
ために、第2図のように二個の電極を設ける。
For this purpose, in the zinc oxide thin film manufacturing apparatus according to the present invention, two electrodes are provided as shown in FIG.

すなわち、蒸発源と基板ホルダを結ぶ領域を取り囲んで
、第1の電極25を設ける。
That is, the first electrode 25 is provided surrounding the region connecting the evaporation source and the substrate holder.

更に、この第1の電極を取り囲んで第2の電極26を設
ける。
Furthermore, a second electrode 26 is provided surrounding this first electrode.

この第1の電極25と第2の電極26との間に電界を加
えて放電を生じさせる。
An electric field is applied between the first electrode 25 and the second electrode 26 to generate a discharge.

電界は、直流であって・も交流であっても良い。The electric field may be direct current or alternating current.

この二個の電極間で生じた放電によって、その放電領域
に存在する酸素分子はイオン化または活性化する。
The discharge generated between these two electrodes ionizes or activates oxygen molecules present in the discharge region.

イオン化した粒子は、電極に引き寄せられるが、活性化
した酸素は放電領域外に流出する。
The ionized particles are attracted to the electrode, but the activated oxygen flows out of the discharge region.

この活性化された酸素を亜鉛と反応させて酸化亜鉛を得
るものである。
This activated oxygen is reacted with zinc to obtain zinc oxide.

イオン化された粒子は電極に引き寄せられて中性化する
ことになり、更にイオン化または活性化される。
The ionized particles are attracted to the electrode and become neutralized, and are further ionized or activated.

基板に向う亜鉛蒸気は、プラズマ放電領域を通過せず、
イオン化されることもなく、捷た酸化亜鉛も帯電しない
Zinc vapor directed towards the substrate does not pass through the plasma discharge area;
It is not ionized and the crushed zinc oxide is not charged.

1.1第3図は、上記の第1の電極と第2
の電極の一例の斜視図である。
1.1 Figure 3 shows the above-mentioned first electrode and second electrode.
FIG. 3 is a perspective view of an example of an electrode.

第1の電極35は全網を円筒状に形成したものであり、
第2の電極も同様に−回り大きな円筒状に形成する。
The first electrode 35 has a cylindrical mesh,
The second electrode is similarly formed into a cylindrical shape with a large circumference.

これらの電極は、金属板に孔を設けたものでも良ぐ、−
!た角柱形でも良い。
These electrodes may be metal plates with holes, -
! It may also be a prismatic shape.

即ち、第1の電極と第2の電極で筒状に放電領域が形成
され、活性化された酸素が第1の電極の間を抜は出るよ
うにすれば良い。
That is, a cylindrical discharge region is formed by the first electrode and the second electrode, and the activated oxygen is allowed to escape between the first electrodes.

本考案によれば、活性化酸素のみが亜鉛と反応して酸化
亜鉛となるので、基板に付着する粒子も帯電しておらず
、膜の形成に障害となることもない。
According to the present invention, only activated oxygen reacts with zinc to form zinc oxide, so particles adhering to the substrate are not charged and do not interfere with film formation.

そのために、蒸着の効率も高くなる。また、イオン化し
た粒子が基板に衝突して膜表面を荒らすことも防止でき
るので、膜の結晶構造も優れたものが得られる。
Therefore, the efficiency of vapor deposition also increases. Further, since it is possible to prevent ionized particles from colliding with the substrate and roughening the film surface, a film with an excellent crystal structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸化亜鉛薄膜の製造装置の概略図、第2
図は本考案による装置の概略図、第3図は本考案による
装置に用いる電極の→りの斜視図を示す。 10.20・・・・・・ベルジャ、11,21・・・・
・・蒸発源、12,22・・・・・・基板4ホルダ、2
5,35・・・・・・第1の電極、26t3.j、’・
・・・・第2の電極。
Figure 1 is a schematic diagram of a conventional zinc oxide thin film manufacturing equipment, Figure 2
The figure is a schematic diagram of the device according to the present invention, and FIG. 3 is a perspective view of the electrode used in the device according to the present invention. 10.20...Berja, 11,21...
...Evaporation source, 12, 22...Substrate 4 holder, 2
5, 35...first electrode, 26t3. j,'・
...Second electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] □酸素を含む雰囲気中で亜鉛を加熱し七蒸気化し、亜鉛
蒸気と酸素を反応させ七酸化亜鉛として基□板上に蒸着
膜る酸化亜鉛薄膜わ製蓬に置けおいて蒸発源と基板とを
結ぶ領域の少くとも一部を取囲む第1の電極と該第1の
電極を取囲む第2の電極を具え、該第1の電極と第2の
電極間に電界を加える手段を具えて、該第1の電極と第
2の電極間に放電を行なうことを特徴とする酸化亜鉛薄
膜の製造装置。
□ Zinc is heated in an oxygen-containing atmosphere to vaporize it, and the zinc vapor and oxygen are reacted to form zinc heptoxide. □ Zinc oxide thin film is deposited on the substrate. a first electrode surrounding at least a portion of the connecting region and a second electrode surrounding the first electrode, and means for applying an electric field between the first electrode and the second electrode; An apparatus for manufacturing a zinc oxide thin film, characterized in that a discharge is generated between the first electrode and the second electrode.
JP17128878U 1978-12-12 1978-12-12 Zinc oxide thin film production equipment Expired JPS584922Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17128878U JPS584922Y2 (en) 1978-12-12 1978-12-12 Zinc oxide thin film production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17128878U JPS584922Y2 (en) 1978-12-12 1978-12-12 Zinc oxide thin film production equipment

Publications (2)

Publication Number Publication Date
JPS5587358U JPS5587358U (en) 1980-06-16
JPS584922Y2 true JPS584922Y2 (en) 1983-01-27

Family

ID=29175043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17128878U Expired JPS584922Y2 (en) 1978-12-12 1978-12-12 Zinc oxide thin film production equipment

Country Status (1)

Country Link
JP (1) JPS584922Y2 (en)

Also Published As

Publication number Publication date
JPS5587358U (en) 1980-06-16

Similar Documents

Publication Publication Date Title
US20060049034A1 (en) Laser ablation apparatus and method of preparing nanoparticles using the same
JPH0568545B2 (en)
JPS634841A (en) Plasma treatment device
JPS5941510B2 (en) Beryllium oxide film and its formation method
JPS584922Y2 (en) Zinc oxide thin film production equipment
JPS627852A (en) Formation of thin film
JP3005000B2 (en) Method of forming electrode pattern of piezoelectric element for ultrasonic motor
JPH05279844A (en) Laser abrasion device
JPS6324068A (en) Continuous vacuum deposition plating device
JPH04191364A (en) Method and device for ion plating
US4120080A (en) Method of manufacturing grid electrodes for electron tubes
JPS58100672A (en) Method and device for formation of thin film
JPS6247472A (en) Formation of cubic boron nitride film
JPS592107Y2 (en) Zinc oxide film production equipment
JPS584920Y2 (en) Zinc oxide thin film production equipment
JPS63262457A (en) Preparation of boron nitride film
JPH0758027A (en) Plasma cvd apparatus
JPH03191054A (en) Thin film formation
JP2951564B2 (en) Thin film formation method
WO1987005637A1 (en) Continuous ion plating device for rapidly moving film
JPH0196372A (en) Ion plating apparatus
JPS5928568A (en) Dry plating method
JPH0320466A (en) Production of thin film
JPS61261201A (en) Method for producing metal oxide fine powder and apparatus therefor
JPS587704B2 (en) Ion plating method