JPS5928568A - Dry plating method - Google Patents

Dry plating method

Info

Publication number
JPS5928568A
JPS5928568A JP13874282A JP13874282A JPS5928568A JP S5928568 A JPS5928568 A JP S5928568A JP 13874282 A JP13874282 A JP 13874282A JP 13874282 A JP13874282 A JP 13874282A JP S5928568 A JPS5928568 A JP S5928568A
Authority
JP
Japan
Prior art keywords
ceramic
plating method
coating
thin layer
ion plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13874282A
Other languages
Japanese (ja)
Inventor
Akira Otsuka
昭 大塚
Chuichi Kobayashi
忠一 小林
Mamoru Okazaki
岡崎 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13874282A priority Critical patent/JPS5928568A/en
Publication of JPS5928568A publication Critical patent/JPS5928568A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a ceramic thin layer free from a pinhole, by a dry plating method wherein the surface of a metal, ceramic or an org. substance is plated with ceramic in a gaseous phase according to a continuous two-stage coating process consisting of an ion plating method and a vacuum vapor deposition method. CONSTITUTION:In applying the thin layer coating of ceramic to the surface of a metal, ceramic or an org. substance in a gaseous phase, ceramic is coated at first by an ion plating method. Ionization at this time is performed by an electron beam irradiating method, a DC electric field method and a high frequency exciting method and the thickness of the coating thin layer is adjusted to 0.1- 0.5mum. In the next step, ionization is interrupted and coating is subsequently carried out continuously by a vacuum vapor deposition method. The film thickness at this time is adjusted to about 1.7mum.

Description

【発明の詳細な説明】 この発明は乾式メッキ法に係υ、金属、セラミックまた
は有機物の表面に気相下でセラミックを薄層コーティン
グするイオンプレーテイング法の改良に関するものであ
って、金属、セラミック、有機物の表面に気相下でセラ
ミックをイオンプV−テイング法、真空蒸着法の連続的
2段コーティングを行うことを特徴とする乾式メッキ方
法でおる。
[Detailed Description of the Invention] This invention relates to a dry plating method, and relates to an improvement in an ion plating method in which a thin layer of ceramic is coated on the surface of a metal, ceramic, or organic material in a gas phase. This is a dry plating method characterized by sequentially performing two-step coating of ceramic on the surface of an organic substance in a gas phase using an ion plating method and a vacuum evaporation method.

金属とセラミックの接着は接合界面の活性化が十分でな
いと不可能であシ、蒸着法にて金属上にセラミックをコ
ーティングしても基板との密着性が不足する。このよう
にセラミックの如き良好な密着性を得ることが困難な物
質のコーティング方法としてイオンデレーテイング法は
極めて有効な方法であるが、このイオンプレーテイング
法のみで厚付けした場合、イオン化粒子の析出によυ、
粒状晶として成膜されやすく、これがいわゆるパイプ状
ピンホールを形成する要因の一つとなっている。
Adhesion between metal and ceramic is impossible unless the bonding interface is sufficiently activated, and even if ceramic is coated on metal by vapor deposition, the adhesion to the substrate is insufficient. In this way, the ion derating method is an extremely effective coating method for materials for which it is difficult to obtain good adhesion, such as ceramics. Yo υ,
It is easy to form a film as granular crystals, and this is one of the reasons why so-called pipe-shaped pinholes are formed.

このためパイプ状ピンホールが膜の特性に太きな影響を
およばずため、耐蝕材料やハイレベpの電気絶縁性を必
要とする分野に使用する場合、セラミック膜厚が過大と
なり、生産性の面からも大きな問題点となっている。
For this reason, the pipe-shaped pinholes do not have a large effect on the properties of the film, so when used in fields that require corrosion-resistant materials or high-level electrical insulation, the ceramic film thickness becomes excessive and productivity is reduced. It has also become a big problem.

この発明は、かかる欠点を解消し、パイプ状ピンホール
のないセラミック薄層を乾式メッキにて得る方法を提供
せんとするものである。
The present invention aims to eliminate such drawbacks and provide a method for obtaining a ceramic thin layer without pipe-like pinholes by dry plating.

即ち、この発明は金属、セラミック、有機物などの表面
にセラミック薄膜層を得るに際し、まず気相下でイオン
ブレーテイング法にて0.1〜0.5pmの薄層を形成
せしめたのち、イオン化をやめ、引続き真空蒸着法にて
コーティングするものである。
That is, when obtaining a ceramic thin film layer on the surface of metals, ceramics, organic materials, etc., this invention first forms a thin layer of 0.1 to 0.5 pm in a gas phase using an ion blasting method, and then ionizes the material. Then, coating is performed using a vacuum evaporation method.

この発明の方法を具体的に説明すると、厚さ0.25−
の42アロイ(Fe4296Nj−)T−プ上に該テー
プを200℃に加熱して酸i圧4X10’TOrrの下
、Aj?zOs焼結体を用いて電子ビーム加熱によって
Altosの蒸着を行った。
To specifically explain the method of this invention, the thickness is 0.25-
The tape was heated to 200°C on a 42 alloy (Fe4296Nj-) T-pipe under an acid i pressure of 4 x 10' TOrr, Aj? Altos was deposited on a zOs sintered body by electron beam heating.

コノ時蒸着当初は高周波(18.56MHz)200W
を印゛加して蒸発物質(AI!tOs)の一部をイオン
化して(18μmの成膜を行った。その後高周波のパワ
ーを切り、通常の真空蒸着状態で引続き1.7μmの成
膜を行った。
Initially, high frequency (18.56MHz) 200W was used for vapor deposition.
was applied to ionize a part of the evaporated substance (AI!tOs) to form a film of 18 μm. After that, the high frequency power was turned off and a film of 1.7 μm was formed under normal vacuum evaporation conditions. went.

得られた42アロイテープ上のAfzO++コーティン
グ膜は、2−Opmの厚み全部をイオンデレーテイング
で得たものに比べて図面に示すようにDC絶縁耐圧で約
20%の向上が認められ、また90度折曲げによる密着
テストでも良好な結果を示した。
As shown in the drawing, the resulting AfzO++ coating film on the 42 alloy tape showed an approximately 20% improvement in DC dielectric strength voltage compared to that obtained by ion derating over the entire thickness of 2-Opm, and also had a DC dielectric strength of 90%. Good results were also obtained in the adhesion test by repeated bending.

さらに図面のAJzOs膜厚とDC絶縁耐圧の関係から
、この発明の方法では明らかに電流リークが生じに<<
、パイプ状ピンホーp減少の効果が認められた。
Furthermore, from the relationship between the AJzOs film thickness and the DC dielectric strength voltage shown in the drawings, it is clear that current leakage occurs in the method of this invention.
, the effect of reducing pipe-like pinhole p was observed.

この発明において、イオンプレーティングによる膜厚を
0.1〜0,5μmと規定したのは、それ以下では密着
性の而でイオングレーテイングを用いる効果がなく、ま
た9.5lbm以上ではパイプ状ピンホールの成長が進
み、その後の真空蒸着でこれを抑止することが難しくな
るためである。
In this invention, the film thickness by ion plating is specified to be 0.1 to 0.5 μm, because if it is less than that, ion grating will not be effective due to adhesion, and if it is more than 9.5 lbm, pipe-shaped This is because the growth of holes progresses and it becomes difficult to suppress this in subsequent vacuum evaporation.

上記のようにこの発明は当初はイオンプレーテイングの
特色を生かしたコーティングで、そのイオンポンパード
による基板のクリーニング効果、イオン化粒子という活
性な蒸着粒子の存在にょシ密着性良好なコーティングが
可能であシ、その後は通常の真空蒸着を行うため、結晶
成長の方向性が少なくランダムで等方的な析出粒子を形
成することによシビンホーμの形成を防止するものであ
る。
As mentioned above, this invention was originally a coating that took advantage of the characteristics of ion plating, and it was possible to achieve a coating with good adhesion due to the cleaning effect of the substrate by the ion pump and the presence of active vapor deposition particles called ionized particles. After that, normal vacuum deposition is performed, so the formation of shibinho μ is prevented by forming random and isotropic precipitated particles with little directionality of crystal growth.

蒸発粒子をイオン化する方法としては、一般に用いられ
ている電子ビー乞戸射法、高周波励起法あるいは直流電
界法のどの方法によっても可能でこれらを併用すること
もできる。
As a method for ionizing the evaporated particles, any of the commonly used methods such as the electron beam irradiation method, the high frequency excitation method, or the direct current electric field method can be used, and these methods can also be used in combination.

この発明の方法は、耐蝕性、耐薬品性、電気絶縁性を必
要とする部分の表面被覆法として、各種耐蝕材料や金属
材料の電気絶縁性付与などに用いることができる。
The method of the present invention can be used as a surface coating method for parts requiring corrosion resistance, chemical resistance, and electrical insulation, and for imparting electrical insulation to various corrosion-resistant materials and metal materials.

具体的には半導体基板材料としてのセラミック被覆金属
などに用いることが最適である。
Specifically, it is most suitable for use in ceramic-coated metals as semiconductor substrate materials.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の方法によるA/gos被膜とイオンプ
レーテイング法によるA4zOg被膜のDC絶縁耐圧の
差を示す図表である。 −359−
The drawing is a chart showing the difference in DC dielectric strength between the A/gos film formed by the method of the present invention and the A4zOg film formed by the ion plating method. -359-

Claims (1)

【特許請求の範囲】 (1)金属、セラミックまたは有機物の表面に気相下で
セラミックを薄層コーティングするに当シ、まず該セラ
ミックをイオンプレーテイング法にてコーティングした
のち、イオン化を中断し、次いで連続的に真空蒸着法に
てコーティングすることを特徴とする乾式メッキ法。 (2)イオンプレーテイング法によるコーティング薄層
が0.1〜0.5μm″厚であることを特徴とする特許
請求の範囲第1項記載の乾式メッキ法。 (8)イオンプレーテイング法におけるイオン化が電子
ビーム照射法、直流電界法または高周波励起法で行れる
ことを特徴とする特許請求の範囲第1項記載の乾式メッ
キ法。
[Claims] (1) When coating a thin layer of ceramic on the surface of a metal, ceramic, or organic substance in a gas phase, first coat the ceramic by an ion plating method, then interrupt ionization, A dry plating method that is characterized by successive coating using a vacuum deposition method. (2) The dry plating method according to claim 1, characterized in that the coating thin layer formed by the ion plating method has a thickness of 0.1 to 0.5 μm. (8) Ionization in the ion plating method 2. The dry plating method according to claim 1, wherein plating is carried out by an electron beam irradiation method, a direct current electric field method, or a high frequency excitation method.
JP13874282A 1982-08-09 1982-08-09 Dry plating method Pending JPS5928568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13874282A JPS5928568A (en) 1982-08-09 1982-08-09 Dry plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13874282A JPS5928568A (en) 1982-08-09 1982-08-09 Dry plating method

Publications (1)

Publication Number Publication Date
JPS5928568A true JPS5928568A (en) 1984-02-15

Family

ID=15229107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13874282A Pending JPS5928568A (en) 1982-08-09 1982-08-09 Dry plating method

Country Status (1)

Country Link
JP (1) JPS5928568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238957A (en) * 1985-04-17 1986-10-24 Mitsubishi Electric Corp Formation of thin optical film
JPS6372867A (en) * 1986-09-17 1988-04-02 Nippon Steel Corp Vapor coating method with satisfactory adhesion
WO2004076711A1 (en) * 1995-10-03 2004-09-10 Seigo Yamamoto Coating film excellent in the resistance to corrosion with halogen-containing gases and plasmas, laminated structure coated therewith, and process for the production of both

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238957A (en) * 1985-04-17 1986-10-24 Mitsubishi Electric Corp Formation of thin optical film
JPH048507B2 (en) * 1985-04-17 1992-02-17
JPS6372867A (en) * 1986-09-17 1988-04-02 Nippon Steel Corp Vapor coating method with satisfactory adhesion
WO2004076711A1 (en) * 1995-10-03 2004-09-10 Seigo Yamamoto Coating film excellent in the resistance to corrosion with halogen-containing gases and plasmas, laminated structure coated therewith, and process for the production of both

Similar Documents

Publication Publication Date Title
US3329601A (en) Apparatus for coating a cathodically biased substrate from plasma of ionized coatingmaterial
KR100228259B1 (en) Method for forming a thin film and semiconductor devices
CN104241069B (en) There is in plasma device parts and the manufacture method thereof of yittrium oxide clad
US3479269A (en) Method for sputter etching using a high frequency negative pulse train
US3477935A (en) Method of forming thin film resistors by cathodic sputtering
JPS61170050A (en) Formation of low resistance contact
US3661747A (en) Method for etching thin film materials by direct cathodic back sputtering
JPS6219513B2 (en)
JPS5928568A (en) Dry plating method
JPWO2008032627A1 (en) Dry etching method
JPS5928569A (en) Dry plating method
JPS6351630A (en) Method of forming electrode for silicon substrate
JP3273827B2 (en) Semiconductor device and manufacturing method thereof
JPH0355401B2 (en)
JPH06136508A (en) Method for forming highly saturated magnetized iron nitride film and structure having the film
JPS59153880A (en) Method for carrying out continuous vapor deposition on beltlike metallic body
JP3450818B2 (en) Method for producing aluminum nitride thin film with improved surface and bonding properties
JPH1161422A (en) Formation of thin coating film and thin coating film forming device
JPS61174725A (en) Thin film forming apparatus
JPS6187866A (en) Method for vapor-depositing aluminum
RU2113537C1 (en) Method for production of aluminum nitride film
JP3683044B2 (en) Electrostatic chuck plate and manufacturing method thereof
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPS62180077A (en) Coating method for inside surface of pipe
JPS6053113B2 (en) Film formation method