JPS5848861B2 - How to detect water trees in cables - Google Patents

How to detect water trees in cables

Info

Publication number
JPS5848861B2
JPS5848861B2 JP52021779A JP2177977A JPS5848861B2 JP S5848861 B2 JPS5848861 B2 JP S5848861B2 JP 52021779 A JP52021779 A JP 52021779A JP 2177977 A JP2177977 A JP 2177977A JP S5848861 B2 JPS5848861 B2 JP S5848861B2
Authority
JP
Japan
Prior art keywords
current
cable
discharge
cables
water trees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52021779A
Other languages
Japanese (ja)
Other versions
JPS53107687A (en
Inventor
節也 一色
実 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP52021779A priority Critical patent/JPS5848861B2/en
Publication of JPS53107687A publication Critical patent/JPS53107687A/en
Publication of JPS5848861B2 publication Critical patent/JPS5848861B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 本発明は、ポリエチレンケーブルに多く発生する水トリ
ーの有無を検知する検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection method for detecting the presence or absence of water trees, which often occur in polyethylene cables.

水トリーは、ケーブルにおいて絶縁体に浸透してくる水
分と、絶縁体中のボイド、半導電層の突起等の異常電界
部が原因で発生し、ケーブルの絶縁特性を著しく劣化せ
しめる原因となるものである。
Water treeing is caused by moisture penetrating the insulation in cables and abnormal electric field areas such as voids in the insulation and protrusions in the semiconducting layer, and it causes a significant deterioration of the insulation properties of the cable. It is.

最近、この水トリーによってポリエチレン絶縁ケーブル
の破壊事故が頻発し、大きな問題となってきている。
Recently, damage to polyethylene insulated cables has been occurring frequently due to this water tree, and this has become a major problem.

そこで、従来、かかる水トリーの発生の有無を予測する
方法としてtanδと直流洩れ電流の併用による方法が
推奨されている。
Therefore, as a method of predicting the occurrence of such water trees, a method using a combination of tan δ and DC leakage current has been recommended.

しかし、tanδによる方法は、ケーブルの平均的な劣
化を示す数値であり、水トリーのように局部的に劣化が
進行している現象を発見するためには適当なものとは言
いがたい。
However, the method using tan δ is a numerical value that indicates the average deterioration of the cable, and is hardly suitable for discovering phenomena such as water trees where deterioration is progressing locally.

すなわち、ケーブルの劣化が極端に進行し、ケーブルの
全長に水トリーが発生している場合には検出できるが、
水トリーは多くの発生例が示すようにジョイント付近、
またはケーブルの立上り部等、部分的に発生しているケ
ースが多いからである。
In other words, if the cable has deteriorated to an extreme degree and water treeing occurs along the entire length of the cable, it can be detected, but
As many cases of water tree occurrence show, near joints,
This is because there are many cases where the problem occurs locally, such as at the rising edge of the cable.

要するにtanδによる方法ではこのような劣化状況の
検出は不可能である。
In short, it is impossible to detect such a state of deterioration using the tan δ method.

次に、直流洩れ電流による方法では、局部的な劣化を検
出できる利点を有するが、ポリエチレンの場合には固有
抵抗値が高いため、ケーブル絶縁1 被覆層のラジアル方向に水トリーが少くとも百以上伸び
ていなければ検出不可能である。
Next, the method using direct current leakage current has the advantage of being able to detect local deterioration, but in the case of polyethylene, the specific resistance value is high, so there are at least 100 or more water trees in the radial direction of the cable insulation coating layer. If it is not stretched, it cannot be detected.

また、その測定値が小さいため高電圧を印加しなければ
特性がつかみにくい。
Furthermore, since the measured value is small, it is difficult to understand the characteristics unless a high voltage is applied.

これが原因で、測定時にケーブルの絶縁性能を低下させ
る新たな危険を招来する紅がある。
Due to this, there is a red that introduces a new danger of degrading the insulation performance of the cable during measurement.

このように従来の方法では末だ不十分であり、有効な具
体策は見出されていない。
As described above, conventional methods are still insufficient, and no effective concrete measures have yet been found.

また、水トリ一発生の問題は製造メーカーのみならず、
電力会社等のユーザー側にとっても事故発生の未然の防
止という点から、また既設ケーブルの残存寿命の予測と
いう点からも、その有効な検出方法の開発が急がれてい
た。
In addition, the problem of water pollution is not limited to manufacturers.
There has been an urgent need to develop an effective detection method for users such as electric power companies, from the standpoint of preventing accidents and predicting the remaining life of existing cables.

そこで、本発明者等は上記の問題を解決する方法として
、ケーブルの放電特性から水トリーの発生の有無を検出
する方法を既に提案してある(特願昭50−11534
1号)(特公昭57−32343号公報参照)。
Therefore, as a method to solve the above problem, the present inventors have already proposed a method of detecting the presence or absence of water trees from the discharge characteristics of the cable (Japanese Patent Application No. 11534/1986).
No. 1) (see Japanese Patent Publication No. 57-32343).

具体的には直流電源で測定しようとするケーブルを充電
し、しかる後放電せしめ、この際ケーブルに蓄えられた
電荷量Qを零から30秒まで積分し、この値でもって劣
化を判定しようとするものである。
Specifically, the cable to be measured is charged with a DC power source, then discharged, the amount of charge Q stored in the cable is integrated from zero to 30 seconds, and deterioration is determined based on this value. It is something.

しかし、この方法では測定しようとするケープルが実布
設の長尺なケーブルの場合には、ケーブル自身の容量C
が増加し、充放電時の電荷量Qが大きくなり、水トリ一
発生部の余効電流(時間的遅れのある電流)がマスクさ
れてしまい検出できないという欠点があった。
However, with this method, if the cable to be measured is a long cable actually installed, the cable's own capacity C
increases, the amount of charge Q during charging and discharging increases, and the aftereffect current (current with a time delay) in the water-tripping generation area is masked and cannot be detected.

この欠点は、測定時の電圧を高くしても、瞬間放電電流
が増大するのみであるから改善することはできず、かえ
って電圧を高くすると、測定時の電流が不安定になり、
また人体への危険性も生じるという新たな欠点を招来す
る。
This drawback cannot be improved even if the voltage at the time of measurement is increased, as it only increases the instantaneous discharge current.On the contrary, if the voltage is increased, the current at the time of measurement becomes unstable,
This also brings about a new drawback in that it poses a danger to the human body.

また、測定電圧を高めることはポリエチレン中に蓄えら
れる空間電荷を増加させることになり、測定結果が不安
定になるという問題もある。
In addition, increasing the measurement voltage increases the space charge stored in polyethylene, which causes the problem that the measurement results become unstable.

そこで、本発明は、放電時の電流戊分がI = Io+
Id(I・・・・・・全電流、Io・・・・・・瞬間放
電電流、Id・・・・・・余効電流)で表わされ、しか
も瞬間放電電流が約1〜2秒(実際にはもつと短時間の
放電と思われるが、ピコアンメーターとレコーダーの作
動時間遅れがあるためこの程度になる)で略々零になる
ことに着目して、放電の初期にはバイパス回路により瞬
間放電電流をバイパスさせ、その後水トリ一発生部に蓄
えられた余効電流の放電特性を測定することにより、実
布設の長尺なケーブルを危険性もなくかつ安定な電流で
、ピコアンメーターで充分に検出できる方法を提供せん
とするものである。
Therefore, in the present invention, the current fraction during discharge is I = Io+
It is expressed as Id (I... total current, Io... instantaneous discharge current, Id... aftereffect current), and the instantaneous discharge current is about 1 to 2 seconds ( In reality, it seems that the discharge lasts for a short time, but due to the delay in the operation of the picoammeter and the recorder, it becomes approximately zero (this is the extent of the discharge). By bypassing the instantaneous discharge current using the method, and then measuring the discharge characteristics of the aftereffect current stored in the water-trimming section, the pico amplifier can be used to run long cables without danger and with a stable current. The aim is to provide a method that can be adequately detected with a meter.

図は本発明の検出方法を実施する検出回路の一例を示し
たもので、1は測定しようとするケーブルを示し、1a
はその導体、1bはそのポリエチレン絶縁層、1cはそ
の遮蔽層である。
The figure shows an example of a detection circuit that implements the detection method of the present invention, where 1 indicates a cable to be measured, and 1a
is its conductor, 1b is its polyethylene insulation layer, and 1c is its shielding layer.

S1は切換スイッチ、例えば真空スイッチ、2は直流電
源、3は電流測定器、例えばピコアンメーターで、これ
らによりケーブル1の導体1aと遮蔽層1。
S1 is a changeover switch, for example a vacuum switch; 2 is a DC power source; 3 is a current measuring device, for example a picoammeter;

との間に充電回路を形成する。A charging circuit is formed between the two.

S2は電流測定器3に並列に接続したバイパス回路のバ
イパススイッチで、タイマー4を介して切換スイッチS
1に連動されている。
S2 is a bypass switch of a bypass circuit connected in parallel to the current measuring device 3, and the changeover switch S
It is linked to 1.

5は電流を記録するためのレコーダーである。5 is a recorder for recording current.

しかして、先ず、切換スイッチS,の可動接片aを固定
接点b側に入れ直流電源2によってケーブル絶縁層1b
を充電する。
First, the movable contact piece a of the changeover switch S is put on the fixed contact b side, and the cable insulation layer 1b is turned on by the DC power supply 2.
to charge.

充電時間は余効電流が略々飽和する時間とじて5分間程
度で十分である。
A charging time of about 5 minutes is enough for the aftereffect current to be approximately saturated.

厳密には非常に長時間かかるものであるが、本測定の場
合にはその程度の電流感度で十分測定できるからである
Strictly speaking, it takes a very long time, but in the case of this measurement, this level of current sensitivity is sufficient for measurement.

このようにして十分に充電したら、次に、切換スイッチ
S1の可動接片aを固定接点C側に入れ、放電回路を形
或して放電する。
Once the battery is sufficiently charged in this manner, the movable contact a of the changeover switch S1 is placed on the fixed contact C side to form a discharge circuit and discharge.

このとき、タイマー4を介して連動されたバイパススイ
ッチS2の可動接片dは固定接点e側に入っている。
At this time, the movable contact piece d of the bypass switch S2, which is interlocked via the timer 4, is on the side of the fixed contact e.

このため、初期の瞬間放電電流は接地側に放電される。Therefore, the initial instantaneous discharge current is discharged to the ground side.

このようにして2秒間放電すると、タイマー4が作動し
てスイッチS2の可動接片dが固定接点e側から離間し
て開く。
When the discharge is performed for 2 seconds in this manner, the timer 4 is activated and the movable contact piece d of the switch S2 is separated from the fixed contact e side and opened.

したがって、今度は時間的に遅れのある余効電流が電流
測定器3により測定され、レコーダー5に記録される。
Therefore, the aftereffect current with a time delay is measured by the current measuring device 3 and recorded on the recorder 5.

これには当然若干の瞬間放電電流も含むが、水トリ一発
生部の検出に悪影響を及ぼす程ではないので問題はない
This naturally includes a small amount of instantaneous discharge current, but this is not a problem since it does not adversely affect the detection of the water litter generation area.

上記のようにして瞬間放電電流は、バイパスされるため
余効電流値は電圧100■でも、mttAのオーダーの
電流値を示し、電流測定器としてはピコアンメーターで
十分である。
Since the instantaneous discharge current is bypassed as described above, the aftereffect current value shows a current value on the order of mttA even at a voltage of 100 cm, and a picoammeter is sufficient as a current measuring device.

尚、測定時の電圧は100〜500Vが適している。Note that a voltage of 100 to 500 V is suitable for the measurement.

以上から明らかなように、本発明によれば、放電の際、
社期の瞬間放電電流をバイパスさせ、所定の時間の経過
後余効電流の放電特性を測定するようにしてあるため、
実布設の長尺なケーブルの場合においても、水トリ一発
生部の検出が容易にできる効果がある。
As is clear from the above, according to the present invention, during discharge,
The initial instantaneous discharge current is bypassed, and the discharge characteristics of the aftereffect current are measured after a predetermined period of time has elapsed.
Even in the case of a long cable that is actually installed, there is an effect that it is possible to easily detect the part where water litter occurs.

また、その際、測定電圧をそれほど高圧にする必要もな
いため、危険性もなくかつ測定時の電流が不安定になる
という虞も全くない。
Further, in this case, there is no need to make the measurement voltage so high, so there is no danger and there is no possibility that the current during measurement will become unstable.

さらに、電流測定器としてmμAのオーダーのピコアン
メーターを使用することができ、経済性もよい。
Furthermore, a picoammeter on the order of mμA can be used as a current measuring device, which is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の検出方法を実施するための検出回路の一例
を示す回路図である。 1・・・・・・ケーブル、1a・・・・・・導体、1b
・・・・・・ポリエチレン絶縁層、1c・・・・・・遮
蔽層、2・・・・・・直流電源、3・・・・・・電流測
定器、4・・・・・・タイマー、5・・・・・・レコー
ダ、S1・・・・・・切換スイッチ、S2・・・・・・
バイパススイッチ。
The figure is a circuit diagram showing an example of a detection circuit for implementing the detection method of the present invention. 1...Cable, 1a...Conductor, 1b
...Polyethylene insulation layer, 1c ... Shielding layer, 2 ... DC power supply, 3 ... Current measuring device, 4 ... Timer, 5... Recorder, S1... Changeover switch, S2...
Bypass switch.

Claims (1)

【特許請求の範囲】[Claims] 1 測定しようとするケーブルを充電し、しかる後放電
せしめ、その放電特性から水トリーの有無を検出する検
出方法において、放電初期の瞬間放電電流をバイパスさ
せ、その後所定時間の遅れをもって余効電流の放電特性
を測定することを特徴とするケーブルにおける水トリー
の検出方法。
1. In a detection method in which the cable to be measured is charged, then discharged, and the presence or absence of water trees is detected from the discharge characteristics, the instantaneous discharge current at the initial stage of discharge is bypassed, and then after a predetermined delay, the aftereffect current is detected. A method for detecting water trees in a cable, characterized by measuring discharge characteristics.
JP52021779A 1977-03-01 1977-03-01 How to detect water trees in cables Expired JPS5848861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52021779A JPS5848861B2 (en) 1977-03-01 1977-03-01 How to detect water trees in cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52021779A JPS5848861B2 (en) 1977-03-01 1977-03-01 How to detect water trees in cables

Publications (2)

Publication Number Publication Date
JPS53107687A JPS53107687A (en) 1978-09-19
JPS5848861B2 true JPS5848861B2 (en) 1983-10-31

Family

ID=12064537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52021779A Expired JPS5848861B2 (en) 1977-03-01 1977-03-01 How to detect water trees in cables

Country Status (1)

Country Link
JP (1) JPS5848861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412950Y2 (en) * 1985-04-27 1992-03-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412950Y2 (en) * 1985-04-27 1992-03-26

Also Published As

Publication number Publication date
JPS53107687A (en) 1978-09-19

Similar Documents

Publication Publication Date Title
US20100207635A1 (en) Fault detection method for detecting leakage paths between power sources and chassis
JP3884802B2 (en) Lithium-ion battery charging method
US5276401A (en) Method for diagnosing an insulation deterioration of an electric apparatus
JPS5848861B2 (en) How to detect water trees in cables
JP4058224B2 (en) CV cable remaining life estimation method
EP0354096A1 (en) Method for the diagnosis of steel corrosion in concrete
JPS6214787B2 (en)
JPS6331747B2 (en)
JPH0236191B2 (en)
JP2011185890A (en) Power cable insulation resistance recording device, and evaluation method
JP3629409B2 (en) CV cable deterioration diagnosis method
JP3184712B2 (en) Diagnosis method for insulation deterioration of power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP3629424B2 (en) CV cable insulation diagnosis method
CA2397572A1 (en) Method and device for controlling a telecommunication cable
JPH04250376A (en) Estimation of remaining capacity of closed type lead storage battery
JP3129783B2 (en) Power cable insulation diagnostic method
JP2612366B2 (en) Diagnosis method for insulation deterioration of power cable
JP2636743B2 (en) Partial discharge measurement method
JP3050613B2 (en) Cable insulation deterioration detection method
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JPH0528350B2 (en)
JPH04264273A (en) Method for diagnosing deterioration of power cable
JP3879989B2 (en) Insulation degradation diagnosis method for power cables
JP2002340970A (en) Insulation deterioration diagnostic method for power cable