JP3184712B2 - Diagnosis method for insulation deterioration of power cable - Google Patents

Diagnosis method for insulation deterioration of power cable

Info

Publication number
JP3184712B2
JP3184712B2 JP19948794A JP19948794A JP3184712B2 JP 3184712 B2 JP3184712 B2 JP 3184712B2 JP 19948794 A JP19948794 A JP 19948794A JP 19948794 A JP19948794 A JP 19948794A JP 3184712 B2 JP3184712 B2 JP 3184712B2
Authority
JP
Japan
Prior art keywords
charge
voltage
time
measurement
residual charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19948794A
Other languages
Japanese (ja)
Other versions
JPH0862280A (en
Inventor
知弘 横山
厚 脇所
中 坂本
雅善 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Tokyo Electric Power Co Inc
Original Assignee
Mitsubishi Cable Industries Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Tokyo Electric Power Co Inc filed Critical Mitsubishi Cable Industries Ltd
Priority to JP19948794A priority Critical patent/JP3184712B2/en
Publication of JPH0862280A publication Critical patent/JPH0862280A/en
Application granted granted Critical
Publication of JP3184712B2 publication Critical patent/JP3184712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、CVケーブル等の電力
ケーブルの絶縁劣化診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing insulation deterioration of a power cable such as a CV cable.

【0002】[0002]

【従来の技術】CVケーブル等のゴム・プラスチック電
力ケーブルに対して、水が存在する環境下で長期間に亘
って交流電圧を課電していると、絶縁体中のボイド、異
物、突起等の電界集中部に水分が蓄積され、微小な水ボ
イド集団が形成されて、これが電界方向に成長する水ト
リー劣化が発生する。この水トリーは、その成長ととも
に絶縁破壊電圧を低下させ、最終的には運転中の電力ケ
ーブルの絶縁破壊事故の原因になる。現在のCVケーブ
ル等の電力ケーブルの絶縁劣化診断においては、この水
トリー劣化を信頼性高く検出する方法の開発が重要な課
題になっている。
2. Description of the Related Art When an AC voltage is applied to a rubber / plastic power cable such as a CV cable in an environment where water is present for a long period of time, voids, foreign matter, protrusions, etc. in an insulator may occur. The water accumulates in the electric field concentration portion of the substrate, and a minute water void group is formed, and this grows in the direction of the electric field, causing water tree deterioration. This water tree, as it grows, lowers the breakdown voltage and ultimately causes a breakdown of the power cable during operation. In the current diagnosis of insulation deterioration of power cables such as CV cables, development of a method for detecting the water tree deterioration with high reliability has become an important issue.

【0003】この水トリー劣化を診断する方法として
は、現在までに種々の方法が研究されてきている。これ
らの方法の中に、直流電圧課電後の接地期間中の誘電吸
収に係わる現象を測定する方法がある。一般に、誘電率
と導電率の異なる複数の材料からなる複合誘電体に直流
電圧を印加すると、異種材料の界面に空間電荷が蓄積さ
れる。直流課電終了後に接地(電極間を短絡)して直流
印加電圧を取り除くと、この空間電荷は自己の形成する
空間電荷電界によって移動を開始し、最終的には再結合
等によって消滅する。この直流課電後の接地回路には、
幾何容量や瞬時分極に基づく瞬時放電電流が減衰した後
にも、この空間電荷の移動・消滅に伴って時間とともに
減衰する直流電流が流れる。この電流は吸収電流あるい
は逆吸収電流と称され、また、この接地回路に流れる吸
収電流の源になる電荷を残留電荷と称している。即ち、
直流課電中に発生した空間電荷の中で、接地期間中に絶
縁体中を移動、消滅する成分が残留電荷に相当する。
As a method of diagnosing the water tree deterioration, various methods have been studied so far. Among these methods, there is a method of measuring a phenomenon related to dielectric absorption during a ground period after DC voltage application. Generally, when a DC voltage is applied to a composite dielectric made of a plurality of materials having different dielectric constants and conductivity, space charges are accumulated at the interface between different materials. When the DC applied voltage is removed by grounding (short between the electrodes) after the completion of the DC application, the space charge starts to move due to the space charge electric field formed by itself and finally disappears due to recombination or the like. The grounding circuit after this DC charging
Even after the instantaneous discharge current based on the geometric capacity and the instantaneous polarization has attenuated, a DC current that attenuates with time flows as the space charge moves and disappears. This current is called an absorption current or a reverse absorption current, and a charge serving as a source of the absorption current flowing through this ground circuit is called a residual charge. That is,
Among the space charges generated during the DC application, the component that moves and disappears in the insulator during the grounding period corresponds to the residual charge.

【0004】接地期間中の空間電荷の移動方向と移動速
度は、空間電荷電界の方向とその大きさ、並びに電荷の
移動度等によって決定される。一般的には、複合誘電体
材料の界面に形成された空間電荷に基づく直流電圧課電
接地後の吸収電流は直流課電時の電流とは逆極性にな
る。但し、直流印加電界が高くて、電極からの電荷注入
等による空間電荷が形成されていた場合等には、直流課
電時の電流と同極性の吸収電流が観察される場合もあ
る。
The direction and speed of movement of space charges during the grounding period are determined by the direction and magnitude of the space charge electric field, the mobility of charges, and the like. Generally, the absorption current after the DC voltage application grounding based on the space charge formed at the interface of the composite dielectric material has the opposite polarity to the current at the time of the DC application. However, when a DC applied electric field is high and a space charge is formed by charge injection from an electrode or the like, an absorption current having the same polarity as the current at the time of DC application may be observed.

【0005】水トリー劣化CVケーブル絶縁体の場合に
は、導電率が極めて小さな架橋ポリエチレン(XLP
E)中に導電率の大きい微小水ボイド集団が形成される
ので、上述の複合誘電体的な特性があり、また、劣化の
進展とともに、水トリー発生個数が増加し、さらに、個
々の水トリー部分の体積や長さも増加するので、直流課
電中に発生する空間電荷は劣化の進展とともに増大す
る。従って、直流課電接地後の吸収電流や残留電荷を劣
化診断の判定信号として利用することができるが、吸収
電流は時間とともに減衰する等の劣化信号として取扱い
難い特性があるので、一般的には、吸収電流を時間積分
して残留電荷に換算した値が劣化診断の判定量に用いら
れている。
[0005] In the case of water tree aged CV cable insulation, a crosslinked polyethylene (XLP) with very low conductivity is used.
Since a group of minute water voids having a large electric conductivity is formed during E), it has the above-mentioned composite dielectric properties, and the number of generated water trees increases with the progress of deterioration. Since the volume and length of the part also increase, the space charge generated during the DC application increases as the deterioration progresses. Accordingly, although the absorption current and residual charge after DC application grounding can be used as a determination signal for deterioration diagnosis, the absorption current has characteristics that are difficult to handle as a deterioration signal such as attenuating with time. The value obtained by integrating the absorption current with respect to time and converting it into the residual charge is used as the determination amount for the deterioration diagnosis.

【0006】CVケーブルの水トリー劣化診断に用いら
れる直流課電接地後の残留電荷の測定方法としては、
「逆吸収電流測定」と「残留電圧測定」が知られてい
る。「逆吸収電流測定」では、接地回路に流れる吸収電
流を連続測定して、その時間積分から残留電荷を算出す
る。「残留電圧測定」では、一旦接地した回路を再び開
放して電極間に高インピーダンスの電圧計を挿入し、時
間の経過とともに回復してくる電圧(残留電圧と称す
る)を測定する。この残留電圧に試料の静電容量を乗ず
ると、残留電荷に相当する電荷が測定される。
[0006] As a method of measuring the residual charge after DC charging and grounding used for water tree deterioration diagnosis of CV cable,
“Reverse absorption current measurement” and “residual voltage measurement” are known. In the “reverse absorption current measurement”, the absorption current flowing in the ground circuit is continuously measured, and the residual charge is calculated from the time integration. In the "residual voltage measurement", the circuit once grounded is opened again, a high impedance voltmeter is inserted between the electrodes, and a voltage (residual voltage) which recovers with time is measured. When the residual voltage is multiplied by the capacitance of the sample, a charge corresponding to the residual charge is measured.

【0007】「逆吸収電流測定」では時間とともに減衰
する電流を測定しているので、この電流の時間特性を正
確に測定するには、電流の減衰時定数よりも遙かに早い
応答を有する測定回路が必要になる。もしも、電流検出
抵抗を不用意に大きくすると、試料の静電容量と検出抵
抗で決定される測定の時定数が大きくなり、測定開始後
の短時間側での電荷測定結果が実際の値よりも小さく検
出されてしまう。吸収電流が劣化診断に使用されない原
因のひとつは、電流の大きさがこのような測定回路条件
に依存するからである。
In the "reverse absorption current measurement", a current that decays with time is measured. To accurately measure the time characteristic of this current, a measurement having a response much faster than the current decay time constant is required. Circuit is required. If the current detection resistor is carelessly increased, the time constant of the measurement determined by the capacitance of the sample and the detection resistance will increase, and the charge measurement result on the short time after the start of measurement will be smaller than the actual value. It is detected small. One of the reasons that the absorption current is not used for the deterioration diagnosis is that the magnitude of the current depends on such measurement circuit conditions.

【0008】一方、「残留電圧測定」では、測定回路か
らの電荷の漏洩が問題になる。通常は、1013Ω以上
程度の高入力インピーダンスのエレクトロメータ等を用
いて測定を行なうが、試料の静電容量が小さいと電荷の
漏洩が無視できなくなり、長時間測定には不向きであ
る。ところで、直流課電後に外部電界を取り除いた状態
下での水トリー劣化CVケーブル中の空間電荷の移動・
消滅には長時間を要する。本発明者らの水トリー劣化C
Vケーブルに対する経験では、直流前課電後の室温状態
で1カ月間接地していても、なおも残留電荷が観測され
た場合もある。従って、せいぜい10分間程度の実用的
な測定時間範囲内で検出される残留電荷は実際に蓄積さ
れていた空間電荷のごく一部であり、また、検出信号に
は水トリー劣化部以外の類似現象による残留電荷等が含
まれていること等から、「逆吸収電流測定」や「残留電
圧測定」によるCVケーブルの水トリー劣化診断を難し
くしている。
[0008] On the other hand, in the "residual voltage measurement", there is a problem of charge leakage from the measurement circuit. Normally, measurement is performed using an electrometer or the like having a high input impedance of about 1013 Ω or more. However, if the capacitance of the sample is small, leakage of electric charge cannot be ignored, and is not suitable for long-time measurement. By the way, movement of space charge in the water tree deteriorated CV cable under the condition where the external electric field is removed after DC application
It takes a long time to disappear. Deterioration of water tree by the present inventors C
In the experience with V-cables, residual charge may still be observed even after grounding for one month at room temperature after DC precharge. Therefore, the residual charge detected within a practical measurement time range of at most about 10 minutes is only a small part of the actually stored space charge, and the detected signal includes a similar phenomenon other than the water tree deterioration part. This makes it difficult to diagnose the water tree deterioration of the CV cable by "measuring reverse absorption current" or "measuring residual voltage".

【0009】上述の問題を解決する方法としては、直流
課電接地後に交流電界を印加して、この交流課電状態下
で吸収電流を測定し、これを時間積分して残留電荷を検
出する方法が提案されている。提案者らはこの方法を
「残留電荷測定」と称しているが、正確には、直流課電
接地後の交流課電下での吸収電流測定による残留電荷検
出である(特公平5−28350号公報参照)。
As a method for solving the above-mentioned problem, a method of applying an AC electric field after DC application grounding, measuring an absorption current under this AC application state, integrating the time, and detecting a residual charge. Has been proposed. The proposers call this method "residual charge measurement", but to be precise, it is a residual charge detection by measuring an absorption current under an AC power supply after a DC power supply is grounded (Japanese Patent Publication No. 5-28350). Gazette).

【0010】前述のように、直流課電接地後の空間電荷
の移動速度は、絶縁体内部の電界の大きさに依存するの
で、外部から大きな電界を印加すれば電荷の移動速度が
早くなり、短時間で大きな吸収電流を測定することが可
能になる。接地時の空間電荷の移動を速めるための印加
電界として直流を用いると、この直流課電による電流と
測定すべき吸収電流との区別が難しくなるので、上記
「残留電荷測定」では交流電界を印加して、この時の検
出電流から交流成分を除去して吸収電流を検出してい
る。
As described above, the moving speed of the space charge after the DC voltage application grounding depends on the magnitude of the electric field inside the insulator. Therefore, when a large electric field is applied from the outside, the moving speed of the charge becomes faster. A large absorption current can be measured in a short time. If DC is used as the applied electric field to accelerate the movement of space charge at the time of grounding, it becomes difficult to distinguish between the current due to the DC application and the absorption current to be measured. Then, the AC component is removed from the detection current at this time, and the absorption current is detected.

【0011】なお、この「残留電荷測定」では、直流課
電接地後の通常の交流課電を行なわない場合の吸収電流
と区別するために、この吸収電流が十分に減衰した後に
交流電圧を印加し、交流課電期間中の吸収電流を所定時
間連続測定して、これを時間積分して得た残留電荷の大
きさ、即ち、交流課電下での最終測定時刻の残留電荷の
大きさを劣化診断の判定量に用いている。
In this "residual charge measurement", an AC voltage is applied after the absorption current is sufficiently attenuated in order to distinguish it from an absorption current in a case where a normal AC charging is not performed after the DC charging and grounding. Then, the absorption current during the AC power application period is continuously measured for a predetermined time, and the magnitude of the residual charge obtained by time-integrating the absorption current, that is, the magnitude of the residual charge at the final measurement time under the AC power application is calculated. It is used for the judgment amount of deterioration diagnosis.

【0012】[0012]

【発明が解決しようとする課題】上述の直流課電接地後
に交流電圧を印加する「残留電荷測定」では、従来の交
流課電を用いない「逆吸収電流測定」の場合と同様に、
測定完了時間での残留電荷の大きさによって劣化診断を
行っている。ところが、単なる劣化信号の大きさのみを
用いる劣化診断においては、例えば、劣化が著しい場合
のみに劣化信号が発生する等の、個々の水トリーから発
生する劣化信号の大きさが劣化状態によって著しく異な
る特性がない限り、信頼性の高い劣化診断は行えない。
残留電荷は軽微な水トリー劣化状態によっても僅かなが
らも発生するので、例えば、多数個の軽微劣化の発生と
少数の極度劣化の発生との区別は困難であり、交流課電
によってもこの本質的な問題を解決することはできな
い。
In the above-described "residual charge measurement" in which an AC voltage is applied after the DC voltage application and grounding, as in the case of the conventional "reverse absorption current measurement" without using the AC voltage application,
Deterioration diagnosis is performed based on the magnitude of the residual charge at the measurement completion time. However, in the degradation diagnosis using only the magnitude of the degradation signal, for example, the magnitude of the degradation signal generated from each water tree is significantly different depending on the degradation state, for example, the degradation signal is generated only when the degradation is significant. As long as there is no characteristic, highly reliable deterioration diagnosis cannot be performed.
Since the residual charge is slightly generated due to the slight water tree deterioration state, it is difficult to distinguish between a large number of small deteriorations and a small number of extreme deteriorations. Problems cannot be solved.

【0013】ところで、直流課電接地後の空間電荷の移
動、消滅の時間特性は、絶縁体の導電率と誘電率等に依
存する。従って、検出される残留電荷の時間特性も水ト
リー劣化診断の判定材料になり得る。本発明の目的は、
上述の問題点を解決するために、劣化診断の判定信号と
して残留電荷の大きさのみを利用するのではなく、直流
課電接地後の交流課電時に現れる残留電荷の時間特性に
着目し、これによって残留電荷の発生源となる水トリー
劣化部の有害性を判断して、信頼性の高い電力ケーブル
の絶縁劣化診断を行おうとするものである。
By the way, the time characteristics of the movement and disappearance of the space charge after DC grounding depend on the conductivity and the dielectric constant of the insulator. Therefore, the time characteristic of the detected residual charge can also be a judgment material for water tree deterioration diagnosis. The purpose of the present invention is
In order to solve the above problem, instead of using only the magnitude of the residual charge as the determination signal for the deterioration diagnosis, attention is paid to the time characteristic of the residual charge that appears at the time of AC power application after DC power application grounding. The purpose of this method is to determine the harmfulness of the water tree deterioration part, which is the source of the residual charge, and to perform a highly reliable insulation deterioration diagnosis of the power cable.

【0014】[0014]

【課題を解決するための手段】本発明に係わる電力ケー
ブルの絶縁劣化診断方法は、「残留電荷測定」と同様
に、試料ケーブルに直流電圧VDCを印加した後に接地し
て、さらにその後に交流電圧VACを試料に印加した場合
の残留電荷を測定するものであるが、交流課電開始時刻
をt=0、交流電圧が零から所定の値VACに昇圧した時
刻をt=t1 、その後のVACを保持して測定を完了した
時刻をt=t2 とすると、時刻t=0からt=t1 まで
に現れる残留電荷の大きさQ(t1 )と、時刻t=t1
からt=t2 までの測定期間中の残留電荷の変化分ΔQ
/Q(t1 )={Q(t2 )−Q(t1 )}/Q(t1
)によって電力ケーブルの絶縁劣化診断を行うことを
特徴としている。
According to the method for diagnosing insulation deterioration of a power cable according to the present invention, a DC voltage VDC is applied to a sample cable, then grounded, and then an AC voltage is applied to the sample cable in the same manner as in "residual charge measurement". The residual charge when VAC is applied to the sample is measured. The start time of AC voltage application is t = 0, the time when the AC voltage is boosted from zero to a predetermined value VAC is t = t1, and the subsequent VAC is measured. Assuming that the time at which the measurement is held and the measurement is completed is t = t2, the magnitude of the residual charge Q (t1) appearing from time t = 0 to t = t1 and the time t = t1
Change ΔQ in the residual charge during the measurement period from t to t2
/ Q (t1) = {Q (t2) -Q (t1)} / Q (t1
) Is performed to diagnose the insulation deterioration of the power cable.

【0015】また、本発明に係わる電力ケーブルの絶縁
劣化診断では交流課電中の残留電荷の時間特性を正確に
測定する必要があるので、残留電荷の測定に対しては、
直流課電後に一旦接地した回路を再び開放して、電極間
に測定期間中の電荷の漏洩を無視できる放電時定数を有
する直流電圧測定回路を挿入し、その電位差から残留電
荷を直接的に連続測定する。
Further, in the insulation deterioration diagnosis of the power cable according to the present invention, it is necessary to accurately measure the time characteristic of the residual charge during the AC power application.
After applying DC power, open the circuit once grounded again, insert a DC voltage measurement circuit between the electrodes with a discharge time constant that can ignore charge leakage during the measurement period, and directly continue the residual charge from the potential difference. Measure.

【0016】即ち、従来の「残留電荷測定」では、交流
課電によって得られる吸収電荷の大きさのみを問題にし
ているので、交流課電開始時刻t=0からVACを保持し
て、測定を完了する時刻t=t2 までの吸収電流ia
(t)を連続測定し、t=0からt=t2 までの電流を
時間積分した残留電荷の大きさ数1を劣化診断に用いて
いる。
That is, in the conventional "residual charge measurement", since only the magnitude of the absorbed charge obtained by the AC charging is considered, the measurement is performed while VAC is maintained from the AC charging start time t = 0. Absorption current ia until completion time t = t2
(T) is continuously measured, and the residual number 1 obtained by time-integrating the current from t = 0 to t = t2 is used for deterioration diagnosis.

【0017】[0017]

【数1】 (Equation 1)

【0018】しかし、本発明に係わる電力ケーブルの絶
縁劣化診断方法では、残留電荷の大きさQ(t2 )を電
圧昇圧完了時刻までに現れる吸収電荷Q(t1 )と、そ
の後の交流印加電圧を一定値に保持した期間中の残留電
荷の変化分ΔQとに分離し{Q(t2 )=Q(t1 )+
ΔQ}、Q(t1 )の大きさから電力ケーブルの劣化状
況の概略を診断し、さらに、Q(t1 )やQ(t2 )等
の残留電荷の大きさだけでは判別できない信号発生源の
劣化状況をΔQで代表される残留電荷の時間変化特性か
ら判定しようとするものである。
However, in the method for diagnosing insulation deterioration of a power cable according to the present invention, the magnitude of the residual charge Q (t2) and the absorbed charge Q (t1) appearing before the completion of the voltage boosting and the subsequent AC applied voltage are kept constant.変 化 Q (t2) = Q (t1) +
From the magnitude of ΔQ} and Q (t1), an outline of the degradation state of the power cable is diagnosed, and further, the degradation state of the signal source which cannot be determined only by the magnitude of the residual charge such as Q (t1) or Q (t2). Is to be determined from the time variation characteristic of the residual charge represented by ΔQ.

【0019】ところで、このような交流電圧課電下での
残留電荷の時間変化特性による劣化診断を行う場合に
は、真の時間特性を正確に測定する必要がある。残留電
荷の測定は、原理的には静電容量Cx に充電されている
電荷Qx を測定することとほぼ同じものである。前述の
吸収電荷測定による残留電荷検出手法は電荷Qx を直接
的に測定するものではなくて、電極間を短絡してこれを
放電させた場合の電流を測定し、その時間積分から電荷
を検出する。従って、放電回路に挿入する検出抵抗が零
に近ければ特に問題は生じないが、実際にはある有限の
大きさの検出抵抗Rs を挿入する必要があるので、試料
の静電容量をCx とすると、τ=Cx Rs なる放電時定
数、即ち、電流検出に対する測定の応答遅れが生じる。
Incidentally, when performing a deterioration diagnosis based on the time change characteristic of the residual charge under such an AC voltage application, it is necessary to accurately measure the true time characteristic. The measurement of the residual charge is basically the same as the measurement of the charge Qx charged in the capacitance Cx. The above-described residual charge detection method based on absorption charge measurement does not directly measure the charge Qx, but measures the current when the electrodes are short-circuited and discharged, and detects the charge from the time integration. . Therefore, if the detection resistor inserted into the discharge circuit is close to zero, there is no particular problem. However, actually, it is necessary to insert a detection resistor Rs having a certain finite size. , Τ = CxRs, that is, a measurement response delay to current detection occurs.

【0020】ところで、交流課電下で直流課電接地後の
吸収電流を測定する場合には、測定回路に加わる交流電
圧を低減するために大容量のコンデンサCs を測定回路
と並列に接続する必要があるが、これを吸収電流測定回
路としてみた場合には、Csは試料の静電容量Cx と並
列に接続された状態になるので、電荷の放電時定数はτ
=(Cx +Cs )Rs となり、測定の応答時定数がCs
によって増大する。
When measuring the absorption current after the DC voltage is applied and the AC current is applied, it is necessary to connect a large-capacity capacitor Cs in parallel with the measurement circuit in order to reduce the AC voltage applied to the measurement circuit. However, when this is considered as an absorption current measurement circuit, Cs is connected in parallel with the capacitance Cx of the sample, and the discharge time constant of the charge is τ
= (Cx + Cs) Rs, and the response time constant of the measurement is Cs
Increase by.

【0021】例えば、電流検出抵抗Rs を10kΩ、試
料の静電容量Cx を0.1μF、並列コンデンサCs を
200μFとした場合にはτは約2秒となる。この時、
Cxに充電されていた電荷Qx によって放電回路に流れ
る電流はix (t)=Qx /{τ×exp(−t/
τ)}であり、これを時間積分して得られる電荷はQ
(t)=Qx {1−exp(−t/τ)}となるので、
測定電荷Q(t)が真の電荷Qx と等しくなるためには
t=10秒程度の遅れが生じてしまう。また、実際の直
流電流測定回路には交流電流除去用のローパスフィルタ
等が加わるために、応答遅れはさらに増加する。一方、
応答時間を短くするために検出抵抗Rs を低減しようと
すると検出信号Vs (t)=Rs ・ix (t)が小さく
なるので、微小な電流測定が難しくなる。
For example, when the current detection resistor Rs is 10 kΩ, the sample capacitance Cx is 0.1 μF, and the parallel capacitor Cs is 200 μF, τ is about 2 seconds. At this time,
The current flowing in the discharge circuit due to the charge Qx charged in Cx is ix (t) = Qx / {τ × exp (−t /
τ)}, and the charge obtained by time integration is Q
(T) = Qx {1-exp (-t / τ)},
In order for the measured charge Q (t) to be equal to the true charge Qx, a delay of about t = 10 seconds occurs. Further, since a low-pass filter or the like for removing AC current is added to the actual DC current measurement circuit, the response delay further increases. on the other hand,
If an attempt is made to reduce the detection resistance Rs in order to shorten the response time, the detection signal Vs (t) = Rs.ix (t) becomes small, so that it becomes difficult to measure a minute current.

【0022】一方、「残留電圧測定」による残留電荷測
定では、静電容量に充電されている電荷を電極間電位差
として直接的に検出するので、原理的には応答遅れが全
く生じない。例えば、上記の吸収電流測定と同様に静電
容量Cx に充電されている電荷Qx を測定する場合を例
に挙げると、測定回路と並列に大容量のコンデンサCs
が接続されている場合でも、電荷Qx は電位差Vs =Q
x /(Cx +Cs )として応答遅れなく測定される。即
ち、測定された電位差Vs に試料と並列コンデンサの静
電容量の和Cx +Cs を乗じれば、測定時刻での残留電
荷が算出される。
On the other hand, in the residual charge measurement by the "residual voltage measurement", the charge charged in the capacitance is directly detected as the potential difference between the electrodes, so that no response delay occurs in principle. For example, as in the case of measuring the charge Qx charged in the capacitance Cx in the same manner as the above-described absorption current measurement, a large-capacity capacitor Cs may be connected in parallel with the measurement circuit.
Is connected, the electric charge Qx has the potential difference Vs = Q
It is measured without response delay as x / (Cx + Cs). That is, by multiplying the measured potential difference Vs by the sum of the capacitances of the sample and the parallel capacitor Cx + Cs, the residual charge at the measurement time is calculated.

【0023】ここで、「残留電圧測定」による残留電荷
測定では、検出される電圧信号Vsの大きさはCs が存
在しない場合に比べてCx /(Cx +Cs )に減少する
問題があるが、前述の吸収電流測定の応答送れ時間を算
出した測定回路条件に当てはめてみると、電荷Qx が1
00nCとすると、吸収電流測定による検出電流信号の
大きさは、測定開始後1秒で0.30mV(=30n
A)、また10秒で3.4μV(=0.34nA)であ
るのに対して「残留電圧測定」では0.5mVが測定さ
れることになり、検出感度からみても「残留電圧測定」
による残留電荷検出手法が全く問題ないことが分かる。
Here, in the residual charge measurement by "residual voltage measurement", there is a problem that the magnitude of the detected voltage signal Vs is reduced to Cx / (Cx + Cs) as compared with the case where Cs does not exist. Applying to the measurement circuit conditions for calculating the response sending time of the absorption current measurement of
Assuming that the current is 00 nC, the magnitude of the detected current signal obtained by the absorption current measurement is 0.30 mV (= 30 n
A) Also, while it is 3.4 μV (= 0.34 nA) in 10 seconds, 0.5 mV is measured in “residual voltage measurement”, and “residual voltage measurement” is considered from the viewpoint of detection sensitivity.
It can be seen that there is no problem in the residual charge detection method by

【0024】「残留電圧測定」手法の最大の問題点は、
測定中の電荷の漏洩にあるが、電流測定の場合とは逆
に、測定回路の放電時定数τを測定時間に比べて十分大
きい値に設定しておけば、この電荷漏洩による測定誤差
は無視できる。例えば、残留電荷の連続測定時間を1分
とすると、約500分以上程度の時定数を選択すれば、
測定開始直後に発生した残留電荷の99.8%以上は1
分後の測定完了時刻まで漏洩することなく測定回路に残
留する。
The biggest problem with the "residual voltage measurement" technique is that
Although there is charge leakage during measurement, contrary to the case of current measurement, if the discharge time constant τ of the measurement circuit is set to a sufficiently large value compared to the measurement time, the measurement error due to this charge leakage is ignored. it can. For example, if the continuous measurement time of the residual charge is 1 minute, if a time constant of about 500 minutes or more is selected,
99.8% or more of the residual charge generated immediately after the start of measurement is 1
It remains in the measurement circuit without leaking until the measurement completion time after one minute.

【0025】ここで、測定回路の放電時定数τはRs
(Cx +Cs )で表されるので、並列に存在する大容量
のコンデンサCs は電荷の漏洩を押える役割を果たす。
即ち、電圧検出感度に問題ない範囲では、Cs の増大は
電荷測定上有利に働く。例えば、試料の静電容量Cx が
0.1μFで並列コンデンサCs が無い場合にはτ=5
00分を確保するためには3×1011Ωもの抵抗Rs
が必要であるが、200μFの並列コンデンサCs が存
在すると、抵抗Rs は150MΩ程度ですむ。この程度
の測定系の放電抵抗の確保は容易であり、また、電極端
部の表面からの電荷漏洩等も容易に防止することができ
る。なお、従来の「残留電圧測定」による水トリー劣化
診断では、この測定回路の静電容量と漏洩抵抗からなる
放電時定数を考慮することなく10分程度の長時間測定
を行っていたために、測定回路あるいは電極端部からの
電荷漏洩が測定誤差になっていた。
Here, the discharge time constant τ of the measuring circuit is Rs
Since it is expressed by (Cx + Cs), the large-capacity capacitor Cs existing in parallel plays a role of suppressing the leakage of electric charge.
That is, as long as there is no problem in the voltage detection sensitivity, an increase in Cs has an advantageous effect on charge measurement. For example, when the capacitance Cx of the sample is 0.1 μF and there is no parallel capacitor Cs, τ = 5
To secure 00 minutes, the resistance Rs of 3 × 1011Ω is required.
However, if a parallel capacitor Cs of 200 μF is present, the resistance Rs is only required to be about 150 MΩ. It is easy to secure the discharge resistance of the measurement system to such a degree, and it is also possible to easily prevent charge leakage from the surface of the electrode end. In the conventional water tree deterioration diagnosis using "residual voltage measurement", measurement was performed for a long time of about 10 minutes without considering the discharge time constant consisting of the capacitance and leakage resistance of this measurement circuit. Leakage of electric charge from the circuit or the end of the electrode resulted in a measurement error.

【0026】以上までに示したように、本発明に係わる
電力ケーブルの絶縁劣化診断方法は、劣化診断の判定信
号として直流課電接地後の交流課電時に現れる残留電荷
の時間特性を利用し、また、その残留電荷測定において
は、従来の「残留電荷測定」で用いられていた電流測定
手法を用いずに、高入力抵抗による電圧測定を行うこと
を特徴としている。
As described above, the method of diagnosing insulation deterioration of a power cable according to the present invention utilizes the time characteristic of residual charge appearing during AC power application after DC power application grounding as a determination signal for deterioration diagnosis, The residual charge measurement is characterized in that voltage measurement with high input resistance is performed without using the current measurement method used in the conventional “residual charge measurement”.

【0027】[0027]

【作用】本発明に係わる電力ケーブルの絶縁劣化診断方
法における劣化信号の発生原理を、以下に図に従って説
明する。図1(A)は、直流課電時に形成される空間電
荷のモデル図である。水トリー劣化絶縁体に負極性直流
電圧−VDCが印加されると、電荷の移動の容易な水トリ
ー部分と、これに直列に存在する電荷の移動し難い健全
部絶縁体の界面に空間電荷が蓄積される。劣化部を含む
試料の静電容量をCx として、接地側電極を基準点とす
ると、この直流課電時の状態では、電荷数2が試料の課
電側電極上に存在し、また、絶縁体中には空間電荷QS
(t)=QSDC が存在する。直流課電状態下では、この
空間電荷は水トリー部分の電界を緩和するように作用す
るので、図では、接地電極側から発生する水トリー部の
先端に正の空間電荷+QS (t)=+QSDC が蓄積され
ている場合を示している。
The principle of generation of a deterioration signal in the method for diagnosing insulation deterioration of a power cable according to the present invention will be described below with reference to the drawings. FIG. 1A is a model diagram of space charges formed during DC power application. When a negative DC voltage -VDC is applied to the water tree deterioration insulator, space charge is generated at the interface between the water tree part where the charge easily moves and the healthy part insulator that exists in series and where the charge is difficult to move. Stored. Assuming that the capacitance of the sample including the deteriorated portion is Cx and the ground side electrode is a reference point, in this DC application state, 2 electric charges exist on the sample side electrode of the sample. Inside is the space charge QS
(T) = QSDC exists. Under the DC charging state, this space charge acts to reduce the electric field in the water tree portion. Therefore, in the figure, a positive space charge + QS (t) = + QSDC is applied to the tip of the water tree portion generated from the ground electrode side. Is stored.

【0028】[0028]

【数2】 (Equation 2)

【0029】図1(B)は、直流課電側電極を接地(電
極間を短絡)して、印加していた直流電圧を除去した状
態を示すものである。この時、直流課電中に存在してい
た電極上の電荷−QDCは瞬時に放電されるが、絶縁体中
に正の空間電荷+QS (t)が存在していると、電極間
が短絡されても電極上の電荷は完全に零にはならず、接
地側電極を基準点にとると、課電側電極上には−Q1
(t)なる負の電荷が誘導される。
FIG. 1B shows a state in which the DC power supply side electrode is grounded (the electrodes are short-circuited) and the applied DC voltage is removed. At this time, the electric charge -QDC on the electrodes existing during the DC application is instantaneously discharged. However, if the positive space charge + QS (t) exists in the insulator, the electrodes are short-circuited. However, the electric charge on the electrode does not become completely zero, and when the ground electrode is used as a reference point, -Q1
A negative charge (t) is induced.

【0030】これは、電極間の電位差を常に零とするた
めには、空間電荷によって生じる電極間電位差を打ち消
す電荷が電極上に誘導される必要があるからであり、こ
の誘導電荷−Q1 (t)は、絶縁体中の空間電荷+QS
(t)と逆の極性になり、また、その大きさは、絶縁体
中の空間電荷+QS (t)の大きさと、これが絶縁体中
に存在する位置に依存する。即ち、図では省略している
が、空間電荷+QS (t)による誘導電荷は課電側電極
上の−Q1 (t)のみならず接地電極側にも現れてお
り、これを−Q2 (t)とすると、−{Q1 (t)+Q
2 (t)}の大きさが+QS (t)の大きさに等しく、
かつ、電極間に存在するQS (t)の位置によって両電
極上に誘導される電荷の割合が変化する。
This is because in order to make the potential difference between the electrodes always zero, it is necessary to induce a charge on the electrodes to cancel the potential difference between the electrodes caused by the space charge, and this induced charge −Q 1 (t ) Is the space charge in the insulator + QS
The polarity is opposite to that of (t), and its magnitude depends on the magnitude of the space charge + QS (t) in the insulator and the position where it exists in the insulator. That is, although not shown in the figure, the induced charge due to the space charge + QS (t) appears not only on -Q1 (t) on the power-supplying side electrode but also on the ground electrode side, which is referred to as -Q2 (t). Then,-{Q1 (t) + Q
2 The magnitude of (t)} is equal to the magnitude of + QS (t),
In addition, the ratio of the charge induced on both electrodes changes depending on the position of QS (t) existing between the electrodes.

【0031】接地と同時に絶縁体中の空間電荷+QS
(t)=+QSDC は空間電荷電界や密度拡散によって移
動を開始する。いま、密度拡散による電荷の移動を無視
すると、空間電荷の重心が存在する場所を境にして空間
電荷電界の方向が逆転するので、空間電荷は直流課電側
電極と接地側電極のいずれの方向にも移動する成分が含
まれるが、導電率が大きい水トリー側(この図では接地
電極側)へ移動する電荷が圧倒的に多くなる。即ち、殆
どの空間電荷+QS (t)=+QSDC は直流課電時とは
逆方向の接地電極側に移動し、これとともに、電極上の
誘導電荷−Q1 (t)は時間経過とともに減少する。従
って、この接地回路には直流課電時とは逆方向の吸収電
流Ia (t)が流れる。
At the same time as grounding, the space charge in the insulator + QS
(T) = + QSDC starts moving due to space charge electric field and density diffusion. Now, ignoring the charge transfer due to density diffusion, the direction of the space charge electric field is reversed at the location where the center of gravity of the space charge exists, so the space charge is either in the direction of the DC charging side electrode or the ground side electrode. However, the amount of charge that moves to the water tree side (the ground electrode side in this figure) having high conductivity is overwhelmingly increased. That is, most of the space charge + QS (t) = + QSDC moves to the ground electrode side in the opposite direction to that during the DC application, and the induced charge -Q1 (t) on the electrode decreases with time. Therefore, an absorption current Ia (t) flows through this ground circuit in a direction opposite to that during the DC application.

【0032】図1(C)は、図1(B)の直流課電接地
後に、再び接地を開放した状態を示すものである。接地
開放後は直流課電側電極上に電荷を供給する回路が断た
れるので、この直流課電側電極上の電荷−Q1 (t)は
接地開放時刻に存在していた誘導電荷−Q10の一定値に
保たれ、空間電荷QS (t)の移動、消滅等には全く依
存しなくなる。従って、この接地開放状態での直流課電
側電極の直流電位VS(t)は、課電側電極上の−Q10
と絶縁体中の空間電荷+QS (t)によって決定され、
−Q10による負の電位成分を−V0 とし、また+QS
(t)による正の電位成分を+VS+(t)とすると、直
流課電側電極の直流電位はVS (t)=−V0 +VS+
(t)になる。
FIG. 1C shows a state where the ground is opened again after the DC power application ground of FIG. 1B. After the grounding is released, the circuit for supplying the charge on the DC charging side electrode is cut off. Therefore, the charge -Q1 (t) on the DC charging side electrode is the same as that of the induced charge -Q10 existing at the time of the ground release. It is kept at a constant value and does not depend at all on the movement or disappearance of the space charge QS (t). Therefore, the DC potential VS (t) of the DC charging side electrode in the ground-open state is -Q10 on the charging side electrode.
And the space charge in the insulator + QS (t),
The negative potential component due to -Q10 is -V0, and + QS
Assuming that the positive potential component due to (t) is + VS + (t), the DC potential of the DC charging side electrode is VS (t) =-V0 + VS +
(T).

【0033】この課電側電極上の電荷−Q10は、接地開
放時の空間電荷+QS (t)によって直流電位差を零に
するように誘導されていたものであるから、接地開放直
後の直流電位差VS (t)は零である。ところが図1
(B)の場合と同様にして、時間経過とともに空間電荷
+QS (t)が水トリー劣化部を経由して接地電極側に
移動して行くので、+QS (t)による電位成分+VS+
(t)は時間とともに減少し、結果、課電側電極の直流
電位VS (t)は接地開放直後の零から直流課電時と同
極性の負の電圧が徐々に回復して来る。
Since the electric charge -Q10 on the power supply side electrode is induced so that the DC potential difference becomes zero by the space charge + QS (t) when the ground is opened, the DC potential difference VS immediately after the ground is opened. (T) is zero. However, FIG.
Similarly to the case of (B), since the space charge + QS (t) moves to the ground electrode side through the water tree deterioration part with the passage of time, the potential component + VS + by + QS (t) is obtained.
(T) decreases with time, and as a result, the DC potential VS (t) of the power receiving side electrode gradually recovers from zero immediately after the ground is opened to a negative voltage having the same polarity as that at the time of DC power application.

【0034】最終的に全ての空間電荷QS (t)が電極
までに移動し消滅した場合には、直流課電側電極上の電
荷−Q1 (t)=−Q10のみが残る。電荷−Q10は接地
開放時の空間電荷の大きさQS (t)に比例した値であ
り、また、直流電位VS (t)が零からある一定の−V
0 なる値まで回復して来る現象は、空間電荷の移動消滅
過程そのものを忠実に反映している。この直流電位VS
(t)が残留電圧と称されるものである。
When all the space charges QS (t) finally move to the electrodes and disappear, only the charges -Q1 (t) =-Q10 on the DC charging side electrode remain. The electric charge -Q10 is a value proportional to the magnitude of the space charge QS (t) when the ground is opened, and the DC potential VS (t) is from -zero to a certain -V
The phenomenon of recovery to 0 value faithfully reflects the process of space charge transfer annihilation itself. This DC potential VS
(T) is what is called a residual voltage.

【0035】ところで、水トリー劣化部とは並列に健全
絶縁体などの静電容量が存在するので、直流電位VS
(t)は劣化部の空間電荷が形成成する電位よりも遙か
に小さくなる。従って、電極間が開放されてはいるが、
近似的には電極間が接地されている状態と大差ないの
で、このVS (t)に試料の静電容量Cx を乗じた値
が、電極間を接地した場合に流れる吸収電流ia (t)
を積分した場合の試料の残留電荷Q(t)とほぼ等しく
なる。
By the way, since a capacitance such as a sound insulator exists in parallel with the water tree deterioration part, the DC potential VS
(T) is much smaller than the potential formed by the space charge in the deteriorated portion. Therefore, although the gap between the electrodes is open,
Approximately, there is not much difference from the state where the electrodes are grounded. Therefore, the value obtained by multiplying this VS (t) by the capacitance Cx of the sample is the absorption current ia (t) flowing when the electrodes are grounded.
Is approximately equal to the residual charge Q (t) of the sample when the integration is performed.

【0036】次に、図1(C)の状態で、電極間に交流
電界が印加された場合の空間電荷QS (t)の挙動につ
いて述べる。空間電荷電界による空間電荷QS (t)の
移動速度よりも遙かに速く正負に変化する交流電界を印
加すると、絶縁体中での空間電荷の直流的な存在位置
(重心)は交流電界によって変化しないので、空間電荷
QS (t)の移動方向は前述の空間電荷電界のみが存在
していた場合と変わらない。しかしながら、交流電界
は、電荷がトラップされていたエネルギー障壁を実効的
に低減して、電荷の移動度を増大させるので、空間電荷
の移動速度を速める効果がある。
Next, the behavior of the space charge QS (t) when an AC electric field is applied between the electrodes in the state of FIG. 1C will be described. When an AC electric field that changes positive and negative much faster than the moving speed of the space charge QS (t) due to the space electric field is applied, the DC existence position (center of gravity) of the space charge in the insulator changes due to the AC electric field. Therefore, the moving direction of the space charge QS (t) is not different from the case where only the space charge electric field exists. However, the AC electric field effectively reduces the energy barrier in which the charges are trapped and increases the mobility of the charges, and thus has the effect of increasing the moving speed of the space charges.

【0037】従って、図1(C)の状態で電極上の電荷
Q1 (t)を放電する事なく電極間に交流電界を印加し
た場合には、空間電荷QS (t)の移動速度が速まるの
で、結果、観測される直流電位VS (t)は交流電界を
加えなかった場合よりも一定値V0 =Q10/Cx に到達
する時刻が速まる。これによって、交流電界を加えなか
った場合よりも短時間で大きな残留電荷Q(t)=VS
(t)・Cx を観測することができるので、他の誤差要
因の影響を大幅に低減することが可能になる。
Therefore, when an AC electric field is applied between the electrodes without discharging the charge Q1 (t) on the electrodes in the state of FIG. 1C, the moving speed of the space charges QS (t) increases. As a result, the observed DC potential VS (t) arrives at a constant value V0 = Q10 / Cx faster than when no AC electric field is applied. As a result, a larger residual charge Q (t) = VS in a shorter time than when no AC electric field is applied.
Since (t) · Cx can be observed, it is possible to greatly reduce the influence of other error factors.

【0038】このように、残留電荷Q(t)の時間特性
は、絶縁体中の空間電荷の移動、消滅特性によるもので
あり、この時間変化は水トリー劣化部の導電率と誘導率
などに依存する。交流電界を加えた場合、電荷が捕獲さ
れていたエネルギー障壁が下げられることなどによって
実効的な電荷の移動度が増し、導電率が増大する。劣化
の進行している劣化部ほど交流電界による導電率の増加
効果が増大すると考えると、劣化が著しい水トリーほど
直流電位VS (t)が回復して来る時間が速くなると考
えることが出来る。この様に考えると、直流課電接地後
に交流電界を印加した場合の残留電荷の時間特性として
は、劣化が著しくなるほど残留電荷が一定値に飽和する
までの時間が短くなる可能性がある。
As described above, the time characteristic of the residual charge Q (t) is due to the movement and extinction characteristics of the space charge in the insulator, and this time change depends on the conductivity and the inductivity of the water tree deteriorated portion. Dependent. When an AC electric field is applied, the effective charge mobility increases due to, for example, lowering the energy barrier from which the charges have been captured, and the conductivity increases. Considering that the effect of increasing the conductivity due to the AC electric field increases as the deterioration proceeds, it can be considered that the time when the DC potential VS (t) recovers becomes faster as the water tree deteriorates more remarkably. Considering this, as for the time characteristic of the residual charge when an AC electric field is applied after the DC power application and grounding, there is a possibility that the time required for the residual charge to be saturated to a constant value becomes shorter as the deterioration becomes more remarkable.

【0039】図2は交流電界を印加した場合の残留電荷
の時間特性と試料の劣化状況との関係の推定を示したも
のであり、残留電荷が回復して来る時間が遅い(a)の
場合は試料の劣化進行状況が小さく、以下、回復して来
る時間が速くなる(a)から(c)の順に水トリー劣化
が著しくなると考えることが出来る。ところで、前述の
残留電荷の極性に関する説明では、接地開放後の空間電
荷の移動方向によって観測される電荷の極性が決定され
ることを述べ、通常の水トリー劣化の場合には直流印加
電圧と同極性の残留電荷が観測されることを説明した
が、劣化が著しく進展した場合には、水トリー内部を経
由する電荷の移動が完了した後にも、これと逆方向の健
全絶縁体部分中をゆっくりと移動する電荷が残される場
合も想定される。即ち、直流課電中において、水トリー
劣化部が著しく劣化していると、これと直列に存在する
健全部絶縁体に加わる直流電界が著しく増大して、空間
電荷の一部が健全部絶縁体側深くまで注入されたり、あ
るいは健全部絶縁体側の電極からホモ電荷が注入され
て、前述までの考察とは逆方向の電荷の移動の可能性が
ある。従って、図2の(d)に示すように、劣化が著し
い場合には、残留電荷が最大値を示した後に減衰し、場
合によっては電荷の極性が逆転するような時間特性が現
れる可能性もある。
FIG. 2 shows an estimation of the relationship between the time characteristic of the residual charge and the deterioration state of the sample when an AC electric field is applied. It can be considered that the deterioration of the water tree becomes remarkable in the order from (a) to (c), in which the progress of deterioration of the sample is small and the time for recovery is short. By the way, in the above description regarding the polarity of the residual charge, it is stated that the polarity of the observed charge is determined by the moving direction of the space charge after the ground is opened.In the case of normal water tree deterioration, it is the same as the DC applied voltage. Although it was explained that polar residual charge was observed, if the deterioration progressed significantly, even after the transfer of charge through the water tree was completed, it would slowly flow through the healthy insulator in the opposite direction. It is also assumed that the moving electric charge is left. That is, if the water tree deteriorated part is significantly deteriorated during the DC power application, the DC electric field applied to the healthy part insulator existing in series with the water tree part increases significantly, and a part of the space charge is reduced to the sound part insulator side. There is a possibility that the charges may be injected deeply or homo-charges may be injected from the electrode on the healthy part insulator side, and the charges may move in the opposite direction to the above consideration. Therefore, as shown in FIG. 2 (d), when the deterioration is remarkable, there is a possibility that a time characteristic in which the residual electric charge exhibits a maximum value and then attenuates, and the polarity of the electric charge is reversed in some cases. is there.

【0040】[0040]

【実施例】以下に、本発明を図示の実施例に基づいて詳
細に説明する。図3は本発明に係わる電力ケーブルの絶
縁劣化診断の測定回路である。図において、1は静電容
量がCx なる試料ケーブルであり、2は直流課電用電源
である。3は交流課電用電源であり、この交流課電用電
源と直列に静電容量がCS なるコンデンサ4が接続され
ている。5は残留電荷を測定するための入力抵抗の大き
な直流電圧計であり、この直流電圧計5はコンデンサ4
と並列に接続されている。SW1 は試料に直流を印加し
た後に接地して更にその後に交流電圧を印加するための
切り替えスイッチである。また、SW2 はコンデンサ4
を短絡するためのスイッチであり、このスイッチSW2
は測定回路を短絡、開放する役割を果たしている。8は
測定中の試料破壊時などに発生する異常電圧から測定回
路を保護するためのギャップアレスタである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 3 shows a measurement circuit for diagnosing insulation deterioration of a power cable according to the present invention. In the figure, 1 is a sample cable having a capacitance of Cx, and 2 is a DC power supply. Reference numeral 3 denotes a power supply for AC power supply, and a capacitor 4 having a capacitance of CS is connected in series with the power supply for AC power supply. Reference numeral 5 denotes a DC voltmeter having a large input resistance for measuring the residual charge.
And are connected in parallel. SW1 is a changeover switch for applying DC to the sample, grounding the sample, and thereafter applying an AC voltage. SW2 is a capacitor 4
Is a switch for short-circuiting the switch SW2.
Serves to short and open the measurement circuit. Reference numeral 8 denotes a gap arrester for protecting the measurement circuit from an abnormal voltage generated when the sample is destroyed during the measurement.

【0041】コンデンサ4の静電容量CS の大きさとし
ては、後述の操作によって試料に交流電圧VACを印加し
た場合に、直流電圧計5に加わる交流電圧Cx VAC/
(Cx+CS )が許容入力電圧以下になる値に選定され
ており、また、直流電圧計5の入力抵抗Rは、τ=(C
x +CS )Rで表される測定回路の放電磁定数τが電圧
測定時間の約500倍以上の値になるように選定されて
いる。
The magnitude of the capacitance CS of the capacitor 4 is such that when an AC voltage VAC is applied to the sample by an operation described later, the AC voltage Cx VAC /
(Cx + CS) is selected to be a value not more than the allowable input voltage, and the input resistance R of the DC voltmeter 5 is τ = (C
x + CS) The discharge magnetic constant τ of the measurement circuit represented by R is selected so as to be about 500 times or more the voltage measurement time.

【0042】図3にて、まずスイッチSW2 を短絡した
状態で、時刻t=t01時に切り替えスイッチSW1 をa
側に接続して、直流課電用電源2から直流電圧−VDCを
試料1に印加する。直流−VDCを所定時間試料1に印加
した後の時刻t=t02に、切り替えスイッチSW1 をb
側に切り換えて、直流−VDCを抵抗R0 を介して放電さ
せる。この抵抗R0 は直流放電時の異常電圧発生を阻止
する目的のものである。
In FIG. 3, first, with the switch SW2 short-circuited, the switch SW1 is set to a at time t = t01.
And a DC voltage -VDC from the DC power supply 2 is applied to the sample 1. At time t = t02 after applying DC-VDC to the sample 1 for a predetermined time, the switch SW1 is set to b.
To discharge the DC-VDC through the resistor R0. This resistor R0 is for preventing an abnormal voltage from being generated at the time of DC discharge.

【0043】直流電圧−VDCが完全に放電された後の時
刻t=t03に切り替えスイッチSW1 をc側に切り換え
て、試料1に交流電圧を印加できる状態にする。この状
態下では、交流課電用電源3の内部インピ−ダンスの直
流抵抗がほぼ零に近いので、直流回路として見た場合に
は、試料1は大容量のコンデンサ4と並列に接続された
状態になり、また、測定回路の短絡スイッチSW2 が短
絡されているので試料1は接地された状態にある。
At time t = t03 after the DC voltage -VDC has been completely discharged, the switch SW1 is switched to the c side so that an AC voltage can be applied to the sample 1. Under this state, the DC resistance of the internal impedance of the AC power supply 3 is almost zero, so that when viewed as a DC circuit, the sample 1 is connected in parallel with the large-capacity capacitor 4. , And the sample 1 is grounded because the short-circuit switch SW2 of the measuring circuit is short-circuited.

【0044】次に、直流課電後の接地時刻t=t02から
所定時間経過した時刻t=t04に、測定回路の短絡スイ
ッチSW2 を開放する。この状態では、直流回路として
見ると、試料1は大容量のコンデンサ4と並列に接続さ
れた状態で電極間は開放されている。従って、スイッチ
SW2 を開放した時刻t=t04以後には、静電容量がC
S のコンデンサ4には直流電圧VS (t)が時間経過と
ともに回復してくるので、この電圧を直流電圧計5で測
定すればVS (t)×(CS +Cx )として残留電荷を
求めることが出来る。
Next, at a time t = t04 after a predetermined time has elapsed from the grounding time t = t02 after the DC power application, the short-circuit switch SW2 of the measuring circuit is opened. In this state, when viewed as a DC circuit, the sample 1 is connected in parallel with the large-capacity capacitor 4 and the electrodes are open. Accordingly, after time t = t04 when the switch SW2 is opened, the capacitance becomes C
Since the DC voltage VS (t) recovers in the S capacitor 4 with the passage of time, if this voltage is measured by the DC voltmeter 5, the residual charge can be obtained as VS (t) × (CS + Cx).

【0045】上記の測定状態において、短絡スイッチS
W2 を開放した時刻t=t04から所定時間か経過した時
刻t=0 に、交流課電用電源3を用いて、試料1に交流
電圧を印加する。交流電圧の印加方法としては、時刻t
=0 から時刻t=t1 までのt1 時間中に交流電圧を零
から規定のVACまで昇圧して、その後時刻t=t1 から
t=t2 の(t2 −t1 )時間にわたってVACを保持し
た後に再び電圧を零に降圧する。
In the above measurement state, the short-circuit switch S
At time t = 0 when a predetermined time has elapsed from time t = t04 when W2 was released, an AC voltage is applied to sample 1 using AC power supply 3. As a method of applying the AC voltage, the time t
= 0, the AC voltage is raised from zero to a prescribed VAC during a time t1 from time t = t1, and after maintaining VAC for a time (t2-t1) from time t = t1 to t = t2, the voltage is again increased. Is reduced to zero.

【0046】図4は、図3の回路において上述の操作を
行なった場合の試料ケーブル1に対する印加電圧Vx と
測定される直流電圧VS (t)を示す模式図である。時
刻t=t04からt=0 までの交流課電を行なわない状態
下では、静電容量がCS のコンデンサ4の電極間には大
きな時定数を有する直流電圧VS (t)=Vs0(t)が
徐々に回復してくる。その後、時刻t=0 からt=t1
までの短時間に交流電圧を零からVACまでに昇圧する
と、直流電圧VS (t)は飛躍的に増大する。その後交
流電圧をVACに保持しているt=t1 からt=t2 の期
間では、VS (t)の変化特性は試料ケーブル1の劣化
状況によって様相が異なり、図2で説明したように、劣
化が著しくなるほどVS (t)の変化割合ΔVS /VS
(t1 )={VS (t2 )−VS (t1 )}/VS (t
1 )が小さくなり、劣化が極端な場合にはΔVS が負、
すなわちVS (t)が減少に転ずることもある。
FIG. 4 is a schematic diagram showing the applied voltage Vx to the sample cable 1 and the measured DC voltage VS (t) when the above operation is performed in the circuit of FIG. Under the condition where no AC power is applied from time t = t04 to t = 0, a DC voltage VS (t) = Vs0 (t) having a large time constant is applied between the electrodes of the capacitor 4 having a capacitance of CS. It gradually recovers. Then, from time t = 0 to t = t1
When the AC voltage is boosted from zero to VAC in a short period of time, the DC voltage VS (t) increases dramatically. Thereafter, during the period from t = t1 to t = t2 in which the AC voltage is held at VAC, the change characteristic of VS (t) differs depending on the deterioration state of the sample cable 1, and as shown in FIG. The rate of change of VS (t) becomes ΔVS / VS as it becomes significant.
(T1) = {VS (t2) -VS (t1)} / VS (t
1) becomes smaller, and when the deterioration is extreme, ΔVS is negative,
That is, VS (t) may start to decrease.

【0047】ところで、交流課電時に測定される直流電
圧VS (t)には、交流課電を行なわない場合に回復し
て来る電圧成分VS0(t)が含まれている。この電圧成
分VS0(t)には劣化部絶縁体が発生する劣化信号も含
まれているが、その殆どは、絶縁体の劣化状況とは無関
係な、例えば、試料ケーブル1の終端部表面に蓄積した
空間電荷などに原因している成分の可能性が強い。即
ち、交流課電時のコンデンサ4の電極間電圧VS (t)
の測定結果中に交流課電を行なわない場合の電圧成分V
S0(t)が含まれていると劣化診断の誤差要因になるの
で、測定結果VS(t)からこの電圧成分VS0(t)を
除去する必要がある。
By the way, the DC voltage VS (t) measured at the time of AC power application includes a voltage component VS0 (t) recovered when the AC power application is not performed. The voltage component VS0 (t) includes a deterioration signal generated by the deteriorated portion insulator, but most of the voltage component has no relation to the deterioration state of the insulator, for example, accumulates on the end surface of the sample cable 1. There is a strong possibility that the component is caused by the space charge. That is, the voltage VS (t) between the electrodes of the capacitor 4 when the AC power is applied.
Voltage component V when no AC charging is performed during the measurement result
If S0 (t) is included, it becomes an error factor in deterioration diagnosis, so it is necessary to remove this voltage component VS0 (t) from the measurement result VS (t).

【0048】そこで、本発明に係わる絶縁劣化診断にお
いては、時刻t=t04からt=0 までの期間とt=t2
以降の交流課電を行なわない状態下で測定したコンデン
サCS の直流電圧VS (t)=VS0(t)の時間変化特
性からt=0 からt=t2 でのVS0(t)を推定して、
交流課電中の測定値VS (t)からこのVS0(t)を減
じた値を劣化診断に用いる。即ち、交流電圧をVACまで
昇圧した時刻t=t1での真の測定結果をVS1=VS
(t1 )−VS0(t1 )とし、また、交流電圧をVACな
る一定値に保持していた最終の測定時刻t=t2 での真
の測定結果をVS2=VS (t2 )−VS0(t2 )とし
て、これらの値から交流課電によって増大した残留電荷
Q(t1 )=VS1×(CS +Cx )と、Q(t2 )=V
S2×(CS +Cx )を求め、Q(t1 )の大きさと、Δ
(t)/Q(t1 )={Q(t2 )−Q(t1 )}/Q
(t1 )の値からケーブルの劣化状況を診断する。な
お、試料ケーブル1の電極長をノーマライズする必要を
考慮して、交流電圧昇圧直後の残留電荷Q(t1 )は、
試料ケーブル1の静電容量で割ったQ(t1 )/Cx
[V]として劣化判定に用いる。
Therefore, in the insulation deterioration diagnosis according to the present invention, the period from time t = t04 to t = 0 and t = t2
VS0 (t) from t = 0 to t = t2 is estimated from the time-varying characteristics of the DC voltage VS (t) = VS0 (t) of the capacitor CS measured under the condition where no AC charging is performed.
The value obtained by subtracting VS0 (t) from the measured value VS (t) during AC power application is used for the deterioration diagnosis. That is, the true measurement result at time t = t1 when the AC voltage is boosted to VAC is given by VS1 = VS
(T1) -VS0 (t1), and the true measurement result at the final measurement time t = t2 where the AC voltage is held at a constant value of VAC is VS2 = VS (t2) -VS0 (t2). From these values, the residual charge Q (t1) = VS1 × (CS + Cx) increased by the AC charging, and Q (t2) = V
S2 × (CS + Cx) is obtained, and the magnitude of Q (t1) and Δ
(T) / Q (t1) = {Q (t2) -Q (t1)} / Q
From the value of (t1), the state of deterioration of the cable is diagnosed. In consideration of the need to normalize the electrode length of the sample cable 1, the residual charge Q (t1) immediately after the AC voltage is boosted is
Q (t1) / Cx divided by capacitance of sample cable 1
[V] is used for deterioration determination.

【0049】表1は、上記の測定方法を用いて水トリー
劣化した22kVCVケーブルと6.6kVCVケーブ
ルの残留電荷を測定した結果例を示すものである。試料
1から試料8は内部半導電層が押出し構造の22kVC
Vケーブルであり、試料9と試料10は半導電層がテー
プ構造の6.6kVCVケーブルである。なお、試料1
は殆ど劣化していない試料であり、試料10には電極間
を橋絡寸前までに進展した著しい劣化状態の水トリーが
存在している。
Table 1 shows an example of the results of measuring the residual charge of a 22 kVCV cable and a 6.6 kVCV cable that have been subjected to water tree deterioration using the above-described measurement method. Samples 1 to 8 have a 22 kVC internal semiconductive layer with an extruded structure.
Sample 9 and Sample 10 are V-cables, and the semiconductive layer is a 6.6 kVCV cable having a tape structure. Sample 1
Is a sample that has hardly deteriorated, and the sample 10 has a water tree in a significantly deteriorated state that has developed between the electrodes to just before bridging.

【0050】[0050]

【表1】 [Table 1]

【0051】表1に示されるように、交流電圧昇圧直後
に観測される残留電荷の大きさQ(t1 )は交流破壊電
圧の低下とともに増大する傾向が認められ、概ね、劣化
の進行とともに残留電荷が増大する傾向を示している。
しかしながら、必ずしも残留電荷が大きい場合でも破壊
電圧の低下が顕著でない場合や、逆に、残留電荷が小さ
い場合でも破壊電圧が顕著に低下している場合が認めら
れる。この原因は、主として、試料ケーブル中に存在す
る水トリーの発生個数の違い等による。
As shown in Table 1, the magnitude of the residual charge Q (t1) observed immediately after the AC voltage was boosted tends to increase as the AC breakdown voltage decreases, and the residual charge generally increases as the deterioration proceeds. Shows a tendency to increase.
However, there are cases where the breakdown voltage is not significantly reduced even when the residual charge is large, and conversely, when the breakdown voltage is significantly reduced even when the residual charge is small. This is mainly due to a difference in the number of generated water trees existing in the sample cable.

【0052】一方、{Q(t2 )−Q(t1 )}/Q
(t1 )で表した交流課電下での残留電荷の時間特性は
試料の破壊電圧の低下に対して極めて良好な相関性を示
しており、破壊電圧の低下とともに{Q(t2 )−Q
(t1 )}/Q(t1 )が減少し、著しい劣化状態の試
料10の場合には、{Q(t2 )−Q(t1 )}/Q
(t1 )が負の値まで変化している。即ち、交流課電下
での残留電荷の時間変化特性は、試料の劣化状況を的確
に表しており、この特性を利用すれば信頼性の高い水ト
リー劣化診断が可能となる。
On the other hand, {Q (t2) -Q (t1)} / Q
The time characteristic of the residual charge under the alternating current application represented by (t1) shows an extremely good correlation with the decrease in the breakdown voltage of the sample, and as the breakdown voltage decreases, ΔQ (t2) -Q
(T1)} / Q (t1) decreases, and in the case of the sample 10 in a remarkably deteriorated state, {Q (t2) −Q (t1)} / Q
(T1) has changed to a negative value. That is, the time change characteristic of the residual charge under the AC application accurately represents the deterioration state of the sample, and if this characteristic is used, highly reliable water tree deterioration diagnosis can be performed.

【0053】従来の吸収電流測定から残留電荷を求める
「残留電荷測定」では、時刻t2 での残留電荷Q(t2
)に相当する量を劣化判定に用いているが、表1に示
す結果では、{Q(t2 )−Q(t1 )}/Q(t1 )
が大きいほど劣化は進展していないことを示しているの
で、Q(t2 )の大きさによる劣化診断はQ(t1 )の
大きさによる劣化診断よりも診断精度が悪いことを示し
ている。従って、本発明に係わる劣化診断では、残留電
荷の大きさに基づく劣化判定としては、交流課電開始後
の早い時刻が好ましいと考えてQ(t1 )を採用してい
る。
In the "residual charge measurement" for obtaining the residual charge from the conventional absorption current measurement, the residual charge Q (t2
) Is used in the deterioration determination, but in the results shown in Table 1, {Q (t2) -Q (t1)} / Q (t1)
A larger value indicates that the deterioration has not progressed, so that the deterioration diagnosis based on the magnitude of Q (t2) has lower diagnostic accuracy than the deterioration diagnosis based on the magnitude of Q (t1). Therefore, in the deterioration diagnosis according to the present invention, Q (t1) is adopted as the deterioration judgment based on the magnitude of the residual charge, considering that an earlier time after the start of the AC power application is preferable.

【0054】なお、本詳細説明においては直流課電電圧
VDCを負極性としたが、正極性であっても何等問題な
い。また、図3の測定回路例では、交流課電用電源3と
接地の間に直流電圧測定回路(コンデンサ4、直流電圧
計5)を挿入する例を示したが、これを試料ケーブル1
と接地の間に挿入する回路に変更しても観測される電圧
の極性が見かけ上逆転するだけであって本質的には全く
問題ない。
Although the DC application voltage VDC has a negative polarity in this detailed description, there is no problem even if it has a positive polarity. Further, in the example of the measurement circuit of FIG. 3, an example is shown in which a DC voltage measurement circuit (capacitor 4 and DC voltmeter 5) is inserted between the AC power supply power source 3 and the ground.
Even if it is changed to a circuit inserted between the ground and the ground, the polarity of the observed voltage is apparently reversed, and there is essentially no problem at all.

【0055】[0055]

【発明の効果】以上に説明したように、請求項1に係わ
る電力ケーブルの絶縁劣化診断方法は、直流課電接地後
に交流電圧を課電した場合の残留電荷の時間特性を正確
に測定し、この残留電荷の時間変化割合を劣化診断の判
定信号に用いることによって、従来の一定時刻経過時点
での残留電荷の大きさのみを利用した劣化診断では判定
が不可能であった少数の極度劣化をも検出可能な信頼性
の高い電力ケーブルの水トリー劣化診断を達成すること
ができる。
As described above, the method for diagnosing deterioration of insulation of a power cable according to claim 1 accurately measures the time characteristic of the residual charge when an AC voltage is applied after the DC power application grounding. By using the time change ratio of the residual charge as a determination signal for the deterioration diagnosis, a small number of extreme deteriorations that could not be determined by the conventional deterioration diagnosis using only the magnitude of the residual charge at a certain time after the elapse of a certain time are used. A highly detectable and reliable water tree deterioration diagnosis of the power cable can also be achieved.

【0056】また、請求項2に係わる直流課電接地後の
交流課電下での残留電荷の検出方法としては、直流的に
電極間を開放した状態で試料ケーブルの電極間の直流電
圧を電荷の漏洩を無視し得る時間範囲内で測定し、これ
によって、従来の接地回路に流れる吸収電流測定で残留
電荷を検出する方法では問題となる測定回路の応答遅れ
を大幅に解消し、交流課電下での残留電荷の時間特性を
正確に検出することを可能にすることができる。
Further, as a method for detecting the residual charge under the AC application after the DC application grounding according to the second aspect, the DC voltage between the electrodes of the sample cable is charged while the electrodes are open DC. Measurement within a negligible time range, thereby greatly eliminating the response delay of the measurement circuit, which is a problem with the conventional method of detecting residual charge by measuring the absorption current flowing through the grounding circuit, and It is possible to accurately detect the time characteristic of the residual charge below.

【図面の簡単な説明】[Brief description of the drawings]

【図1】直流課電後の残留電荷と吸収電流発生に関する
説明図である。
FIG. 1 is an explanatory diagram relating to residual charge and generation of absorption current after DC application.

【図2】交流電界を印加した場合の直流課電による残留
電荷の時間特性の説明図である。
FIG. 2 is an explanatory diagram of a time characteristic of a residual charge due to DC application when an AC electric field is applied.

【図3】直流課電接地後に交流課電下で残留電荷を測定
するための測定回路図である。
FIG. 3 is a measurement circuit diagram for measuring a residual charge under AC power application after DC power application grounding.

【図4】試料への電圧印加手順と測定される直流電圧を
示す模式的に示すタイムチャートである。
FIG. 4 is a time chart schematically showing a procedure for applying a voltage to a sample and a measured DC voltage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 中 埼玉県熊谷市新堀1008番地 三菱電線工 業株式会社 熊谷製作所内 (72)発明者 中川 雅善 埼玉県熊谷市新堀1008番地 三菱電線工 業株式会社 熊谷製作所内 (56)参考文献 特開 昭62−127676(JP,A) 特公 平5−28350(JP,B2) 特公 昭62−41345(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01R 31/12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Naka Sakamoto, Inventor 1008 Niibori, Kumagaya-shi, Saitama Mitsubishi Electric Works Co., Ltd. Kumagaya Works (56) References JP-A-62-127676 (JP, A) JP-B 5-28350 (JP, B2) JP-B 62-41345 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) G01R 31/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力ケーブルに直流電圧を課電後に接地
し、その後に交流電圧を課電した状態で直流課電によっ
て生じた残留電荷を測定することにより電力ケーブルの
絶縁劣化を診断する方法において、交流電圧課電下で残
留電荷の時間特性を測定し、該残留電荷の時間変化割合
によって電力ケーブルの絶縁劣化の程度を診断すること
を特徴とする電力ケーブルの絶縁劣化診断方法。
1. A method of diagnosing insulation deterioration of a power cable by applying a DC voltage to a power cable, grounding the power cable, and thereafter measuring a residual charge generated by the DC power supply in a state where an AC voltage is applied. And measuring the time characteristic of the residual charge under the application of an AC voltage, and diagnosing the degree of insulation degradation of the power cable based on the time change ratio of the residual charge.
【請求項2】電力ケーブルに直流電圧を課電後に接地
し、その後に交流電圧を課電した状態で直流課電によっ
て生じた残留電荷を測定する絶縁劣化診断方法におい
て、試料ケーブルに交流電圧を印加する交流課電装置と
直列にコンデンサを接続し、このコンデンサの電極間に
現れる直流電圧成分を検出し、このコンデンサの電極間
に検出された直流電圧成分に、試料ケーブルの静電容量
とコンデンサの静電容量との和を掛け合わせた値を交流
課電時の残留電荷とすることを特徴とする電力ケーブル
の絶縁劣化診断方法。
2. A method for diagnosing insulation deterioration, comprising: applying a DC voltage to a power cable and then grounding the AC cable, and then measuring a residual charge generated by the DC application in a state where the AC voltage is applied. A capacitor is connected in series with the AC power application device to be applied, and a DC voltage component appearing between the electrodes of the capacitor is detected.The DC voltage component detected between the electrodes of the capacitor is added to the capacitance of the sample cable and the capacitor. A method for diagnosing insulation deterioration of a power cable, wherein a value obtained by multiplying the sum of the capacitance and the residual capacitance is used as a residual charge at the time of AC power application.
JP19948794A 1994-08-24 1994-08-24 Diagnosis method for insulation deterioration of power cable Expired - Lifetime JP3184712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19948794A JP3184712B2 (en) 1994-08-24 1994-08-24 Diagnosis method for insulation deterioration of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19948794A JP3184712B2 (en) 1994-08-24 1994-08-24 Diagnosis method for insulation deterioration of power cable

Publications (2)

Publication Number Publication Date
JPH0862280A JPH0862280A (en) 1996-03-08
JP3184712B2 true JP3184712B2 (en) 2001-07-09

Family

ID=16408632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19948794A Expired - Lifetime JP3184712B2 (en) 1994-08-24 1994-08-24 Diagnosis method for insulation deterioration of power cable

Country Status (1)

Country Link
JP (1) JP3184712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676255B2 (en) * 2005-06-03 2011-04-27 古河電気工業株式会社 CV cable residual charge measurement method
CN111707910B (en) * 2020-05-28 2024-04-19 广州广华智电科技有限公司 Porcelain insulator inner insulation detection method and porcelain insulator detection circuit
CN115856456B (en) * 2023-02-27 2023-06-23 国网山东省电力公司广饶县供电公司 Cable charge test data transmission method

Also Published As

Publication number Publication date
JPH0862280A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
CN116953360B (en) Insulation resistance rapid detection method of energy storage equipment
JP3184712B2 (en) Diagnosis method for insulation deterioration of power cable
JPH09274062A (en) Leak detector
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
KR20230002747A (en) How to detect insulation failure between power and ground
JP3256441B2 (en) Diagnosis method for cable insulation deterioration
JP3663286B2 (en) Cable insulation deterioration diagnosis method
JPH11166955A (en) Method for diagnosing deterioration of cable
JP3629409B2 (en) CV cable deterioration diagnosis method
CN109477865B (en) Method and device for determining the electrical continuity of an electrical system with an electrical contact of a measuring system
JP3246679B2 (en) Insulation characteristics measurement device
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JP2001116789A (en) Method for measuring residual charge of insulator and method for diagnosing insulation deterioration of power cable using it
Ambrozevich et al. Features of Charging–Discharging of Supercapacitors
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JPH0528350B2 (en)
JP3294220B2 (en) Diagnosis method for insulation deterioration of power cable
JP3629425B2 (en) CV cable insulation diagnosis method
JP3050613B2 (en) Cable insulation deterioration detection method
JP2002340970A (en) Insulation deterioration diagnostic method for power cable
JP2011047766A (en) Method and device for diagnosing insulation deterioration of power cable
JP2000074980A (en) Method for diagnosing insulation deterioration of power cable
JPH02221873A (en) Measuring method and device for insulation of cable in live line state
JP3419428B2 (en) Line measurement equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

EXPY Cancellation because of completion of term