JPS5848605A - Production of permanent magnet of rare earths - Google Patents

Production of permanent magnet of rare earths

Info

Publication number
JPS5848605A
JPS5848605A JP56147441A JP14744181A JPS5848605A JP S5848605 A JPS5848605 A JP S5848605A JP 56147441 A JP56147441 A JP 56147441A JP 14744181 A JP14744181 A JP 14744181A JP S5848605 A JPS5848605 A JP S5848605A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
powder
moldings
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56147441A
Other languages
Japanese (ja)
Other versions
JPS6142770B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56147441A priority Critical patent/JPS5848605A/en
Publication of JPS5848605A publication Critical patent/JPS5848605A/en
Publication of JPS6142770B2 publication Critical patent/JPS6142770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the energy product of a magnet in the stge of producing an R2T17 magnet alloy consisting of Y as well as rare earth elements and transition metals by a powder metallurgical method by pressurizing the alloy in specific directions during sintering and solutionizing treatments to deform. CONSTITUTION:An R2T17 (R is Y, rare earth elements, T is transition elements such as Co) magnet alloy represented by Sm2(Co-Fe-Cu)17 is melted to ingot, and after cooling, the ingot is pulverized down to about 4mum average grain sizes. After the powder is molded by pressurizing in a magnetic field, the moldings are degassed in a vacuum, and while the moldings are pressurized so as to be deformed in the direction at a right angle to the direction where the powder is easy to magnetize during molding, in an Ar atmosphere, the moldings are subjected to a treatment under heating for the purpose of sintering and solubilizing and are then cooled. The R2T17 rare earth permanent magnet having high energy product without degradation in coercive force and residual flux density is obtained.

Description

【発明の詳細な説明】 る,イットリウムや希土類金属(R)と遷移金属(T)
との金属間化合物である希土類永久磁石材料の製造方法
に関するもので,特にR2T,7系希土類永久磁石の角
形比を改良し得る製造方法に関する。
[Detailed description of the invention] Yttrium, rare earth metals (R) and transition metals (T)
The present invention relates to a method for manufacturing a rare earth permanent magnet material that is an intermetallic compound of , and particularly to a manufacturing method that can improve the squareness ratio of R2T, 7-based rare earth permanent magnets.

RとTとの金属間化合物のうち,RT5およびR2T,
7の二種類が磁石として有用であることは良く知られて
いることである。前者はe SmCosを代表とする単
相型の希土類磁石で,希土類磁石としては最も多く使用
されている。後者は, Coを一部他の金属で置換した
Sm2(Co−Fe−Cu)、7を代表とする2相分離
型の磁石で,近年高エネルギー積磁石として期待されて
いる。
Among the intermetallic compounds of R and T, RT5 and R2T,
It is well known that two types of No. 7 are useful as magnets. The former is a single-phase rare earth magnet represented by eSmCos, and is the most commonly used rare earth magnet. The latter is a two-phase separation type magnet represented by Sm2 (Co-Fe-Cu), 7 in which Co is partially replaced with other metals, and has recently been expected to be used as a high-energy product magnet.

希土類磁石は,一般に,原料溶解,粉砕,磁場中配向お
よび圧縮成型,焼結溶体化処理,時効熱処理の工程を経
て製造される。ここで、溶解は。
Rare earth magnets are generally manufactured through the steps of melting raw materials, pulverization, orientation in a magnetic field, compression molding, sintering solution treatment, and aging heat treatment. Here, the dissolution is.

所定量の原料金属を高周波炉等の炉で,不活性雰囲気中
で行なわれる。粉砕工程では,溶解後得た合金を粗粉砕
および微粉砕して1〜lOミクロンの合金粒子粉を得る
。磁場中配向および圧縮成型は,成形金型を用いる場合
には,通常,同時に行なわれる。配向に必要な磁界強度
は8〜2 0 KOe程度で,圧縮圧力は,0.3〜1
 0 iot!/一程度である。焼結は, Ar,He
等の不活性雰囲気あるいは真空中において,1150〜
1250℃程度の温度領域で行なわれる。溶体化は,通
常焼結と同時に進行するので,特に溶体化処理工程を別
に行う必要はないが,もちろん、焼結後に別 に溶体化
処理を行う場合もある。時効熱処理は,750〜900
℃程度の温度範囲に保持することによって行われる。
A predetermined amount of raw metal is heated in a high-frequency furnace or other furnace in an inert atmosphere. In the grinding step, the alloy obtained after melting is coarsely ground and finely ground to obtain alloy particles of 1 to 10 microns. Orientation in a magnetic field and compression molding are usually performed simultaneously when a mold is used. The magnetic field strength required for orientation is about 8 to 20 KOe, and the compression pressure is about 0.3 to 1.
0 iot! / About one. Sintering is done using Ar, He
in an inert atmosphere such as 1150~
It is carried out in a temperature range of about 1250°C. Since solution treatment usually proceeds at the same time as sintering, there is no need to perform a separate solution treatment step, but of course, there are cases where solution treatment is performed separately after sintering. Aging heat treatment is 750-900
This is done by maintaining the temperature within a range of approximately ℃.

上述した従来の製造方法によって得られたR2T17系
希土類磁石は、磁気ヒステリシス曲線の角型比が悪く、
それ故高いエネルギー積((BH)max )の磁石を
得られない欠点があった。
The R2T17 rare earth magnet obtained by the conventional manufacturing method described above has a poor squareness ratio of the magnetic hysteresis curve.
Therefore, there was a drawback that a magnet with a high energy product ((BH)max) could not be obtained.

従来技術では、前述のように、溶体化処理後。In the prior art, as mentioned above, after solution treatment.

時効熱処理を行なっているが、これは、溶体化処理によ
っ゛てスピノーダル分解を行わせ9時効熱処理によって
R2T17相中に適当なRT、相を析出させるためであ
る。このようなR2’;17相とRT5相のセル組織の
形成は、保磁力(xHc )を向上させるために有利で
ある。しかしながら、熱処理時間が長時間に及ぶと、残
留磁束密度(Br)と角型比の低下を招き、エネルギー
積が低下する。この原因は、主に、R2T17相に比べ
4;■の低いRT5相の成長にょる磁壁のピンニングエ
ネルギーの変化と配向性の乱れにあると考えられる。
The aging heat treatment is performed in order to cause spinodal decomposition by the solution treatment and to precipitate an appropriate RT phase in the R2T17 phase by the aging heat treatment. Formation of such a cell structure of R2';17 phase and RT5 phase is advantageous for improving coercive force (xHc). However, if the heat treatment time is extended for a long time, the residual magnetic flux density (Br) and the squareness ratio will decrease, and the energy product will decrease. The reason for this is thought to be mainly due to the change in the pinning energy of the domain wall due to the growth of the RT5 phase, which has a lower value of 4;

本発明は、このような従来の製造法による欠点を改良し
、 Br、Heを劣化させることなく高い(BH)ra
xを持つR2T17系希土類永久磁石を製造する方法を
提供することを目的とする。
The present invention improves the drawbacks of such conventional manufacturing methods and produces high (BH)ra without deteriorating Br and He.
An object of the present invention is to provide a method for manufacturing an R2T17 rare earth permanent magnet having x.

本発明は、R2T、7基磁石合金を粉末冶金法で製造す
る方法において、焼結溶体化処理中に、被焼結物を、先
行する圧縮成形工程における加圧方向とは直角な方向に
加圧することを特徴とするものである。
The present invention is a method for manufacturing R2T, 7-base magnet alloy by powder metallurgy, in which the object to be sintered is pressed in a direction perpendicular to the pressing direction in the preceding compression molding step during the sintering solution treatment. It is characterized by pressure.

以下9本発明の実施例について説明する。Nine embodiments of the present invention will be described below.

実施例 に、アルゴン雰囲気中で、高周波加熱により2合金を溶
解した。次にこの合金を粗粉砕した後、ゾールミルを用
いて平均粒径約4μmに微粉砕した。
In the example, two alloys were melted by high frequency heating in an argon atmosphere. Next, this alloy was coarsely ground, and then finely ground to an average particle size of about 4 μm using a sol mill.

この合金をl Q KOeの磁界中H1tor1/a/
lの圧力で成形した。
This alloy in the magnetic field of l Q KOe H1tor1/a/
It was molded at a pressure of 1.

成形物を、真空中で脱ガスした後、 Ar雰囲気中で、
900℃以上の温度で被焼結物が成形時の加間溶体化処
理を行なった。
After degassing the molded product in vacuum, in an Ar atmosphere,
The material to be sintered was subjected to solution treatment during molding at a temperature of 900° C. or higher.

この焼結体を850℃で7時間熱処理を行なった後、5
℃’/’m I n以下の冷却速度で300″c″!で
冷却した。この試料と、焼結、溶体化処理中に加圧しな
かった試料の磁気特性を下記表に示す。
After heat-treating this sintered body at 850°C for 7 hours,
℃'/'m I 300"c" at a cooling rate of less than n! It was cooled down. The magnetic properties of this sample and a sample that was not pressurized during sintering and solution treatment are shown in the table below.

焼結時に、成形時の加圧方向とは直角な方向に加圧する
ことにより、磁石特性が改善されることがわかる。
It can be seen that the magnetic properties are improved by applying pressure during sintering in a direction perpendicular to the pressing direction during molding.

手続補正書(自発) 昭和8年76月23日 特許庁長官 島 1)春樹殿 1、事件の表示 昭和56年特許願第147441号2
゜発明の名称 希土類永久磁石の製造方法3、補正をす
る者 事件との関係  特許出願人 4、代理人 〒105 5、補正の対象 6、補正の内容 1)別紙のとおシ 2)(1)  第4頁5行目「方向に」の後に「変形さ
せるように」を挿入する。
Procedural amendment (spontaneous) June 23, 1980 Director General of the Japan Patent Office Shima 1) Haruki-dono 1, Indication of the case Patent application No. 147441 of 1982 2
゜Name of the invention Method for producing rare earth permanent magnets 3 Relationship with the case of the person making the amendment Patent applicant 4, agent 〒105 5. Subject of the amendment 6, Contents of the amendment 1) Attached sheet 2) (1) Insert ``to deform'' after ``in the direction'' on page 4, line 5.

(2)第5頁下から3行目の「方向に」の後に「変形さ
せるように」を特徴する 特許請求の範囲 1、R2T17系磁石合金(ここで、Rはイツトリウム
及び希土類元素、Tは遷移元素を表わす。)を粉末冶金
法によって製造する方法において。
(2) Claim 1, which is characterized by the words "in a manner to deform" after "in the direction" on the third line from the bottom of page 5, R2T17-based magnetic alloy (here, R is yttrium and rare earth elements, T is (representing a transition element) by a powder metallurgy method.

焼結溶体化処理中に、被焼結物を、先行する圧縮成形工
程における加圧方向とは直角な方向にL覧1亘立互ユ匹
加圧することを特徴とする希土類永久磁石の製造方法。
A method for producing a rare earth permanent magnet, characterized in that during the sintering solution treatment, the object to be sintered is pressurized in a direction perpendicular to the pressing direction in the preceding compression molding step. .

手続補正書(自発) 昭和52年1り月/2日 特許庁長官 若 杉和夫 殿 1 事件の表示 昭和56年特許願第147441号 ・2 発明の名称 希土類永久磁石の製造方法 6 補正をする者 名称 東北金属工業株式会社 4代理人 〒105 5 補正の対象 1)明細書の特許請求の範囲の欄 2)明細書の発明の詳細な説明の欄 6、補正の内容 1)別紙のとおり。Procedural amendment (voluntary) January/2nd, 1978 Mr. Kazuo Wakasugi, Commissioner of the Patent Office 1 Display of incident 1981 Patent Application No. 147441/2 Name of the invention Manufacturing method of rare earth permanent magnet 6. Person making the amendment Name Tohoku Metal Industry Co., Ltd. 4 agents〒105 5 Target of correction 1) Claims column of the specification 2) Detailed description of the invention in the specification 6. Contents of amendment 1) As shown in the attached sheet.

21第4頁4行目「加圧方向」を「粉末の磁化容易方向
」と補正する。
21, page 4, line 4, "pressing direction" is corrected to "direction of easy magnetization of powder".

(2)第5頁下から3行目の「加圧方向」を「粉末の磁
化容易方向」と補正する。
(2) Correct "pressure direction" in the third line from the bottom of page 5 to "direction of easy magnetization of powder".

(別紙) 1.  R2T、7基磁石合金(ここで、Rはイツトリ
ウム及び希土類元素、Tは遷移元素を表わす。)を粉末
冶金法によって製造する方法において、焼結・溶体化処
理中に、被焼結物を、先行する圧縮成形工程における粉
末の磁化容易方向とは直角な方向に変形させることを特
徴とする希土類永久磁石の製造方法。
(Attachment) 1. In a method for manufacturing R2T, a 7-base magnet alloy (where R represents yttrium and a rare earth element, and T represents a transition element) by a powder metallurgy method, the sintered material is A method for producing a rare earth permanent magnet, comprising deforming the powder in a direction perpendicular to the direction of easy magnetization of the powder in the preceding compression molding step.

Claims (1)

【特許請求の範囲】[Claims] IR2T、7系磁石合金(ことで、Rはイッ) IJウ
ム及び希土類元素、Tは遷移元素を表わす。)を粉末冶
金法によって製造する方法において、焼結溶体化処理中
に、被焼結物を、先行する圧縮成形工程における加圧方
向とは直角な方向に加圧することを特徴とする希土類永
久磁石の製造方法。
IR2T, 7-series magnet alloy (R means I) IJium and rare earth elements, T represents a transition element. ) by powder metallurgy, the rare earth permanent magnet characterized in that during the sintering solution treatment, the sintered object is pressed in a direction perpendicular to the pressing direction in the preceding compression molding step. manufacturing method.
JP56147441A 1981-09-18 1981-09-18 Production of permanent magnet of rare earths Granted JPS5848605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147441A JPS5848605A (en) 1981-09-18 1981-09-18 Production of permanent magnet of rare earths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147441A JPS5848605A (en) 1981-09-18 1981-09-18 Production of permanent magnet of rare earths

Publications (2)

Publication Number Publication Date
JPS5848605A true JPS5848605A (en) 1983-03-22
JPS6142770B2 JPS6142770B2 (en) 1986-09-24

Family

ID=15430403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147441A Granted JPS5848605A (en) 1981-09-18 1981-09-18 Production of permanent magnet of rare earths

Country Status (1)

Country Link
JP (1) JPS5848605A (en)

Also Published As

Publication number Publication date
JPS6142770B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
US4801340A (en) Method for manufacturing permanent magnets
JP2000096102A (en) Heat resistant rare earth alloy anisotropy magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6217149A (en) Manufacture of sintered permanent magnet material
US5201963A (en) Rare earth magnets and method of producing same
JPS6181603A (en) Preparation of rare earth magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS5848605A (en) Production of permanent magnet of rare earths
JP3860372B2 (en) Rare earth magnet manufacturing method
JPS5848608A (en) Production of permanent magnet of rare earths
JPS61136656A (en) Production of sintered material for permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS5848606A (en) Production of permanent magnet of rare earths
JPH04143221A (en) Production of permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH03217003A (en) Manufacture of bond-type permanent magnet
JPH06260359A (en) Production of rare-earth element permanent magnet
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH0227425B2 (en)
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH01179305A (en) Manufacture of anisotropic permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet