JPS5847863B2 - field effect transistor - Google Patents

field effect transistor

Info

Publication number
JPS5847863B2
JPS5847863B2 JP56006590A JP659081A JPS5847863B2 JP S5847863 B2 JPS5847863 B2 JP S5847863B2 JP 56006590 A JP56006590 A JP 56006590A JP 659081 A JP659081 A JP 659081A JP S5847863 B2 JPS5847863 B2 JP S5847863B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor region
region
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006590A
Other languages
Japanese (ja)
Other versions
JPS57121271A (en
Inventor
茂夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56006590A priority Critical patent/JPS5847863B2/en
Publication of JPS57121271A publication Critical patent/JPS57121271A/en
Publication of JPS5847863B2 publication Critical patent/JPS5847863B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明は電界効果トランジスタに関する。[Detailed description of the invention] The present invention relates to field effect transistors.

電界効果トランジスタとして従来接合型のものと絶縁ゲ
ート型のものとが存するが、倒れもスイッチング素子と
しての機能を有しても記憶素子としての機能を有しない
を普通としていた。
There are conventional field effect transistors of junction type and insulated gate type, but they usually have a function as a switching element but not a memory element.

但し特殊な絶縁ゲート型電界効果トランジスタとしてス
イッチング素子としての機能と記憶素子としての機能と
を有するものが存するも、その特殊な絶縁ゲート型電界
効果トランジスタの場合、スイッチング素子としての機
能と記憶素子としての機能との双方を併用し得るもので
ないを普通としていた。
However, there are special insulated gate field effect transistors that have the functions of both a switching element and a memory element; Normally, it was not possible to use both functions together.

この為従来の電界効果トランジスタの場合、それを用い
て記憶素子としての機能とスイッチング素子としての機
能との双方を併用する必要のある記憶回路を構成とする
とき、その電界効果トランジスタを少くとも2個要し、
依って斯く電界効果トランジスタを用いて記憶回路を構
成するとき、その記憶回路を小型化するに一定の限度を
有していたと共に記憶回路への情報の書込み又それより
の読出しの速度を高速化すること及び記憶回路への情報
の書込み乃至書換えに必要な電圧を低電圧化することに
一定の限度を有していた等の欠点を有していた。
For this reason, in the case of conventional field effect transistors, when using them to configure a memory circuit that requires both the function of a memory element and the function of a switching element, the field effect transistor must be used at least two times. Individually required,
Therefore, when constructing a memory circuit using field-effect transistors, there are certain limits to how small the memory circuit can be made to be, and at the same time, it is difficult to increase the speed at which information can be written to or read from the memory circuit. This method has drawbacks such as a certain limit in reducing the voltage required to write or rewrite information to a memory circuit.

依って本発明は上述せる欠点のない、従って記憶回路を
構成するに適用して好適な新規な電界効果トランジスタ
を提案せんとするもので、以下図面を伴なって詳述する
所より明らかとなるであろつ0 第1図〜第3図は本発明による電界効果トランジスタの
実施例を示し、例えばP型の例えはシリコンでなる半導
体基板本体1とその主面上に例えはエビタキシャル威長
法によって形或されたP型の例えばシリコンでなる半導
体層2とよりなる基板3を有し、その半導体基板3内に
その半導体層2側の主面4側より、半導体層2による島
状の半導体層5と同様に半導体層2による島状の半導体
領域(但しこの半導体領域は、それが半導体層2による
ものであるので、P型でなければならないが、その半導
体領域が、実施例としてではあるが後述する如くにその
半導体領域内にその全域に亘ってN十型の半導体領域1
3が形威されてなる態様を有するので、へ 型の半導体
領域13として示されている)とを形威すべく例えばシ
リコン酸化物でなる絶縁層6が半導体基板本体1に達す
る深さで形或され、而して半導体層5内に主面4側より
P+型の半導体領域7及び8が、それ等間に半導体層5
による半導体領域9をチャンネル領域として形成すべく
、夫々ソース領域及びドレイン領域として、P型不純物
の拡散処理、P型不純物イオンの打込処理等のそれ自体
は公知の種々の方法によって形成されている。
Therefore, the present invention aims to propose a novel field effect transistor that does not have the above-mentioned drawbacks and is therefore suitable for use in configuring a memory circuit, as will become clear from the detailed description below with reference to the drawings. 1 to 3 show an embodiment of a field effect transistor according to the present invention. It has a substrate 3 consisting of a P-type semiconductor layer 2 made of silicon, for example, formed by a semiconductor substrate 3, and an island-shaped semiconductor formed by the semiconductor layer 2 is formed in the semiconductor substrate 3 from the main surface 4 side on the semiconductor layer 2 side. Similarly to layer 5, an island-shaped semiconductor region formed by semiconductor layer 2 (however, since this semiconductor region is formed by semiconductor layer 2, it must be of P type; As will be described later, an N0 type semiconductor region 1 is formed throughout the semiconductor region.
3, the insulating layer 6 made of, for example, silicon oxide is shaped to a depth that reaches the semiconductor substrate body 1 to form a F-shaped semiconductor region 13). P+ type semiconductor regions 7 and 8 are formed in the semiconductor layer 5 from the main surface 4 side, and the semiconductor layer 5 is formed between them.
In order to form the semiconductor region 9 as a channel region, a source region and a drain region are formed by various methods known per se, such as diffusion treatment of P-type impurities, implantation treatment of P-type impurity ions, etc. .

この場合半導体領域7及び8の側面は、それ等間の半導
体領域9を介して相対向する面側以外の面側か絶縁層6
に連接し、又半導体領域9の側面は、その半導体領域I
及び8と連接せる相対向する面側以外の面側か絶縁層6
に連接している。
In this case, the side surfaces of the semiconductor regions 7 and 8 are either the side of the insulating layer 6 other than the side facing each other with the semiconductor region 9 between them.
The side surface of the semiconductor region 9 is connected to the semiconductor region I.
and the insulating layer 6 on the surface side other than the opposing surface side connected with 8
is connected to.

又チャンネル領域としての半導体領域9の主面4側の面
上に電荷蓄積性絶縁層10を介して導電性層11が第1
のゲート電極として配されている。
Further, a first conductive layer 11 is formed on the main surface 4 side of the semiconductor region 9 as a channel region with a charge storage insulating layer 10 interposed therebetween.
It is arranged as a gate electrode.

この場合電荷蓄積性絶縁層10は、半導体領域9及び導
電性層11間に、導電性層11側を正とする電圧が印加
された場合、半導体領域9との界面側を正、導電性層1
1との界面側を負とする分極が、又導電性層11側を負
とする電圧が印加された場合、半導体領域9との界面側
を負、導電性層11との界面側を正とする分極が得られ
る態様を以って、電荷を半導体領域9との界面側及び導
電性層11との界面側に蓄積する性質を有すべく、チタ
ン酸バリウム、チタン酸ジリコン酸鉛、ペロプス力イト
型又はロッシエル塩形若しくはリン酸カリ形等の強誘電
体を含んで形威され、半導体領域7及び8上にも僅かに
延長し且絶縁層6上にも半導体領域9と連接せる位置に
於で僅かに延長している。
In this case, when a voltage is applied between the semiconductor region 9 and the conductive layer 11 with the side of the conductive layer 11 being positive, the charge accumulating insulating layer 10 has a positive voltage on the interface side with the semiconductor region 9, and the conductive layer 1
When polarization is applied such that the interface side with the semiconductor region 9 is negative and the voltage that is negative on the conductive layer 11 side, the interface side with the semiconductor region 9 is negative and the interface side with the conductive layer 11 is positive. In order to have the property of accumulating charges at the interface side with the semiconductor region 9 and the interface side with the conductive layer 11 in a manner that allows polarization to be obtained, barium titanate, lead gyriconate titanate, and Perops force are used. It is formed of a ferroelectric material such as a ferroelectric material such as a ferrite type, a Rossiel salt type, or a potassium phosphate type, and extends slightly over the semiconductor regions 7 and 8, and is also located on the insulating layer 6 at a position where it can be connected to the semiconductor region 9. It has been slightly extended at .

又導電性層11は、多結晶シリコン、金属層等の導電性
材で形威され、電荷蓄積性絶縁層10上より絶縁層6上
に外方に延長している。
The conductive layer 11 is made of a conductive material such as polycrystalline silicon or a metal layer, and extends outward from the charge storage insulating layer 10 to the insulating layer 6.

更に半導体基板3内に、その半導体基板本体1の半導体
領域5下の領域に於ける半導体領域5側に形或されてな
る態様を有する、導電性層11と対向して半導体領域5
に連接せるN 型の半導体領域12と、上述せる半導体
基板3の半導体層2による島状の半導体領域内にその全
域に亘って形威されてなる態様を有するN 型の半導体
領域13と、半導体基板本体1の半導体領域12及ひ1
3間の領域に於ける絶縁層6下側に側に形成されてなる
態様を有する半導体領域12及び13間にそれ等と連接
して延長せるN 型の半導体領域14とよりなる半導体
領域15が第2のゲーで極として形成されている。
Further, in the semiconductor substrate 3, a semiconductor region 5 is formed opposite to the conductive layer 11, which is formed on the semiconductor region 5 side in a region below the semiconductor region 5 of the semiconductor substrate body 1.
an N-type semiconductor region 12 connected to the semiconductor substrate 3; Semiconductor regions 12 and 1 of substrate body 1
Between the semiconductor regions 12 and 13 formed below the insulating layer 6 in the region between 3 and 3, there is a semiconductor region 15 consisting of an N type semiconductor region 14 connected and extending therebetween. It is formed as a pole in the second game.

尚更に半導体基板3の主面4上に、電荷蓄積性絶縁層1
0及び導電性層11を覆って延長し且半導体領域7、半
導体領域8、及び半導体領域15の領域13を外部に臨
ませる窓17.1B、及び19を穿設せる例えばシリコ
ン酸化物でなる絶縁層16が形或され、而して半導体領
域7,8及び13に、絶縁層16上に延長せる例えば金
属でなる導電性層20,21,及び22が、夫々窓17
,18及び19内を通ってソース電極乃至配線層、ドレ
イン電極乃至配線層、及び第2ゲート電極乃至配線層と
して連結されている。
Further, on the main surface 4 of the semiconductor substrate 3, a charge storage insulating layer 1 is provided.
An insulator made of silicon oxide, for example, in which windows 17.1B and 19 are formed, extending over the conductive layer 11 and exposing the semiconductor region 7, the semiconductor region 8, and the region 13 of the semiconductor region 15 to the outside. A layer 16 is formed such that semiconductor regions 7, 8 and 13 are provided with conductive layers 20, 21 and 22, e.g. of metal, which extend over the insulating layer 16, respectively through windows 17.
, 18 and 19 and are connected as a source electrode to a wiring layer, a drain electrode to a wiring layer, and a second gate electrode to a wiring layer.

以上が本発明による電界効果トランジスタの一例構成で
あるが、斯る構成によれば、ソース電極乃至配線層とし
ての導電性層20及びゲート電極としての導電性層11
間に一般に■。
The above is an example of the configuration of a field effect transistor according to the present invention. According to this configuration, the conductive layer 20 as a source electrode or wiring layer and the conductive layer 11 as a gate electrode.
■ Generally between.

で表わされる電圧を印加することにより、その電圧vG
が導電性層20側を基準として正であるか負であるかに
応じて電荷蓄積性絶縁層10の半導体領域9との界面側
を正又は負、導電性層11との界面側を負又は正とする
分極を形威せる態様を以って電荷蓄積性絶縁層10に電
荷が蓄積されるものである。
By applying a voltage represented by
is positive or negative with respect to the conductive layer 20 side, the interface side of the charge accumulating insulating layer 10 with the semiconductor region 9 is positive or negative, and the interface side with the conductive layer 11 is negative or negative. Charges are accumulated in the charge accumulating insulating layer 10 in a manner that produces positive polarization.

この関係は、横軸に電圧vG、縦軸に分極をとって示さ
れている第4図に示す如く、電圧vGが正の値v4より
大なる値である場合に於で絶縁層10K半導体領域9と
の界面側を正(→とせる飽和状態の分極が得られている
も、斯る状態より電圧■Gの値を■4より小として負の
値■2より小なる値とすれば、絶縁層10に半導体領域
9との界面側を正(ト)とせる分極が飽和状態より小と
なり、そして負の値■1より小なる値とすれば絶縁層1
0に半導体領域9との界面側を負(一)とせる飽和状態
の分極が得られ、又斯る状態より電圧■Gの値を■1よ
り犬として正の値■3より犬なる値とすれば、絶縁層1
0に半導体領域9との界面側を負(−)とせる分極が飽
和状態より小となり、そして正の値■4より犬なる値と
すれば、絶縁層10に半導体領域9との界面側を正(+
)とせる上述せる飽和状態の分極が得られるというもの
である。
As shown in FIG. 4, where the horizontal axis represents the voltage vG and the vertical axis represents the polarization, this relationship applies to the insulating layer 10K semiconductor region when the voltage vG is larger than the positive value v4. Although polarization in a saturated state where the interface side with If the polarization that makes the interface side with the semiconductor region 9 of the insulating layer 10 positive (G) is smaller than the saturated state, and the negative value is smaller than 1, then the insulating layer 1
A saturated polarization is obtained in which the interface side with the semiconductor region 9 is negative (one) at 0, and from this state, the value of the voltage G becomes a positive value from 1, and a positive value from 3. Then, insulating layer 1
0, the interface side with the semiconductor region 9 becomes negative (-), and the polarization becomes smaller than the saturated state, and if the polarization is set to a value that is more dog than the positive value 4, then the interface side with the semiconductor region 9 becomes the insulating layer 10. Positive (+
), the above-mentioned saturated polarization can be obtained.

又絶縁層10に半導体領域9との界面側を正(+)とせ
る上述せる飽和状態が得られている場合、半導体領域9
内に絶縁層10との界面側より拡がる空乏層が得られて
いるも、絶縁層10に半導体領域9との界面側を負(−
)とせる上述せる飽和状態の分極が得られている場合、
半導体領域9内には実質的に上述せる空乏層は得られて
いないものである。
Further, when the above-mentioned saturated state is obtained in which the interface side with the semiconductor region 9 is positive (+) in the insulating layer 10, the semiconductor region 9
Although a depletion layer that spreads from the interface side with the insulating layer 10 is obtained within the insulating layer 10, the interface side with the semiconductor region 9 is negative (-
), if the above-mentioned saturated polarization is obtained,
Substantially no depletion layer as described above is obtained in the semiconductor region 9.

又ソース電極としての導電性層20及びゲート電極乃至
配線層としての導電性層22間に一般にV′Gで表わさ
れる導電性層20を基準として正である電圧を印加する
ことにより、チャンネル領域としての半導体領域5内に
それとゲート電極としての半導体領域15とのなすPN
接合23より拡がる空乏層が得られるものである。
In addition, by applying a positive voltage with respect to the conductive layer 20, which is generally expressed as V'G, between the conductive layer 20 as a source electrode and the conductive layer 22 as a gate electrode or wiring layer, a voltage can be applied as a channel region. A PN formed between the semiconductor region 5 and the semiconductor region 15 as a gate electrode is formed in the semiconductor region 5 of
A depletion layer expanding from the junction 23 is obtained.

従って導電性層20及び11間に、導電性層11側を正
とせる上述せる電圧■Gの値■4以上の値を有する電圧
を2値表示で「0」の情報として与えれば、絶縁層10
に半導体領域9との界面側を正とせる飽和状態の分極が
2値表示で「0」の情報を記憶せるものとして得られ、
又これより導電性層20及び11間に導電性層11側を
負とせる上述せる電圧■Gの値■1以下の値を有する電
圧を2値表示で「1」の情報として与えれば、絶縁層1
0に半導体領域9との界面側を負とせる飽和状態の分極
が2値表示で「1」の情報を記憶せるものとして得られ
るものである。
Therefore, if the above-mentioned voltage that makes the conductive layer 11 side positive - the value of G 10
A saturated polarization in which the interface side with the semiconductor region 9 is positive is obtained as a binary display that can store information of "0",
Also, from this, if the above-mentioned voltage that makes the conductive layer 11 side negative is applied between the conductive layers 20 and 11, the value of G, and the voltage having a value of 1 or less is given as information of "1" in binary representation, the insulation layer 1
A polarization in a saturated state in which the interface side with the semiconductor region 9 is negative at 0 is obtained as a binary display capable of storing information of "1".

又上述せる2値表示でrOJの情報が記憶されている状
態で、導電性層20及び22間に、上述せる半導体領域
9内にPN接合23より拡がる空乏層が、上述せる半導
体領域9内に絶縁層10との界面側より拡がっている空
乏層に達するに十分な値を有する導電性層22側を負と
せる電圧又は正とせる低い電圧を与えれば、半導体領域
7及び8間の非導通状態が得られ、従ってこのことをI
OJの情報の記憶を読出したこととし得るものである。
Furthermore, in the state in which the rOJ information is stored in the binary representation described above, a depletion layer extending from the PN junction 23 into the semiconductor region 9 described above is formed between the conductive layers 20 and 22 within the semiconductor region 9 described above. Non-conduction between the semiconductor regions 7 and 8 can be achieved by applying a voltage that makes the conductive layer 22 side negative or positive, which has a value sufficient to reach the depletion layer extending from the interface side with the insulating layer 10. state is obtained, and therefore we can refer to this as I
This can be considered as reading out the information stored in the OJ.

更に上述せる2値表示で「1」の情報が記憶されている
状態で、導電性層20及び22間にに上述せる電圧を与
えれば、半導体領域7及び8間の領域9の表面側を通る
導通状態が得られ、従ってこのことを「1」の情報の記
憶を読出したこととし得るものである。
Furthermore, if the voltage described above is applied between the conductive layers 20 and 22 in a state where the information "1" is stored in the binary display described above, the voltage passes through the surface side of the region 9 between the semiconductor regions 7 and 8. A conductive state is obtained, and this can therefore be regarded as reading out the storage of information of "1".

尚更に導電性層20及び22間に上述せる電圧の値より
犬にして、上述せる領域9内にPN接合23より拡がる
空乏層が領域9の表面に達するに十分な値を有する正の
電圧を与えれば、半導体領域7及び8間の非導通状態が
得られ、従ってこのことにより上述せる2値表示でrO
J及び「1−1の情報の記憶の倒れをも読出さない所謂
非アクセス状態とし得るものである。
Furthermore, a positive voltage having a value sufficient to cause the depletion layer extending from the PN junction 23 to reach the surface of the region 9 in the region 9 described above is applied between the conductive layers 20 and 22, which is different from the voltage value described above. If given, a non-conducting state between semiconductor regions 7 and 8 is obtained, which therefore causes rO in the binary representation mentioned above.
It is possible to create a so-called non-access state in which even information stored in J and 1-1 is not read out.

又上述せる2値表示でrOJ及び「1」の情報の記憶の
何れをも、導電性層20及び11間に上述せる電圧■G
の値v2及び■3間の値を有する電圧を与えて置けば、
又は導電性層20及び11間に例等電圧を与えなくても
上述せる情報の記憶状態が保持されるものである。
In addition, in the above-mentioned binary display, both rOJ and "1" information storage can be performed by applying the above-mentioned voltage ■G between the conductive layers 20 and 11.
If a voltage with a value between v2 and ■3 is applied,
Alternatively, the above-mentioned information storage state can be maintained even if no voltage is applied between the conductive layers 20 and 11.

依って第1図〜第3図にて上述せる本発明による電界効
果トランジスタの場合、記憶素子としての機能とスイッ
チング素子としての機能とを有し、而してそれ等の機能
を併用し得るという犬なる特徴を有するものである。
Therefore, in the case of the field effect transistor according to the present invention described above in FIGS. 1 to 3, it has a function as a memory element and a function as a switching element, and can use these functions in combination. It has the characteristics of a dog.

この為第1図〜第3図にて上述せる本発明による電界効
果トランジスタの場合、その1つを用いて記憶素子とし
ての機能とスイッチング素子としての機能との双方を併
用し得る必要のある記憶回路を構威し得、而して斯る記
憶回路を構威するとき、その記憶回路を小型化すること
が出来ると共にその記憶回路への情報の書込み又それよ
りの読出しの速度を高速化すること及び記憶回路への書
込み乃至書換えに必要な電圧を低電圧化することが出来
、依って記憶回路を構戊するに適用して極めて好適であ
るという犬なる特徴を有するものである。
For this reason, in the case of the field effect transistor according to the present invention described above in FIGS. 1 to 3, it is necessary to use one of the field effect transistors to function as a memory element and as a switching element. When constructing such a memory circuit, the memory circuit can be made smaller and the speed at which information can be written to or read from the memory circuit can be increased. In addition, it is possible to reduce the voltage required for writing to or rewriting a memory circuit, and therefore, it has the characteristic that it is extremely suitable for application to constructing a memory circuit.

向上述に於では電荷蓄積性絶縁層10が、前述せる電荷
を蓄積する性質を有すべく、強誘電体を含んで形或され
ていると述べたが、その態様は強誘電体のみを以って形
威されている態様、前述せる電荷を蓄積する性質を有し
ない例えばシリコン酸化物等の通常の絶縁材中に強誘電
体を分散せしめてなる態様、前述せる絶縁材による2つ
の層間に強誘電体による層を介挿せしめてなる態様を採
り得るものである。
In the description of improvements, it has been stated that the charge accumulating insulating layer 10 is formed to include a ferroelectric material in order to have the above-described property of accumulating charges. A mode in which a ferroelectric material is dispersed in a normal insulating material such as silicon oxide, which does not have the property of accumulating electric charges, and a mode in which a ferroelectric material is dispersed in a normal insulating material such as silicon oxide, and a mode in which a ferroelectric material is dispersed between two layers of the insulating material described above. It is possible to adopt an embodiment in which a layer of ferroelectric material is interposed.

又上述に於では本発明の一例を示したに留まり、例えば
半導体基板3のP型の半導体基板本体1を絶縁性半導体
基板本体とすることも出来、又半導体基板3がP型の半
導体本体のみよりなり、それを半導体層5とせる構威と
することも出来るものである。
Further, the above description merely shows an example of the present invention, and for example, the P-type semiconductor substrate body 1 of the semiconductor substrate 3 can be an insulating semiconductor substrate body, or the semiconductor substrate 3 can only be a P-type semiconductor body. It is also possible to use it as the semiconductor layer 5.

又上述に於で電荷蓄積性絶縁層10が強誘電体を含んで
形或されている場合を述べたが、その絶縁層10を前述
せる電荷蓄積する性質を有すべく、シリコン又はシリコ
ン窒化物若しくはアルミニウム酸化物を含んで形成する
ことも出来るものである。
Further, in the above description, the case where the charge storage insulating layer 10 is formed by containing a ferroelectric material has been described, but in order for the insulating layer 10 to have the above-mentioned charge storage property, silicon or silicon nitride is used. Alternatively, it can also be formed by containing aluminum oxide.

更に上述に於ではゲート電極としての半導体領域15の
領域12及び電荷蓄積性絶縁層10が正に対向関係を有
する場合につき述べたが、その対向関係が僅かにずれた
関係とすることも出来、又半導体領域5に半導体領域1
5に代え金属層を連結せしめてPN接合23に代えショ
ットキ接合を形威せる構威とすることも出来、尚更に上
述せる「P」、「P 」、及び「N+」を夫+ 夫rNJ、rN+J、及び「P+」と読替えた構成とす
ることも出来、その他本発明の精神を脱することなしに
種々の変型変更をなし得るであろつ0
Furthermore, although the above description has been made of the case where the region 12 of the semiconductor region 15 serving as the gate electrode and the charge storage insulating layer 10 have a exactly opposing relationship, it is also possible to have a relationship in which the opposing relationship is slightly shifted. Also, semiconductor region 1 is placed in semiconductor region 5.
It is also possible to connect metal layers instead of 5 and form a Schottky junction instead of the PN junction 23, and furthermore, the above-mentioned "P", "P", and "N+" can be connected to each other by connecting metal layers to form a Schottky junction. rN+J and "P+" may be used, and various other modifications may be made without departing from the spirit of the present invention.

【図面の簡単な説明】 第1図は本発明による電界効果トランジスタの一例を示
す平面図、第2図及び第3図はその■−■線及び■一■
線上の断面図、第4図は本発明の説明に供する電圧■G
と分極との関係を示す図である。 図中、3は半導体基板、4は主面、5は半導体層、7,
8,9及び15は半導体領域、10は電荷蓄積性絶縁層
、11,20.21及び22は導電性層を夫々示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a plan view showing an example of a field effect transistor according to the present invention, and FIGS.
The cross-sectional view along the line, Figure 4, shows the voltage ■G used to explain the present invention.
FIG. 3 is a diagram showing the relationship between and polarization. In the figure, 3 is a semiconductor substrate, 4 is a main surface, 5 is a semiconductor layer, 7,
8, 9 and 15 are semiconductor regions, 10 is a charge storage insulating layer, and 11, 20, 21 and 22 are conductive layers, respectively.

Claims (1)

【特許請求の範囲】 1 第1の導電型を有する半導体層内に、その主面側よ
り、第1の導電型を有し且上記半導体層に比し高い不純
物濃度を有する第1及び第2の半導体領域がそれ等間に
上記半導体層による第3の半導体領域をチャンネル領域
として形威すべく夫々ソース領域及びドレイン領域とし
て形成され、上記第3の半導体領域の上記主面側の面上
に電荷蓄積性絶縁層を介して第1の導電性層が第1のゲ
ート電極として配され、上記半導体層に、第1の導電型
とは逆の第2の導電型を有する第4の半導体領域が上記
半導体層との間でPN接合を形成すべく又は第2の導電
性層が上記半導体層との間でショットキ接合を形威すべ
く、第2のゲート電極として連結されてなる事を特徴と
する電界効果トランジスタ。 2 特許請求の範囲第1項所載の電界効果トランジスタ
に於で、上記電荷蓄積性絶縁層が強誘電体を含んで形成
されてなる事を特徴とする電界効果トランジスタ。 3 特許請求の範囲第1項記載の電界効果トランジスタ
に於で、上記電荷蓄積性絶縁層がシリコン又はシリコン
窒化物若しくはアルミニウム酸化物を含んで形威されて
なる事を特徴とする電界効果トランジスタ。
[Scope of Claims] 1. In a semiconductor layer having a first conductivity type, first and second semiconductor layers having a first conductivity type and having a higher impurity concentration than the semiconductor layer are arranged from the main surface side thereof. semiconductor regions are formed between them as a source region and a drain region, respectively, so that the third semiconductor region of the semiconductor layer serves as a channel region, and on the surface of the third semiconductor region on the main surface side. A first conductive layer is disposed as a first gate electrode via a charge storage insulating layer, and a fourth semiconductor region having a second conductivity type opposite to the first conductivity type is provided in the semiconductor layer. is connected as a second gate electrode to form a PN junction with the semiconductor layer or a second conductive layer to form a Schottky junction with the semiconductor layer. field effect transistor. 2. A field effect transistor according to claim 1, wherein the charge storage insulating layer is formed to include a ferroelectric material. 3. The field effect transistor according to claim 1, wherein the charge storage insulating layer contains silicon, silicon nitride, or aluminum oxide.
JP56006590A 1981-01-20 1981-01-20 field effect transistor Expired JPS5847863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56006590A JPS5847863B2 (en) 1981-01-20 1981-01-20 field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56006590A JPS5847863B2 (en) 1981-01-20 1981-01-20 field effect transistor

Publications (2)

Publication Number Publication Date
JPS57121271A JPS57121271A (en) 1982-07-28
JPS5847863B2 true JPS5847863B2 (en) 1983-10-25

Family

ID=11642540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56006590A Expired JPS5847863B2 (en) 1981-01-20 1981-01-20 field effect transistor

Country Status (1)

Country Link
JP (1) JPS5847863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352168A (en) * 1986-08-21 1988-03-05 Hitachi Koki Co Ltd Electrophotographic developing device
EP3981856A1 (en) 2020-09-30 2022-04-13 Stanley Electric Co., Ltd. Group-iii nitride semiconductor nanoparticles and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017533A1 (en) * 2004-12-29 2006-07-13 Hynix Semiconductor Inc., Ichon Nonvolatile ferroelectric memory device e.g. ferroelectric random access memory device, has ferroelectric layer formed on floating channel layer and word line formed on ferroelectric layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352168A (en) * 1986-08-21 1988-03-05 Hitachi Koki Co Ltd Electrophotographic developing device
EP3981856A1 (en) 2020-09-30 2022-04-13 Stanley Electric Co., Ltd. Group-iii nitride semiconductor nanoparticles and production method thereof

Also Published As

Publication number Publication date
JPS57121271A (en) 1982-07-28

Similar Documents

Publication Publication Date Title
US4084108A (en) Integrated circuit device
US20150333080A1 (en) Integrated circuits and methods for operating integrated circuits with non-volatile memory
JP3039245B2 (en) Semiconductor memory device
JPH0150114B2 (en)
JPH04256361A (en) Semiconductor memory device
JPS5847863B2 (en) field effect transistor
US3908182A (en) Non-volatile memory cell
JP2588311B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP3320474B2 (en) Semiconductor storage device
JPS5847864B2 (en) field effect transistor
JPH084114B2 (en) Semiconductor non-volatile RAM
JPS5978565A (en) Semiconductor memory cell
KR900007233B1 (en) Semiconductor device
JPS6241431B2 (en)
JPS63219154A (en) Semiconductor device
JPS5814747B2 (en) semiconductor storage device
JP2867810B2 (en) Semiconductor device
JPH02270378A (en) Floating gate type memory device
JP2941327B2 (en) MOS type semiconductor device
JPS6365674A (en) Non-volatile semiconductor random access memory
JPS5910263A (en) Semiconductor device
JPS6322398B2 (en)
JPS6034823B2 (en) Semiconductor integrated storage device
JPS5925388B2 (en) semiconductor memory device
JPH039559B2 (en)