JPS5843466B2 - Annealing separator for unidirectional silicon steel sheets - Google Patents

Annealing separator for unidirectional silicon steel sheets

Info

Publication number
JPS5843466B2
JPS5843466B2 JP54070569A JP7056979A JPS5843466B2 JP S5843466 B2 JPS5843466 B2 JP S5843466B2 JP 54070569 A JP54070569 A JP 54070569A JP 7056979 A JP7056979 A JP 7056979A JP S5843466 B2 JPS5843466 B2 JP S5843466B2
Authority
JP
Japan
Prior art keywords
silicon steel
annealing separator
annealing
steel plate
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54070569A
Other languages
Japanese (ja)
Other versions
JPS55164025A (en
Inventor
義孝 広前
和男 中村
元 日戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54070569A priority Critical patent/JPS5843466B2/en
Priority to IT27566/79A priority patent/IT1127263B/en
Priority to GB7940971A priority patent/GB2041343B/en
Priority to US06/098,118 priority patent/US4287006A/en
Priority to DE2947945A priority patent/DE2947945C2/en
Priority to FR7929711A priority patent/FR2442892B1/en
Publication of JPS55164025A publication Critical patent/JPS55164025A/en
Publication of JPS5843466B2 publication Critical patent/JPS5843466B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/72Temporary coatings or embedding materials applied before or during heat treatment during chemical change of surfaces

Description

【発明の詳細な説明】 本発明は高磁束密度で且つ低鉄損の一方向性珪素鋼板用
の焼鈍分離剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an annealing separator for grain-oriented silicon steel sheets having high magnetic flux density and low core loss.

一方向性珪素鋼板は磁化容易なく001>方位の集積度
が高い珪素鋼板であり、この<001>方位の優れた珪
素鋼板を製造するために1000〜1300℃の高温度
のH2ガス中で焼鈍している。
A unidirectional silicon steel sheet is a silicon steel sheet that is not easily magnetized and has a high degree of integration of the 001> orientation.In order to manufacture this silicon steel sheet with excellent <001> orientation, it is annealed in H2 gas at a high temperature of 1000 to 1300°C. are doing.

この高温焼鈍で鋼板同志が焼付くのを防止するために、
焼鈍前に鋼板表面に酸化マグネシウムが焼鈍分離剤とし
て塗布されている。
In order to prevent the steel plates from seizing together during this high-temperature annealing,
Before annealing, magnesium oxide is applied to the surface of the steel sheet as an annealing separator.

最近、A7Nを鋼中に分散させて<OO1>方位の集積
度が非常に高い方向性珪素鋼板が製造されるようになり
、従来、単に焼付き防止の役目しかなかった焼鈍分離剤
が磁性に重要な役割をしていることが分った。
Recently, grain-oriented silicon steel sheets with a very high degree of integration of the <OO1> orientation have been manufactured by dispersing A7N in steel, and the annealing separator, which previously only served to prevent seizure, has become magnetic. It turns out that it plays an important role.

一般に、方向性珪素鋼板の品質は磁束密度と鉄損で評価
される。
Generally, the quality of grain-oriented silicon steel sheets is evaluated by magnetic flux density and iron loss.

ここに磁束密度Bとは一様に磁化された珪素鋼板の単位
断面積当りの磁束をいい、磁束密度が高いほど品質がよ
い。
Here, the magnetic flux density B refers to the magnetic flux per unit cross-sectional area of a uniformly magnetized silicon steel plate, and the higher the magnetic flux density, the better the quality.

また、鉄損とは珪素鋼板を交流磁化力によって磁化した
ときに鋼板中で消費される電力をいい、この消費電力(
鉄損)が小さいほど品質がよい。
In addition, iron loss refers to the power consumed in the steel plate when the silicon steel plate is magnetized by AC magnetizing force, and this power consumption (
The smaller the iron loss), the better the quality.

<001>方位の集積度は磁束密度とほぼ比例しており
、<ooi>方位の集積度が高い珪素鋼板は高い磁束密
度が得られる。
The degree of integration in the <001> direction is approximately proportional to the magnetic flux density, and a silicon steel plate with a high degree of integration in the <ooi> direction can obtain a high magnetic flux density.

この<001>方位を有する結晶は珪素鋼板製造工程中
の高温仕上焼鈍中に鋼板表面から成長しはじめ鋼板表面
に塗布する焼鈍分離剤の化学的性質が大きな影響を与え
る。
Crystals having this <001> orientation begin to grow from the surface of the steel sheet during high-temperature finish annealing during the process of manufacturing silicon steel sheets, and are greatly influenced by the chemical properties of the annealing separator applied to the surface of the steel sheet.

この目的で、過去に焼鈍分離剤中にいろいろの化学薬品
を添加して磁性を向上させる方法が数多く提案されてい
る。
For this purpose, many methods have been proposed in the past to improve magnetism by adding various chemicals to the annealing separator.

本発明は焼鈍分離剤として非水和酸化マグネシウム中に
Li化合物とNa化化合物上び/捷たに化合物を更にB
化合物を併用添加することによって、磁束密度と鉄損の
優れた方向性珪素鋼板を製造することができることを見
出したものである。
The present invention uses a Li compound and a Na compound in non-hydrated magnesium oxide as an annealing separator, and further adds a B compound to the annealing separator.
It has been discovered that by adding a compound in combination, a grain-oriented silicon steel sheet with excellent magnetic flux density and iron loss can be produced.

本発明は1300℃以上で焼成した結晶質の非水和酸化
マグネシウムを用いるものであり、従来用いられている
低温焼成の酸化マグネシウムに比較して経済的に得られ
る。
The present invention uses crystalline non-hydrated magnesium oxide calcined at 1300° C. or higher, which is more economical than conventional magnesium oxide calcined at low temperatures.

また、皮膜の生成にあたって水分の持込が少なく、従っ
て鋼板の酸化防止に有利である。
In addition, less moisture is brought in during the formation of the film, which is advantageous in preventing oxidation of the steel sheet.

また、本発明に使用する非水和酸化マグネシウムは、そ
の粒度が5μ以下が70多板上である場合鋼板への塗布
がより良好となる。
Further, the non-hydrated magnesium oxide used in the present invention can be applied better to steel plates when its particle size is 5 μm or less on a 70-layer plate.

過去に、酸化マグネシウムにアルカリ金属を添加する方
法が提案されているが、これらはいずれも単独の添加で
あり、酸化マグネシウムも水和しやすいものである。
In the past, methods have been proposed in which alkali metals are added to magnesium oxide, but these are all additives alone, and magnesium oxide is also easily hydrated.

ところが、アルカリ金属でも方向性珪素鋼板の磁束密度
や鉄損に与える影響は同じでなく、LiとNa s K
では全く異なった挙動をする。
However, even alkali metals do not have the same effect on the magnetic flux density and iron loss of grain-oriented silicon steel sheets;
It behaves completely differently.

即ち、L1化合物を非水和酸化マグネシウムに添加した
焼鈍分離剤は、磁束密度を大巾に向上させるが、鉄損は
ほとんど向上させない。
That is, an annealing separator in which an L1 compound is added to non-hydrated magnesium oxide greatly improves magnetic flux density, but hardly improves iron loss.

これに対して、Na或はに化合物を非水和酸化マグネシ
ウムに添加した焼鈍分離剤は磁束密度の向上はあ1りな
いが、鉄損の向上への効果が大きい。
On the other hand, an annealing separator in which Na or a compound is added to non-hydrated magnesium oxide does not improve magnetic flux density at all, but has a large effect on improving iron loss.

前記した様に磁束密度は<001>方位の集積度と比例
するが、焼鈍分離剤中のLiは鋼表面に拡散し、この<
ooi>方位の集積度を高くするように作用する。
As mentioned above, the magnetic flux density is proportional to the degree of integration of the <001> orientation, but Li in the annealing separator diffuses to the steel surface, and this
It acts to increase the degree of integration in the ooi> direction.

これに対して、Na 、には鉄損の向上への寄与が大き
い。
On the other hand, Na has a large contribution to improving iron loss.

これは次の様に説明される。This is explained as follows.

御ち、焼鈍分離剤として鋼板表面に塗布した結晶性の非
水和酸化マグネシウムは高温焼鈍でグラス被膜(主成分
はフォルステライト (Mg2Si04)を形成するが、Na或はKを添加す
ると結晶性の非水和酸化マグネシウム同志が強固に結合
し、地鉄に対して大きな引張張力を与える。
Afterwards, the crystalline non-hydrated magnesium oxide applied to the surface of the steel sheet as an annealing separator forms a glass coating (mainly forsterite (Mg2Si04)) during high temperature annealing, but when Na or K is added, the crystalline non-hydrated magnesium oxide becomes crystalline. Non-hydrated magnesium oxide is strongly bonded to each other and provides a large tensile force to the base steel.

一方向性珪素鋼板の<001>方位の方向に引張張力を
付加すると、鉄損が大きく向上することが知られており
、Na或はKを少量添加したグラス被膜は、この張力効
果によって鉄損を向上する。
It is known that applying tensile force in the direction of the <001> orientation of a unidirectional silicon steel sheet greatly increases iron loss, and glass coatings with a small amount of Na or K added can reduce iron loss due to this tension effect. improve.

NaおよびKの量が1100pp未満ではとの鉄損の向
上は期待できない。
If the amounts of Na and K are less than 1100 pp, no improvement in iron loss can be expected.

しかし、Na或はKの添加が多過ぎると、グラス被膜の
融点が急激に低下し、その結果高温焼鈍中に融解してグ
ラス被膜が形成されなくなる。
However, if too much Na or K is added, the melting point of the glass coating will drop rapidly, and as a result, it will melt during high temperature annealing and no glass coating will be formed.

実験結果ではNa或はKの添加上限は1000
であり、これ以上にな99m ると、グラス被膜の形成が大きく阻害され、鉄損が劣化
する。
According to experimental results, the upper limit of addition of Na or K is 1000.
If the length exceeds 99 m, the formation of the glass coating will be greatly inhibited and the iron loss will deteriorate.

一方、L1化合物はグラス被膜に対する張力効果がほと
んどないため、高磁束密度が得られるにもかかわらず、
鉄損の向上がほとんどない。
On the other hand, the L1 compound has almost no tension effect on the glass coating, so even though a high magnetic flux density can be obtained,
There is almost no improvement in iron loss.

また、Li を110000pp添加してもグラス被膜
の形成は全く阻害されず、Liはグラス被膜の形成には
ほとんど関与しないと考えられる。
Further, even if 110,000 pp of Li was added, the formation of the glass coating was not inhibited at all, and it is considered that Li hardly participates in the formation of the glass coating.

しかしあ1り添加しても磁束密度はそれ以上向上せず、
従って10000〜300ppm好1しくは5000p
pm以下でよい。
However, even with the addition of aluminum, the magnetic flux density did not improve any further.
Therefore, 10000-300ppm preferably 5000p
It may be less than pm.

ただし、Liの量が300ppm未満では磁性の向上が
認められない。
However, if the amount of Li is less than 300 ppm, no improvement in magnetism is observed.

本発明の焼鈍分離剤中には上記成分のほかに更に硼素化
合物を添加する。
In addition to the above-mentioned components, a boron compound is further added to the annealing separator of the present invention.

焼鈍分離剤を塗布した鋼板は窒素を含むH2雰囲気で2
次再結晶のための熱処理がされるが、この際A7を含む
鋼板は窒素を吸収することがあり、その結果多量のA7
Nが形成されると2次再結晶をせず細粒を起す傾向がみ
られる。
The steel plate coated with the annealing separator was heated in an H2 atmosphere containing nitrogen.
The next step is heat treatment for recrystallization, but at this time steel sheets containing A7 may absorb nitrogen, resulting in a large amount of A7.
When N is formed, there is a tendency for fine grains to form without secondary recrystallization.

ところが硼素化合物を添加した焼鈍分離剤を用い皮膜を
形成させてお・けば硼素化合物によって鋼板への窒素吸
収の抑制などで最適窒化物量に調整して2次再結晶を安
定化させる効果がある。
However, if a film is formed using an annealing separator containing a boron compound, the boron compound will have the effect of suppressing nitrogen absorption into the steel sheet, adjusting the amount of nitride to the optimum level, and stabilizing secondary recrystallization. .

すなわち上述のような皮膜の性質を改良し且安定化して
磁性向上を計ることができるため、本発明においては硼
素としての硼素化合物を300〜1500ppm添加す
る必要がある。
That is, in order to improve and stabilize the properties of the film as described above and to improve magnetism, it is necessary to add 300 to 1500 ppm of a boron compound as boron in the present invention.

B化合物は300 ppm未満だと磁束密度の向上が認
められず、逆に1500ppmを越えると2次再結晶の
抑制効果が強過ぎて2次再結晶せず、磁束密度が悪くな
る。
If the B compound is less than 300 ppm, no improvement in magnetic flux density will be observed, whereas if it exceeds 1,500 ppm, the effect of suppressing secondary recrystallization will be too strong, and secondary recrystallization will not occur, resulting in poor magnetic flux density.

更に必要に応じて本発明はチタニウム化合物を添加して
もよい。
Furthermore, in the present invention, a titanium compound may be added as necessary.

これは皮膜の結晶化を促進し、皮膜の張力付与に寄与す
るため添加する場合は1〜10%の範囲内でよい。
This promotes crystallization of the film and contributes to imparting tension to the film, so when added, it may be added within a range of 1 to 10%.

本発明の珪素鋼板は、通常の方法で製造されるものであ
って、鋳造、熱延、熱延板焼鈍冷延、脱炭焼鈍、最終焼
鈍などの工程は従来知られている条件でよいことは勿論
である。
The silicon steel sheet of the present invention is manufactured by a conventional method, and the steps such as casting, hot rolling, hot-rolled plate annealing and cold rolling, decarburization annealing, and final annealing may be performed under conventionally known conditions. Of course.

すなわち、連続鋳造スラブ又は普通造塊−分塊スラブを
出発材とし、これらのスラブを熱延この熱延板を必要に
応じて焼鈍した後冷延処理する。
That is, continuous casting slabs or ordinary ingot-blooming slabs are used as starting materials, these slabs are hot-rolled, the hot-rolled sheets are annealed if necessary, and then cold-rolled.

熱延板はSiく4.0%、Cく0.085%を含み更に
、A7N とMnS を2次再結晶促進成分となるよう
なMn、S、Al。
The hot-rolled sheet contains 4.0% Si and 0.085% C, and further contains Mn, S, and Al such that A7N and MnS serve as secondary recrystallization promoting components.

Nなどの微量成分特に、Alく0.07多、Nく0.0
10%を含む素材は高磁束密度低鉄損特性を得るに適し
ている。
Especially trace components such as N, Al 0.07 more, N 0.0
A material containing 10% is suitable for obtaining high magnetic flux density and low iron loss characteristics.

その他必要に応じてNi。Cut sb、Se など
の1〜2種を少量含んでもよい。
Other Ni as necessary. It may also contain a small amount of one or two of Cut sb, Se, etc.

冷延は高圧下1段又は中間焼鈍を含む2段冷延法でもよ
い。
Cold rolling may be performed in one stage under high pressure or in two stages including intermediate annealing.

脱炭焼鈍抜本発明の特徴とする焼鈍分離剤を塗布し、そ
して最終仕上焼鈍が行われる。
Decarburization annealing An annealing separator, which is a feature of the present invention, is applied, and final finish annealing is performed.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 I C0,04,Si 2.9.Mn O,08,Po、0
10゜So、025.AlO,027,NO,0080
残部Feからなる熱延珪素鋼板を板厚0.30mmに冷
延したのち、水分を含むH2(7”5= )+N2(2
5)雰囲気中で脱炭焼鈍をした。
Example I C0,04,Si 2.9. Mn O, 08, Po, 0
10°So, 025. AlO, 027, NO, 0080
After cold-rolling a hot-rolled silicon steel plate consisting of Fe in the balance to a thickness of 0.30 mm, H2 (7"5 = ) + N2 (2
5) Decarburization annealing was performed in an atmosphere.

脱炭後、下記の組成の焼鈍分離剤を鋼板に15g7tn
”塗布した。
After decarburization, 15g7tn of annealing separator with the following composition was applied to the steel plate.
``I applied it.

焼鈍分離剤の組成 焼鈍分離剤を塗布した鋼板は250℃で乾燥したのち、
1200℃のH2ガス中で焼鈍を行い方向性珪素鋼板と
した。
Composition of annealing separator After the steel plate coated with the annealing separator is dried at 250℃,
It was annealed in H2 gas at 1200°C to obtain a grain-oriented silicon steel plate.

実施例 2 実施例1と同じ鋼板に下記の組成の焼鈍分離剤を13
g /fn2塗布した。
Example 2 The same steel plate as in Example 1 was coated with an annealing separator having the following composition.
g/fn2 was applied.

この鋼板は250℃で乾燥したのち、1200℃のH2
ガス中で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 250℃ and then heated to 1200℃ H2
Annealing was performed in gas to obtain a grain-oriented silicon steel plate.

焼鈍分離剤の組成 実施例 3 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に10 g /m”塗布した。
Composition Example 3 of Annealing Separator An annealing separator having the following composition was applied to the same silicon steel plate as in Example 1 at a rate of 10 g/m''.

この鋼板は250℃で乾燥したのち、1200’CのH
2ガス中で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 250°C and then heated to 1200°C.
Annealing was performed in 2 gases to obtain a grain-oriented silicon steel sheet.

2100℃で焼成した非水和酸化マグネシウム以上の実
施例の方法で製造した結果を含めて、Li及びNa添加
量と磁性との関係を第1表に示す。
Table 1 shows the relationship between the amounts of Li and Na added and magnetism, including the results of non-hydrated magnesium oxide calcined at 2100° C. produced by the method of the above examples.

第1表から、Li添加が300〜5000ppmの範囲
で磁束密度B8は1.94〜1.95Tと非常に高く、
これにNa或はKを11000pp以下添加すると鉄損
が向上するのが分る。
From Table 1, the magnetic flux density B8 is extremely high at 1.94 to 1.95 T when Li addition is in the range of 300 to 5000 ppm.
It can be seen that when Na or K is added to this in an amount of 11,000 pp or less, the iron loss is improved.

Na或はに11000pp以上では鉄損が悪くなる。If the Na content exceeds 11,000 pp, the iron loss will worsen.

Na或はに11000pp単味の添加では磁束密度も低
く、鉄損も若干力る。
When 11,000 pp of Na or Na is added alone, the magnetic flux density is low and the iron loss is slightly increased.

実施例 4 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に12 g /m”塗布した。
Example 4 An annealing separator having the following composition was applied to the same silicon steel plate as in Example 1 at a rate of 12 g/m''.

この鋼板は250℃で乾燥したのち、1200℃のH2
ガス中で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 250℃ and then heated to 1200℃ H2
Annealing was performed in gas to obtain a grain-oriented silicon steel plate.

実施例 5 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に12 g /m”塗布した。
Example 5 An annealing separator having the following composition was applied to the same silicon steel plate as in Example 1 at a rate of 12 g/m''.

この鋼板は250℃で乾燥したのち、1200℃のH2
ガス中で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 250℃ and then heated to 1200℃ H2
Annealing was performed in gas to obtain a grain-oriented silicon steel sheet.

1700’Cで焼成した非水和酸化マグネシウム実施例
6 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に15 g 7m2塗布した。
Non-hydrated Magnesium Oxide Calcined at 1700'C Example 6 To the same silicon steel plate as in Example 1, 15 g of an annealing separator having the following composition was applied to the steel plate.

この鋼板は2500Cで乾燥したのち、1200℃のH
2ガス中で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 2500C, then heated to 1200C
Annealing was performed in 2 gases to obtain a grain-oriented silicon steel sheet.

1900’Cで焼成した非水和酸化マグネシウム実施例
7 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に13 g /m”塗布した。
Non-hydrated Magnesium Oxide Calcined at 1900'C Example 7 The same silicon steel plate as in Example 1 was coated with an annealing separator having the following composition at 13 g/m''.

この鋼板は2500Cで乾燥後1200℃のH2ガス中
で焼鈍を行い、方向性珪素鋼板とした。
This steel plate was dried at 2500C and then annealed in H2 gas at 1200C to obtain a grain-oriented silicon steel plate.

2100℃で焼成した非水和酸化マグネシウム実施例
8 実施例1と同じ珪素鋼板に下記の組成の焼鈍分離剤を鋼
板に15 g 7m2塗布した。
Examples of non-hydrated magnesium oxide calcined at 2100°C
8 To the same silicon steel plate as in Example 1, 15 g of an annealing separator having the following composition was applied to the steel plate in an amount of 7 m2.

この銅体は250’Cで乾燥したのち、1200℃のH
2ガス中で焼鈍を行い、方向性珪素鋼板とした。
This copper body was dried at 250'C and then heated to 1200'C.
Annealing was performed in 2 gases to obtain a grain-oriented silicon steel sheet.

2100℃で焼成した非水和酸化マグネシウム以上詳細
に説明したように本発明の焼鈍分離剤はこれに台筐れる
Liの作用により珪素鋼板の磁束密度を著しく向上せし
め、Na ’!たはKにより鉄損を減少する。
Non-hydrated magnesium oxide calcined at 2100°C As explained in detail above, the annealing separator of the present invention significantly improves the magnetic flux density of the silicon steel sheet due to the action of Li contained therein, and Na'! or K to reduce iron loss.

また、Bの作用により珪素鋼板の窒素吸収を防止し、こ
れらの効果によって珪素鋼板の磁気特性は著しく改善さ
れる。
Further, the action of B prevents nitrogen absorption in the silicon steel sheet, and these effects significantly improve the magnetic properties of the silicon steel sheet.

さらにまた、Bの添加により2次再結晶に必要な鋼中の
窒素化合物を最適な範囲にコントロールし、磁性の優れ
た方向性珪素鋼板を得ることができる。
Furthermore, by adding B, the nitrogen compounds in the steel necessary for secondary recrystallization can be controlled within an optimal range, and a grain-oriented silicon steel sheet with excellent magnetism can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 非水和酸化マグネシウムにLi化合物300〜50
00ppm (Li換算として)、B化合物300〜5
000pm (B換算として)、更にNa化合物又はに
化合物の少くとも1種をそれぞれ100〜11000p
p (Na或はに換算として)含むことを特徴とするA
ANとMnS を2次再結晶促進成分に用いる一方向
性珪素鋼板珊焼鈍分離剤。
1 Li compound in non-hydrated magnesium oxide 300-50
00ppm (in terms of Li), B compound 300-5
000pm (in terms of B), and at least one Na compound or Ni compound at 100 to 11000p each.
A characterized by containing p (in terms of Na or)
A unidirectional silicon steel plate coral annealing separator that uses AN and MnS as secondary recrystallization promoting components.
JP54070569A 1978-11-28 1979-06-07 Annealing separator for unidirectional silicon steel sheets Expired JPS5843466B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54070569A JPS5843466B2 (en) 1979-06-07 1979-06-07 Annealing separator for unidirectional silicon steel sheets
IT27566/79A IT1127263B (en) 1978-11-28 1979-11-26 SEPARATION SUBSTANCE TO BE USED IN THE ANNEALING PHASE OF ORIENTED GRAINS OF SILICON STEEL
GB7940971A GB2041343B (en) 1978-11-28 1979-11-27 Mg o-basd annealing separator for grain oriented silicon steel strips
US06/098,118 US4287006A (en) 1978-11-28 1979-11-27 Annealing separator for grain oriented silicon steel strips
DE2947945A DE2947945C2 (en) 1978-11-28 1979-11-28 Annealing separator for grain-oriented silicon steel strip
FR7929711A FR2442892B1 (en) 1978-11-28 1979-11-28 ANNEALING SEPARATOR FOR ORIENTED GRAIN SILICON STEEL BLADES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54070569A JPS5843466B2 (en) 1979-06-07 1979-06-07 Annealing separator for unidirectional silicon steel sheets

Publications (2)

Publication Number Publication Date
JPS55164025A JPS55164025A (en) 1980-12-20
JPS5843466B2 true JPS5843466B2 (en) 1983-09-27

Family

ID=13435303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54070569A Expired JPS5843466B2 (en) 1978-11-28 1979-06-07 Annealing separator for unidirectional silicon steel sheets

Country Status (1)

Country Link
JP (1) JPS5843466B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649949B2 (en) * 1988-10-18 1994-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet having punching properties and metallic luster with excellent magnetic properties
JPH0649948B2 (en) * 1988-10-18 1994-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet having metallic luster excellent in punching property
JP4259037B2 (en) * 2002-05-21 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6939766B2 (en) * 2018-12-27 2021-09-22 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheets and manufacturing method of grain-oriented electrical steel sheets
JP6939767B2 (en) * 2018-12-27 2021-09-22 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheets and manufacturing method of grain-oriented electrical steel sheets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697322A (en) * 1970-08-17 1972-10-10 Merck & Co Inc Magnesium oxide coatings
JPS4919981A (en) * 1972-06-15 1974-02-21
JPS5037632A (en) * 1973-06-26 1975-04-08

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697322A (en) * 1970-08-17 1972-10-10 Merck & Co Inc Magnesium oxide coatings
JPS4919981A (en) * 1972-06-15 1974-02-21
JPS5037632A (en) * 1973-06-26 1975-04-08

Also Published As

Publication number Publication date
JPS55164025A (en) 1980-12-20

Similar Documents

Publication Publication Date Title
JP5864587B2 (en) Method for producing directional silicon steel products with high magnetic flux density
KR101149792B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
KR100967049B1 (en) Method for manufacturing a high-silicon steel sheet
EP0957180A2 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPS5843466B2 (en) Annealing separator for unidirectional silicon steel sheets
US4102713A (en) Silicon steel and processing therefore
US4179315A (en) Silicon steel and processing therefore
JP2006503189A (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
KR930011404B1 (en) Process for manufacturing double oriented electrical steel having high magnetic flux density
JP4422385B2 (en) Method for producing grain-oriented electrical steel sheet
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JP4272576B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3993689B2 (en) Strain relief annealing method for laminated core
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH06136446A (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
JPS59205420A (en) Manufacture of unidirectional silicon steel sheet
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
JPH11158555A (en) Production of separation agent for annealing and grain oriented silicon steel sheet
JP3734191B2 (en) Component adjustment method for annealing separator for grain-oriented electrical steel sheet