JPS5843322B2 - Titsukakei Sohaku Makuno Seizouhouhou - Google Patents

Titsukakei Sohaku Makuno Seizouhouhou

Info

Publication number
JPS5843322B2
JPS5843322B2 JP50108245A JP10824575A JPS5843322B2 JP S5843322 B2 JPS5843322 B2 JP S5843322B2 JP 50108245 A JP50108245 A JP 50108245A JP 10824575 A JP10824575 A JP 10824575A JP S5843322 B2 JPS5843322 B2 JP S5843322B2
Authority
JP
Japan
Prior art keywords
silicon nitride
thin film
substrate
plasma
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50108245A
Other languages
Japanese (ja)
Other versions
JPS5232000A (en
Inventor
厚生 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP50108245A priority Critical patent/JPS5843322B2/en
Publication of JPS5232000A publication Critical patent/JPS5232000A/en
Publication of JPS5843322B2 publication Critical patent/JPS5843322B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は窒化珪素薄膜の製造法に関するもので、その目
的はグロー放電のプラズマ領域内における高エネルギー
状態を利用して窒化珪素の数ミクロンあるいはそれ以下
の薄膜を得る方法を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride thin film, and its purpose is to obtain a silicon nitride thin film of several microns or smaller by utilizing the high energy state within the plasma region of glow discharge. We aim to provide the following.

最近、窒化珪素薄膜の研究が盛んに行われ、その薄膜と
しての優秀性が認められて来た。
Recently, research on silicon nitride thin films has been actively conducted, and their superiority as thin films has been recognized.

従来よ0半導体東積判路、薄膜集積回路の拡散マスクや
表面保護膜として酸化珪素の薄膜が利用されているが欠
点が多く、この酸化珪素に代るものとして窒化珪素がき
わめて有望であることが学術的な段階でみとめられつつ
ある。
Conventionally, silicon oxide thin films have been used as diffusion masks and surface protection films for thin film integrated circuits, but they have many drawbacks, and silicon nitride is extremely promising as a replacement for silicon oxide. is beginning to be recognized at the academic level.

この窒化珪素は誘電体として高温まで安定であり、空気
中での酸化に対しても抵抗が強く、耐電圧も高く、また
ホウ素やリンに対しても良い拡散マスクとして使用でき
ることなどが判明して来た。
It has been found that silicon nitride is stable as a dielectric up to high temperatures, has strong resistance to oxidation in the air, has a high withstand voltage, and can also be used as a good diffusion mask for boron and phosphorous. It's here.

従来、この窒fヒ珪素の薄膜を得る方法としてはシラン
とアンモニアを気相成長させる方法があり、これは10
00℃近い高温を必要とし、また生成した膜に未分解の
アンモニアが内蔵される危険があり、そのアンモニアの
アルカリ性のために好ましくなかった。
Conventionally, a method for obtaining a thin film of nitride and arsenic has been to grow silane and ammonia in a vapor phase.
This method requires a high temperature close to 00° C., and there is a risk that undecomposed ammonia may be contained in the formed film, which is not preferable due to the alkalinity of the ammonia.

なお、またこの方法において使用するシランは非常に高
価であり、工業的には全く不適当なものであった。
Furthermore, the silane used in this method is very expensive and is completely unsuitable for industrial use.

その他スパッタリングによる方法として窒素プラズマを
作り、窒素イオンを珪素のターゲットに当て珪素を打ち
出し、飛び出した珪素が対向する下地まで飛ぶ間に、活
性な窒素と反応させる方法が発表されているが、反応時
間が長いことなど工業化されるまでには多くの問題点を
もっている。
Another method using sputtering has been announced, in which nitrogen plasma is created, nitrogen ions are applied to a silicon target, and silicon is ejected, and the ejected silicon reacts with active nitrogen while flying to the opposing substrate, but the reaction time is There are many problems before it can be industrialized, such as the long period of time required.

本発明者は以上の点に留意して種々研究を重ねた結果、
比較的低温でしかもかなりの短時間で、比較的大きな膜
厚の薄膜が得られ、かつ従来法に比して非常に安価で、
コンデンサー絶縁層などの絶縁膜としても利用できる窒
化珪素薄膜の製造方法を発明したのである。
The inventor has conducted various studies keeping in mind the above points, and as a result,
A thin film with a relatively large thickness can be obtained at a relatively low temperature and in a fairly short time, and it is very inexpensive compared to conventional methods.
He invented a method for manufacturing silicon nitride thin films that can also be used as insulating films such as capacitor insulating layers.

すなわち、グロー放電によりアルキルシランと窒素を原
料とし、該グロー放電のプラズマ領域内に電気的に浮遊
した状態で配設された基板上に、該原料を直接的に反応
生長させることを特徴とする窒化珪素薄膜の製造方法を
発明するに至ったのである。
That is, it is characterized in that alkylsilane and nitrogen are used as raw materials by glow discharge, and the raw materials are directly reacted and grown on a substrate placed in an electrically floating state within the plasma region of the glow discharge. This led to the invention of a method for manufacturing silicon nitride thin films.

本発明におけるグロー放電について簡単に説明すると、
いわゆる有極放電によるグロー放電であって、図に示さ
れた様な装置を利用して気密容器1内を約10Torr
の真空状態にした後、原料気体を原料吸入口4より吸入
し、約0.1〜3Torrの圧力に調節しつつ両電極2
に300〜1000ボルトの電圧で高周波電流を印加す
ると電気放電が両電極間に発生する。
To briefly explain the glow discharge in the present invention,
This is a so-called polarized glow discharge, and the inside of the airtight container 1 is heated to about 10 Torr using a device like the one shown in the figure.
After creating a vacuum state of
When a high frequency current with a voltage of 300 to 1000 volts is applied to the electrodes, an electric discharge occurs between the two electrodes.

この放電が定常持続状態に達した状態をグロー放電とい
うのである。
The state in which this discharge reaches a steady state of continuation is called glow discharge.

このグーロー放電において図の8の部分は通称陽光性と
呼ばれる発光領域で、ここはプラズマ状態となっている
In this Gouraud discharge, the part 8 in the figure is a light emitting region commonly called solar light, which is in a plasma state.

本発明はこのプラズマ状態が巨視的には低エネルギーで
あるが微視的には非常に高いエネルギー状態であり、通
常、不活性な気体の1つとして知られている窒素をも活
性化しアルキルシランと反応して窒化珪素を生成するこ
とを見い出し、これを利用したのである。
In the present invention, this plasma state is macroscopically low energy but microscopically very high energy state, and it activates nitrogen, which is normally known as an inert gas, to produce alkylsilane. They discovered that silicon nitride can be produced by reacting with silicon nitride, and this was utilized.

本発明を図に従って詳細に説明すると、気密容器1内で
あってプラズマ状態となり得る部分8に窒化珪素の薄膜
を付着させるべき基板7を図の様に電気的に浮遊した状
態で並べておき、ついで真空ポンプ6にて容器1内の空
気を抜き約1O−5Torrの真空度とする。
The present invention will be explained in detail with reference to the drawings. The substrates 7 on which the silicon nitride thin film is to be attached are arranged in an electrically floating state as shown in the drawings in a portion 8 in the airtight container 1 that can become a plasma state. The air inside the container 1 is removed using a vacuum pump 6 to create a vacuum of about 1 O-5 Torr.

そして原料吸入口4よりアルキルシランと窒素とを容器
1内に吸入し、圧力を0.1〜3Torrに調節する。
Then, alkylsilane and nitrogen are sucked into the container 1 through the raw material suction port 4, and the pressure is adjusted to 0.1 to 3 Torr.

ついで容器内の両端部にある電極2間に300〜100
0ボルトの高周波電流を印加するとやがてグロー放電状
態となる。
Next, apply 300 to 100
When a high frequency current of 0 volts is applied, a glow discharge state occurs.

容器1内を200〜400℃の温度に調節してプラズマ
内の電子エネルギーを1〜10eVにする。
The temperature inside the container 1 is adjusted to 200 to 400°C, and the electron energy in the plasma is set to 1 to 10 eV.

原料ガスは活性化して浮遊基板に沈着しそこで珪素と窒
素は反応して、基板表面に生成し薄膜として付着するの
である。
The raw material gas is activated and deposited on the floating substrate, where silicon and nitrogen react, forming a thin film on the substrate surface.

反応時間とともに窒化珪素薄膜は生長し適当な厚さく通
常数ミクロン以下)の薄膜が得られたとき電源3を切り
反応を停止し、窒化珪素薄膜加工された基板を取り出す
のである。
The silicon nitride thin film grows with the reaction time, and when a thin film of a suitable thickness (usually several microns or less) is obtained, the power supply 3 is turned off to stop the reaction, and the substrate processed with the silicon nitride thin film is taken out.

なお本発明における高周渡貢流は1〜100Kサイクル
/秒の周波数を有する交流である。
Note that the high frequency tributary current in the present invention is an alternating current having a frequency of 1 to 100 K cycles/sec.

本発明における原料の1つであるアルキルシランとはテ
トラメチルシラン、テトラエチルシラン、テトラプロピ
ルシラン、ジメチルジエチルシラン、モノメチルトリエ
チルシラン、など同一または異なったアルキル基が珪素
原子に合計4個結合したものをいう。
Alkylsilane, which is one of the raw materials in the present invention, refers to compounds in which a total of four of the same or different alkyl groups are bonded to a silicon atom, such as tetramethylsilane, tetraethylsilane, tetrapropylsilane, dimethyldiethylsilane, and monomethyltriethylsilane. say.

なおこのアルキール基の炭素数については特に限定する
必要はないが少くなくとも該アルキルシランが0.1〜
3Torrの圧力の下で400℃以下でガス化するもの
でなければならないO 本発明においてプラズマを横取しているアルキルシラン
イオン、窒素イオン、あるいはそれらの中性ガスがいか
なる機構で化学反応を起こし窒化採索の薄膜が生成する
かについては明確ではないが、プラズマ内に浸された浮
遊基板面はプラズマから発する数eV〜10数eVのエ
ネルギーをもった紫外線もしくは軟X線の定常的な照射
を受けているので基板上の原料ガス分子は容易に活性化
し、その活性化エネルギーはこの反応の進行に充分寄与
する状態まで励起され得るものと想定される。
The number of carbon atoms in this alkyl group does not need to be particularly limited, but at least the number of carbon atoms in the alkyl group is 0.1 to 0.
It must be able to gasify at 400°C or less under a pressure of 3 Torr. In the present invention, the alkylsilane ions, nitrogen ions, or their neutral gases occupying the plasma may cause a chemical reaction by any mechanism. Although it is not clear whether a thin film of nitriding is generated, the surface of the floating substrate immersed in the plasma is constantly irradiated with ultraviolet rays or soft X-rays with an energy of several eV to several tens of eV emitted from the plasma. It is assumed that the source gas molecules on the substrate are easily activated because of the reaction, and that the activation energy can be excited to a state that sufficiently contributes to the progress of this reaction.

なお、浮遊基板7に原料ガス分子が沈着する機構につい
てはいわゆるプラズマのイオンシース現象に起因するも
のである。
The mechanism by which source gas molecules are deposited on the floating substrate 7 is due to the so-called plasma ion sheath phenomenon.

すなわち、プラズマ内では電子の温度がイオンの温度よ
り2〜3桁高いため電子の飛ぶ速度は大きくしたがって
浮遊基板はその衝突で負に帯電しプラズマより負電位に
なる。
That is, in plasma, the temperature of electrons is two to three orders of magnitude higher than the temperature of ions, so the speed of electron flight is high, and the floating substrate is negatively charged by the collision and has a more negative potential than the plasma.

すると基板の近傍はイオンで包囲されることになる。The vicinity of the substrate will then be surrounded by ions.

これらの包囲イオンが基板表面に達し電子と結合して沈
着するのである。
These surrounding ions reach the substrate surface, combine with electrons, and are deposited.

以上の様にして本発明は300℃前後の比較的低温でし
かもかなり短時間で窒化珪素の数ミクロンあるいはそれ
以下の薄膜を基板上にきわめて均一に形成させることが
できるものである。
As described above, the present invention allows a thin film of several microns or less of silicon nitride to be formed extremely uniformly on a substrate at a relatively low temperature of around 300° C. and in a fairly short time.

この様にして得られた窒化珪素薄膜は非常にバランスの
とれた絶縁膜として利用できるものである。
The silicon nitride thin film thus obtained can be used as an extremely well-balanced insulating film.

例えば、二酸化珪素や一酸化珪素、五酸化タンタル(T
a20.)、などを利用した薄膜に比べて本発明の方法
により製造した窒化珪素薄膜はその絶縁耐圧はきわめて
高く、誘電損失(Tanδ)は115〜1/10と非常
に小さく、また誘電率は約10であり、二酸化珪素が2
〜3、五酸化タンタルが約8であるのに比べて、高いも
のである。
For example, silicon dioxide, silicon monoxide, tantalum pentoxide (T
a20. ), etc., the silicon nitride thin film produced by the method of the present invention has an extremely high dielectric strength voltage, a very small dielectric loss (Tan δ) of 115 to 1/10, and a dielectric constant of about 10 , and silicon dioxide is 2
~3, which is high compared to about 8 for tantalum pentoxide.

この様に本発明の方法により製造された窒化珪素薄膜は
絶縁膜として重要な物性、つまり絶縁耐圧の高いこと、
誘電損失の小さいこと、誘電率の高いこと、という三つ
の物性においてきわめて調和の取れた性質を示し、コン
デンサー絶縁層などとして非常に適した材料である。
As described above, the silicon nitride thin film produced by the method of the present invention has important physical properties as an insulating film, that is, high dielectric strength voltage,
It exhibits extremely well-balanced physical properties of low dielectric loss and high dielectric constant, making it an extremely suitable material for capacitor insulating layers.

しかも本発明方法では従来法に比べてきわめて安価であ
り、また窒素ガスは中性であり膜力に含有されても膜の
寿命には無関係であり、したがって耐久性においても非
常にすぐれているものである。
Furthermore, the method of the present invention is much cheaper than the conventional method, and since nitrogen gas is neutral, even if it is included in the membrane strength, it has no bearing on the life of the membrane, so it is extremely durable. It is.

実施例 456の容量を有する図の様なグロー放電装置内に窒化
珪素の薄膜を形成させるための基板を電魚釣に浮遊せし
め、真空ポンプにて該容器1内を−5 10Torrの真空にした。
A substrate for forming a silicon nitride thin film was suspended in a glow discharge device as shown in the figure having the capacity of Example 456, and the inside of the container 1 was evacuated to -5 to 10 Torr using a vacuum pump. .

ついでテトラメチルシラン0.15Torr及び窒素1
.0Torrの分圧を有する混合ガスを該容器1内に吸
入し、全圧を1.15Torrの圧力に調節した。
Then 0.15 Torr of tetramethylsilane and 1 Torr of nitrogen
.. A gas mixture with a partial pressure of 0 Torr was drawn into the vessel 1 and the total pressure was adjusted to a pressure of 1.15 Torr.

この原料ガス吸入後ただちにグロー放電を発生させた。Immediately after inhaling this raw material gas, glow discharge was generated.

その条件は周波数5にサイクル7秒の高周波電流で放電
電玉は600Vであり、プラズマ領域内の断面における
放電電流量は1.5 mA /−とした。
The conditions were a high frequency current with a frequency of 5 and a cycle of 7 seconds, a discharge voltage of 600 V, and a discharge current amount of 1.5 mA/- in a cross section within the plasma region.

また反応温度は基板温度300°Cに調節した。Further, the reaction temperature was adjusted to the substrate temperature of 300°C.

この様にして1時間反応生長させた結果、基板上に1.
2ミクロンの窒化珪素薄膜が形成されていた。
As a result of reaction growth for 1 hour in this manner, 1.
A 2 micron silicon nitride thin film was formed.

この薄膜の赤外吸収スペクトルを測定した結果波長12
.1ミクロンのところに最大吸収があり、これが窒化珪
素より、なる薄膜であることを確認検出した。
As a result of measuring the infrared absorption spectrum of this thin film, the wavelength was 12.
.. The maximum absorption was found at 1 micron, confirming that this was a thin film made of silicon nitride.

得られた薄膜の誘電率は約10、誘電正接はQ、000
1、絶縁耐圧は5 X 1015V 7cmであり、絶
縁膜としてきわめてすぐれた物性を有するものであった
The dielectric constant of the obtained thin film was approximately 10, and the dielectric loss tangent was Q, 000.
1. The dielectric strength was 5 x 1015V 7cm, and it had extremely excellent physical properties as an insulating film.

次に本発明によって得られる窒化珪素薄膜の膜厚を測定
した結果を示す。
Next, the results of measuring the thickness of the silicon nitride thin film obtained by the present invention will be shown.

第2図は反応装置内の基板の配列図1と、各基板の厚さ
測定位置図i[を示したものである。
FIG. 2 shows the arrangement diagram 1 of the substrates in the reaction apparatus and the thickness measurement position diagram i[ of each substrate.

つまり、基板数は1〜6の6枚で各基板の1〜9の9箇
所の膜厚を測定したのである。
In other words, the number of substrates was 6, numbered 1 to 6, and the film thickness was measured at 9 locations numbered 1 to 9 on each substrate.

なお、この時の反応条件は下記の通りである。The reaction conditions at this time are as follows.

テトラメチルシラン分圧・・・0.15To rr
分圧比〉 窒素分圧 ・・・1.0OTorrO・1
5反反応度・・・300’0゜ 電流密度・・−1,5m A /cv¥、 5 K C
時 間・・・60分 この結果、基板6枚の平均膜厚は1.199μで標準偏
差・・・0.0556、標準偏差%・・・4.64%と
なり膜厚が非常に均一であることが認められた。
Tetramethylsilane partial pressure...0.15Torr
Partial pressure ratio> Nitrogen partial pressure...1.0OTorrO・1
5 Reaction rate...300'0°Current density...-1.5m A/cv¥, 5 K C
Time: 60 minutes As a result, the average film thickness of the six substrates was 1.199 μ, standard deviation: 0.0556, standard deviation %: 4.64%, and the film thickness was very uniform. This was recognized.

さらに膜厚と電気特性の関係を第3図で、原料組成と電
気特性の関係を第4図でそれぞれ示す。
Further, FIG. 3 shows the relationship between film thickness and electrical properties, and FIG. 4 shows the relationship between raw material composition and electrical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための一例の略図である。 1は気密容器、2は電極、3は高周波電源、4は原料吸
入口、5は排気用出口、6は真空ポンプ。 7は電気的浮遊基板、8はプラズマ領域を示している。 第2図は膜厚測定用実験における反応装置内の基板配列
図1と、各基板の厚さ測定位置図11を示したものであ
る。 第3図は本発明によって得られた窒化珪素膜における膜
厚と電気特性との関係をグラフで示したものである。 第4図は本発明における原料組成と窒化珪素膜の電気特
性との関係をグラフで示したものである。
FIG. 1 is a schematic diagram of one example for implementing the invention. 1 is an airtight container, 2 is an electrode, 3 is a high frequency power source, 4 is a raw material inlet, 5 is an exhaust outlet, and 6 is a vacuum pump. 7 indicates an electrically floating substrate, and 8 indicates a plasma region. FIG. 2 shows a substrate arrangement diagram 1 in the reaction apparatus in a film thickness measurement experiment and a thickness measurement position diagram 11 of each substrate. FIG. 3 is a graph showing the relationship between the film thickness and electrical characteristics of the silicon nitride film obtained by the present invention. FIG. 4 is a graph showing the relationship between the raw material composition and the electrical characteristics of a silicon nitride film in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 グロー放電により、アルキルシランと窒素を原料と
し、該グロー放電のプラズマ領域内に電気的に浮遊した
状態で配設された基板上に、該原料を直接的に反応生長
させることを特徴とする窒化珪素薄膜の製造方法。
1. Using alkylsilane and nitrogen as raw materials by glow discharge, the raw materials are directly reacted and grown on a substrate placed in an electrically suspended state within the plasma region of the glow discharge. Method for manufacturing silicon nitride thin film.
JP50108245A 1975-09-06 1975-09-06 Titsukakei Sohaku Makuno Seizouhouhou Expired JPS5843322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50108245A JPS5843322B2 (en) 1975-09-06 1975-09-06 Titsukakei Sohaku Makuno Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50108245A JPS5843322B2 (en) 1975-09-06 1975-09-06 Titsukakei Sohaku Makuno Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS5232000A JPS5232000A (en) 1977-03-10
JPS5843322B2 true JPS5843322B2 (en) 1983-09-26

Family

ID=14479751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50108245A Expired JPS5843322B2 (en) 1975-09-06 1975-09-06 Titsukakei Sohaku Makuno Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5843322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736147Y2 (en) * 1977-03-18 1982-08-10
JP6318433B2 (en) * 2013-11-28 2018-05-09 大陽日酸株式会社 Silicon nitride film forming method and silicon nitride film

Also Published As

Publication number Publication date
JPS5232000A (en) 1977-03-10

Similar Documents

Publication Publication Date Title
US4250428A (en) Bonded cathode and electrode structure with layered insulation, and method of manufacture
JP3411559B2 (en) Pyrolytic chemical vapor deposition of silicone films.
US4181751A (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
JPS582022A (en) Thin film formation
JP2016014128A (en) Secondary battery and structure used for the same
WO2014174133A1 (en) Method for the controlled production of graphene under very low pressure and device for carrying out said method
JPS5843322B2 (en) Titsukakei Sohaku Makuno Seizouhouhou
JPH0131453B2 (en)
US3239368A (en) Method of preparing thin films on substrates by an electrical discharge
TW594853B (en) The manufacturing method of diamond film and diamond film
CN112017945B (en) Method for preparing lead selenide film by microwave plasma chemical vapor deposition method
JPS587058B2 (en) Sankakei Sohakumakuno Seizouhouhou
JPH0436456B2 (en)
JPH07507147A (en) Method for forming lacquer films sensitive to UV and/or electron beam radiation
JPS5824371B2 (en) Method for manufacturing silicon carbide thin film
JP3926690B2 (en) Gas cluster ion assisted oxide thin film formation method
JP4359674B2 (en) High-speed film formation method of photocatalytic titanium oxide film
JPH079059B2 (en) Method for producing carbon thin film
RU1836487C (en) Method of metal hydride film applying in vacuum, application of metal hydride film, produced by the method of item 1, and application of substratum with metal hydride film, produced by the method of item 1
JPH08337435A (en) Production of quartz glass film
JP3170814B2 (en) Method for producing plasma polymerized film and plasma polymerization apparatus
JPS58141380A (en) Production of thin film element
JPH01152733A (en) Manufacture of semiconductor device
JPH0420982B2 (en)
JPH0424431B2 (en)