JPS58141380A - Production of thin film element - Google Patents

Production of thin film element

Info

Publication number
JPS58141380A
JPS58141380A JP57023832A JP2383282A JPS58141380A JP S58141380 A JPS58141380 A JP S58141380A JP 57023832 A JP57023832 A JP 57023832A JP 2383282 A JP2383282 A JP 2383282A JP S58141380 A JPS58141380 A JP S58141380A
Authority
JP
Japan
Prior art keywords
substrate
thin film
light
glow
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57023832A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57023832A priority Critical patent/JPS58141380A/en
Publication of JPS58141380A publication Critical patent/JPS58141380A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation

Abstract

PURPOSE:To improve the weather resistance of a thin film formed on a flexible substrate and to stabilize the characteristics thereof, by treating the surface of the thin film vapor deposited on said substrate under an oxidative discharge atmosphere, then irradiating condensed light thereto. CONSTITUTION:A flexible substrate 1 is introduced from a let-off shaft 4 into the vapor deposition chamber 7 of a vacuum vessel 6 by means of a roll 2, and an evaporating source 11 is bombarded and heated by the accelerated electrons radiating from an electron beam generating source 12, whereby a thin film is vapor deposited on the substrate 1. Electric power is supplied from an electric power source 16 to a glow discharge electrode 15, whereby a glow treatment is applied on the substrate. The substrate 1 is further introduced through a differential pressure holding chamber 9 into an optical treatment chamber 10 by means of a roll 3. Here, the light of a light source 18 such as a halogen lamp is condensed onto the vapor deposited layer on the substrate 1 by a reflecting and condensing mirror 19, whereby an optical treatment is applied thereon. Thus, the surface defects, internal defects and surface contamination remaining in the stage of forming the thin film are removed.

Description

【発明の詳細な説明】 本発明は、高分子成形物、ステンレスの薄板等の可撓性
基板上の一方の面に、半導体、磁性体等の′薄膜を形成
して成る薄膜機能素子の製造に利用され、薄膜形成時に
残る表面欠陥や内部欠陥2表面汚染を除去し、耐候性の
改良と特性の安定化を図る製造方法の提供を目的として
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of a thin film functional element by forming a thin film of semiconductor, magnetic material, etc. on one side of a flexible substrate such as a polymer molded product or a thin stainless steel plate. The purpose of the present invention is to provide a manufacturing method that is used to improve weather resistance and stabilize properties by removing surface defects and internal defects 2 surface contamination that remain during thin film formation.

最近開発が進み、一部実用に供されている 蒸着テープ
や、アモルファスシリコン太陽電池等は耐候性と特性の
縫時変化が問題とされている0特に短波長記録に利用さ
れるビデオ用の蒸着テープの場合は、太陽電池に比べて
、表面に保護層を設けることに対して、スペース損失の
面から、厚さに制限が加わ9、その値は高々200Aと
極めて薄く、従来公知の薄膜形成手段で、保護能力を充
分有する膜を得ることは困難な厚みである。
Vapor-deposited tapes and amorphous silicon solar cells, which have recently been developed and are now in practical use, have problems with weather resistance and changes in characteristics over time.Especially vapor-deposited tapes used for videos used for short wavelength recording. In the case of tape, compared to solar cells, the thickness is limited due to space loss when providing a protective layer on the surface9, and the thickness is extremely thin, at most 200A, and conventional thin film formation is not possible. The thickness is such that it is difficult to obtain a film with sufficient protective ability by other means.

特に高分子材料が基板に用いられている場合、製膜時に
温度をあけることで、緻密な酸化膜が得られることがわ
かっていても実施に移せないからである。
This is because even if it is known that a dense oxide film can be obtained by increasing the temperature during film formation, especially when a polymeric material is used for the substrate, this cannot be put into practice.

従って、磁性層そのものの耐候性、安定性をあげる工夫
がどうしても必要になってくる。
Therefore, it becomes necessary to find ways to improve the weather resistance and stability of the magnetic layer itself.

そのひとつの方法として、結晶粒の表面をその材料の酸
化膜で被覆する部分酸化を、蒸着時に、酸素導入を工夫
することで達成することが考えられるO この方法は、当を得た解決策に思えるが、工業規模で磁
気テープを製造するのに、利用される蒸着速度は、20
00 A /see  と、極めて早く、実験室で研究
に用いられる場合の1oo〜1ooO倍にもなる。
One possible method is to achieve partial oxidation, in which the surface of crystal grains is coated with an oxide film of the material, by devising the introduction of oxygen during vapor deposition.This method is a reasonable solution. However, the deposition rate used to produce magnetic tape on an industrial scale is 20
00 A/see, which is extremely fast and is 10 to 100 times faster than when used for research in a laboratory.

従って、酸素の導入を工夫しても、結晶粒子の表面に形
成される酸化膜は、不完全であシ、保護能力を十分持ち
合わせていない。
Therefore, even if the introduction of oxygen is devised, the oxide film formed on the surface of the crystal grains is incomplete and does not have sufficient protective ability.

太陽電池に於ても、ダングリングボンドを減らすために
、H2,02等のガスが、蒸着、スパッタリング、グロ
ー放電蒸着、グロー放電重合時に利用されるが、表面だ
けでなく、内部にも欠陥が残シ、リーク電流が多くなり
、低い起電力しか得られないことが起る。
In solar cells, gases such as H2,02 are used during evaporation, sputtering, glow discharge deposition, and glow discharge polymerization to reduce dangling bonds, but this can cause defects not only on the surface but also inside. However, the leakage current increases and only a low electromotive force can be obtained.

これらに対してとられていた方法は、エージングと呼ば
れる手段である。
The method used to deal with these problems is a method called aging.

これは、温湿度を制御した環境に、ある時間保持するこ
とで行われるが、この手段の加速性を高める場合にも、
高分子が基板として使われていることから温度の上限は
高々50°〜60°Cと低い。
This is done by keeping it in an environment with controlled temperature and humidity for a certain period of time, but when increasing the acceleration of this method,
Since a polymer is used as the substrate, the upper temperature limit is as low as 50° to 60°C.

従って時間を長くとることでエージング効果を期待する
わけであるが、時間を長くするだけでは動かない欠陥は
残り、十分な″1保護層とすることは出来ないし、内部
の安定化も不満足なものとならざるを得なかった。
Therefore, by taking a longer time, we expect an aging effect, but even if we just lengthen the time, defects that do not move will remain, and it will not be possible to provide a sufficient "1" protective layer, and the internal stability will also be unsatisfactory. I had no choice but to do so.

本発明はかかる点に鑑みなされたもので、蒸着(スパッ
タリング、イオンブレーティング、プラズマ、CvD等
も含む概念)工程に引き続いて、酸化性のグロー放電雰
囲気に蒸着層の表面をさらした後、減圧下で蒸着層に光
を吸収させ、基板の裏面からの熱伝達を良好に保ち極力
高温状態を蒸着層に経験させる工程を組み合わせること
で、保護層の不完全性を消去するものである。以下に図
面を用い本発明の説明を行う。
The present invention has been made in view of this point, and following the vapor deposition process (a concept that also includes sputtering, ion blating, plasma, CvD, etc.), the surface of the vapor deposited layer is exposed to an oxidizing glow discharge atmosphere, and then the pressure is reduced. This method eliminates imperfections in the protective layer by allowing the vapor deposited layer underneath to absorb light, maintaining good heat transfer from the back side of the substrate, and causing the vapor deposited layer to experience as high a temperature as possible. The present invention will be explained below using the drawings.

図は、本発明を実施するだめの装置の一例を示す。The figure shows an example of a device for carrying out the invention.

図に示すように、高分子基板等の可撓性基板1は温度制
御されたロー22の周側面に沿って移動し、さらに、温
度制御された別のローラ3に沿って移動し、送り出し軸
4より巻取り軸6に移る。
As shown in the figure, a flexible substrate 1 such as a polymer substrate moves along the circumferential side of a temperature-controlled row 22, and further moves along another temperature-controlled roller 3, and moves along the feeding axis. 4 to the winding shaft 6.

真空槽6は、蒸着室7、グロー処理室8、差圧保持室9
、光処理室10とに分けられている。この区分けは勿論
、絶対的なものではなく、適宜工夫できる。
The vacuum chamber 6 includes a vapor deposition chamber 7, a glow processing chamber 8, and a differential pressure holding chamber 9.
, and a light processing chamber 10. Of course, this division is not absolute and can be devised as appropriate.

先ず蒸着は、磁気テープであれば、蒸発源11を電子ビ
ーム発生源12よシ放射される加速電子により衝撃加熱
して得た蒸気を、例えば酸素分圧3 X 10”’l’
□rr中で、マスク13により入射角を制限して基板に
差し向けることで行われる。
First, in the case of a magnetic tape, vapor deposition is performed by impact-heating the evaporation source 11 by accelerated electrons emitted from the electron beam generation source 12, and then applying vapor to an oxygen partial pressure of 3 x 10''l', for example.
In □rr, the incident angle is limited by a mask 13 and the beam is directed toward the substrate.

酸素分圧の保持は磁気特性の制御のためにも重要である
が、図では、蒸着後にグロー処理を行う場合の圧力が蒸
着時より高いことから、グロー処理室8へ、外部よりニ
ードル弁14を調節して、ガスG−1(この場合酸素)
を導入し、グロー室8より、蒸着室7へ差圧分のガス流
入に頼るようにしである。
Maintaining the oxygen partial pressure is also important for controlling magnetic properties, but in the figure, since the pressure when performing glow processing after vapor deposition is higher than during vapor deposition, the needle valve 14 is inserted into the glow processing chamber 8 from the outside. by adjusting the gas G-1 (oxygen in this case)
is introduced, and relies on gas flowing from the glow chamber 8 into the vapor deposition chamber 7 by a pressure difference.

導ガスがグロー処理と、蒸着に異なる場合は勿論、前記
の調整では不十分な場合は個別にガス導入しなければな
らないのは勿論であつ七、本発明の制約事項ではない。
Of course, if the guiding gases are different for glow treatment and vapor deposition, and if the above adjustment is insufficient, then it is of course necessary to introduce gases separately, and this is not a limitation of the present invention.

グロー処理は、グロー放電電極16を、回転ローラ2に
近接して配し、電源16よシ交流、直流。
In the glow treatment, a glow discharge electrode 16 is placed close to the rotating roller 2, and a power source 16 is used to supply alternating current or direct current.

高周波等から選択した電力を供給するよう構成する。It is configured to supply power selected from high-frequency waves or the like.

グロー放電電極は、互いに絶縁された幅方向に伸びた棒
状電極を複数個配列するか、他の形状にするかも、適宜
工夫すれば良い。
The glow discharge electrode may be formed by arranging a plurality of bar-shaped electrodes extending in the width direction and insulated from each other, or may be formed into another shape as appropriate.

グロー処理された基板はミ差圧保持室9を通過し、光処
理室1oへ導かれる。
The glow-treated substrate passes through the differential pressure holding chamber 9 and is led to the optical processing chamber 1o.

光処理は温度制御された、回転ローラ3の周側面に沿っ
た高分子基板上の蒸着層に集光された光でなされる。
The light treatment is performed using temperature-controlled light that is focused on the vapor deposited layer on the polymer substrate along the circumferential side of the rotating roller 3.

この光は、ハロ°ゲンランプ等の光源1Bを、楕円状の
反射鏡の焦点近くに配設することで得られる。図では単
一光源を示したがこれにこだわらないのは勿論である。
This light is obtained by disposing a light source 1B such as a halogen lamp near the focal point of the elliptical reflecting mirror. Although a single light source is shown in the figure, it is of course not limited to this.

但し、光源は幅方向に棒状のものが好ましい。However, the light source is preferably rod-shaped in the width direction.

ここで重要なのは、基板は耐熱性を有しないので、短時
間に蒸着層にのみエネルギー°を投入して、高温状態を
経験させることで、これにより、基板が損傷を受けない
ようにするには、処理室の圧力が数Torr以下になっ
た場合は、回転ローラと、基板の熱の伝達が、お互いの
接触部分にたよることになり、回転ローラの周側面に垂
直に押しつける力を安定にかつ大きくすることが必要と
なる。
The important point here is that the substrate does not have heat resistance, so it is important to inject energy only into the deposited layer for a short period of time to make it experience a high temperature state, so that the substrate is not damaged. If the pressure in the processing chamber is below several Torr, the heat transfer between the rotating roller and the substrate will depend on the contact area between them, which will stabilize the force perpendicular to the circumferential surface of the rotating roller. And it is necessary to make it larger.

これは、例えば蒸発源の加熱に25 KeV以上の高電
圧の電子ビームを用いて、基板内に反射電子を注入する
か、積極的に別に電子注入を行うことで満たせる。
This can be achieved, for example, by using a high-voltage electron beam of 25 KeV or more to heat the evaporation source and injecting reflected electrons into the substrate, or by actively injecting electrons separately.

しかしこの方法によった場合には、基板裏面をグロー放
電処理して、帯電を中和させる必要が生じる。
However, when this method is used, it is necessary to perform glow discharge treatment on the back surface of the substrate to neutralize the charge.

20はそのための放電電極を模式的に示したもので21
はその電源である。
20 schematically shows a discharge electrode for this purpose, and 21
is its power source.

上記グロー放電処理と光処理の圧力が同時に調整できな
い時はニード1し弁22の調節によりガスQ−2を導入
するだけでなく、別に空間を設は排気することがグロー
処理に必要となるが、ここでは略した。23,24,2
5.26はそれぞれ真空排気系であり、必要な真空度に
応じて、既存のポンプよシ選択すればよい。かくへき2
7,28.29もそれぞれの空間の必要な真空度により
、ポンプとのかねあいで設計し、配設される。
If the pressures for the glow discharge treatment and light treatment cannot be adjusted at the same time, it is necessary not only to introduce gas Q-2 by adjusting the valve 22 to the needle 1, but also to create a separate space for exhaust. , omitted here. 23, 24, 2
5 and 26 are vacuum evacuation systems, which can be selected from existing pumps depending on the required degree of vacuum. Hidden 2
7, 28, and 29 are also designed and arranged in consideration of the pump, depending on the degree of vacuum required in each space.

30はフリーローラで、エキスパンダローラ、ニップロ
ーラ等は略しである。31は絶縁導入端子である。
30 is a free roller, and expander rollers, nip rollers, etc. are omitted. 31 is an insulation introduction terminal.

次に具体的に本発明の詳細な説明する。Next, the present invention will be specifically explained in detail.

ここで本発明の実施例における実験条件を列記する。Here, experimental conditions in Examples of the present invention are listed.

回転ローラ(蒸着、グロー酸化処理用):直径1?FL
、温度20°C 回転ローラ(光処理用) :直径30口、温度20″C 基&:ホリエチレンテレ7タレートフィルム(厚さ9.
5μm) 蒸着条件 基板巻取シ速度: 30 m/min 裏面グo−:330V  0.4A 蒸着層の処理条件は下の表に示す。
Rotating roller (for vapor deposition and glow oxidation treatment): diameter 1? FL
, Temperature: 20°C Rotating roller (for light processing): Diameter: 30 mm, Temperature: 20"C Base &: Polyethylene Tele 7 Talate Film (Thickness: 9mm)
5 μm) Vapor deposition conditions Substrate winding speed: 30 m/min Back surface resistance: 330 V 0.4 A The processing conditions for the vapor deposited layer are shown in the table below.

(以  下    余  白) 9ページ なおグロー処理、光処理を上表の1−Aと同一条件とし
蒸着材料をCo 80%Ni2O%、C075%Ni2
5%に変えて実施した試料をそれぞれ2−A。
(Blank below) Page 9 The glow treatment and light treatment were performed under the same conditions as 1-A in the table above, and the vapor deposition materials were Co80%Ni2O%, C075%Ni2
2-A is a sample obtained by changing the concentration to 5%.

2−Bとし未処理を2−Cとした。The sample was designated as 2-B, and the untreated product was designated as 2-C.

以上の条件によりそれぞれ作成した各試料を、6o″C
95% RHO環境下に、4週間、12週間1oベー・
ジ 放置した時の、振動試料磁束計により測定した総磁束量
を初期値と比較し、増減を求めた。
Each sample prepared under the above conditions was heated at 6o''C.
95% RHO environment for 4 weeks, 1oba for 12 weeks
The total amount of magnetic flux measured by a vibrating sample magnetometer when the sample was left standing was compared with the initial value to determine the increase or decrease.

また同時に、ポリアミドフィルム(厚さ8μm)上にA
r 9 X 1O−3Torr、IE(23X 10 
 Torr  の放電ガス雰囲気中で13.56 MH
z  の高周波スパッタリング法により厚さ0.6μm
のアモルファスシリコン膜奢形成し、そ6電気伝導度の
変化も調べた。シリコン膜を形成した試料のfは3−A
At the same time, A
r 9 X 1O-3Torr, IE (23X 10
13.56 MH in a discharge gas atmosphere of Torr
Thickness: 0.6μm by high frequency sputtering method
An amorphous silicon film was formed, and changes in electrical conductivity were also investigated. f of the sample with silicon film formed is 3-A
.

B、Cとする。Let them be B and C.

試料3A + s  Bの処理条件はそれぞれの試料1
−Bと1−1)の場合とあわせた。3−(’は未処理品
である。
The processing conditions for sample 3A + s B are the same as for each sample 1.
-B and 1-1). 3-(' is an untreated product.

各試料についての試験結果を下の表に示す。The test results for each sample are shown in the table below.

他の環境としテノ、30″080%RH,40’C90
% RH* ”0100%RH,40’C90%RH。
In other environments, Teno, 30″080%RH, 40’C90
%RH* "0100%RH, 40'C90%RH.

SO2ガス20ppmを含むガス雰囲気、温泉地、海岸
等での放置試験に於ても、本発明によるものは性能が安
定していた。
The performance of the device according to the present invention was stable even in a storage test in a gas atmosphere containing 20 ppm of SO2 gas, in a hot spring area, on the coast, etc.

以上の説明によシ明らかなように、本発明は薄膜の応用
が活発化する近年のエレクトロニクス分野は勿論のこと
、他の分野においてもその有価値性は大きい。
As is clear from the above description, the present invention is of great value not only in the electronics field in which thin film applications have become active in recent years, but also in other fields.

4、図面の簡単な説明  、、、、1.。4. Brief explanation of the drawings 1. .

図は本発明を実施するための装置の一例を示す図である
The figure is a diagram showing an example of an apparatus for implementing the present invention.

1・・…・基板、2,3・・111111@ C1−ラ
、6・・・ee・真空槽、7・・・山蒸着室、8・・・
・・拳グロー処理室、10……光処理室、11・・…・
蒸発源、15…・・・グロー処理電極、18・・川・光
源、19・・・・・・反射集光鏡。
1...Substrate, 2,3...111111@C1-ra, 6...ee/vacuum chamber, 7...Mountain evaporation chamber, 8...
...Fist glow processing room, 10...Light processing room, 11...
Evaporation source, 15...Glow processing electrode, 18...River/light source, 19...Reflecting condenser mirror.

代理人の氏名 弁理士 中 尾 敏 男 はが1名一Name of agent: Patent attorney Toshio Nakao, 1 person

Claims (1)

【特許請求の範囲】[Claims] 可撓性基板上に蒸着により薄膜を形成する工程と、上記
薄膜表面を酸化性放電雰囲気で処理する工程と、同じく
上記薄膜表面に集光された光を照射する工程とを有する
ことを特徴とする薄膜素子の製造方法0
It is characterized by comprising a step of forming a thin film on a flexible substrate by vapor deposition, a step of treating the surface of the thin film in an oxidizing discharge atmosphere, and a step of irradiating the surface of the thin film with focused light. Manufacturing method of thin film element 0
JP57023832A 1982-02-16 1982-02-16 Production of thin film element Pending JPS58141380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023832A JPS58141380A (en) 1982-02-16 1982-02-16 Production of thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023832A JPS58141380A (en) 1982-02-16 1982-02-16 Production of thin film element

Publications (1)

Publication Number Publication Date
JPS58141380A true JPS58141380A (en) 1983-08-22

Family

ID=12121355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023832A Pending JPS58141380A (en) 1982-02-16 1982-02-16 Production of thin film element

Country Status (1)

Country Link
JP (1) JPS58141380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247383A (en) * 1989-03-17 1990-10-03 Matsushita Electric Ind Co Ltd Production of thin film
US20100215848A1 (en) * 2007-02-26 2010-08-26 Leybold Optics Gmbh Vacuum treatment of strip-shaped substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247383A (en) * 1989-03-17 1990-10-03 Matsushita Electric Ind Co Ltd Production of thin film
JPH089782B2 (en) * 1989-03-17 1996-01-31 松下電器産業株式会社 Thin film manufacturing method
US20100215848A1 (en) * 2007-02-26 2010-08-26 Leybold Optics Gmbh Vacuum treatment of strip-shaped substrates
US9297065B2 (en) * 2007-02-26 2016-03-29 Leybold Optics Gmbh Vacuum treatment of strip-shaped substrates

Similar Documents

Publication Publication Date Title
JPS61164219A (en) Apparatus for manufacturing thin-film transistor array
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPH108254A (en) Formation of silicon dioxide layer
FR2542500A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE OF THE TYPE COMPRISING AT LEAST ONE SILICON LAYER DEPOSITED ON AN INSULATING SUBSTRATE
JPS58141380A (en) Production of thin film element
US5085939A (en) Thin film-coated polymer webs
JPH01282175A (en) Formation of protective film of superconducting material
JPS58141214A (en) Treatment of thin-film element
JP3078853B2 (en) Oxide film formation method
JPH0334616B2 (en)
JPS5874701A (en) Formation of thin polymer film
JPS61136678A (en) Formation of high-hardness carbon film
JP2907403B2 (en) Deposition film forming equipment
JPH0791643B2 (en) Semi-continuous winding type vacuum evaporation system
CN113690145A (en) Two-dimensional Bi2O2Se film thickness regulating and controlling method
JPS5855037A (en) Vapor depositing device
JP2890032B2 (en) Silicon thin film deposition method
JPS59149605A (en) Method of producing transparent conductor
JPS6226869A (en) Manufacture of photovoltaic device
JPS61219028A (en) Formation of liquid crystal orienting film
JPH02197565A (en) Target for laser vapor deposition apparatus
JPS63170927A (en) Formation of silicon oxide film and its system
JPS5843322B2 (en) Titsukakei Sohaku Makuno Seizouhouhou
JPS5916143A (en) Production for magnetic recording medium
JPS6112992B2 (en)