JPS5842252A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5842252A
JPS5842252A JP56140774A JP14077481A JPS5842252A JP S5842252 A JPS5842252 A JP S5842252A JP 56140774 A JP56140774 A JP 56140774A JP 14077481 A JP14077481 A JP 14077481A JP S5842252 A JPS5842252 A JP S5842252A
Authority
JP
Japan
Prior art keywords
groove
substrate
film
semiconductor device
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56140774A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwai
洋 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56140774A priority Critical patent/JPS5842252A/en
Publication of JPS5842252A publication Critical patent/JPS5842252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To make it possible to form a required and fine field region by self- alignment, by a method wherein impurities having the same type of conduction as that of a substrate are doped in a groove part provided on the substrate and an insulating material is filled up to the opening of the groove. CONSTITUTION:A p type silicon substrate 101 where a mask material 102' is formed is etched to form a V-shaped groove 103 having a side with an inclination of angle theta. After impurities having the same type of conduction as that of the substrate 101 are provided on the substrate 101 by the ion implantation, heat treatment is performed to form a p<+> region 104, a channel stopper region, at the bottom of the groove 103. After the mask material 102' is removed, SiO2 is piled to (acot(theta/2))/2 or more in the thickness of its film by the CVD method. Then a CVD SiO2 film 105 is formed in such a way as to fully fill the groove part up to its opening. By etching the whole of this until the silicon substrate part 101 except the groove part 103, a field region 106 that is buried in the substrate 101 is formed.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特にIC,L8
1などの素子間分離技術を改良した製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to an IC, L8
The present invention relates to a manufacturing method that improves the inter-element isolation technology such as No. 1.

従来、半導体装置* K MO81,81の製造工程で
の素子間分離方法としては、選択酸化法が一般的に用い
られている。この方法をnチャンネルMO8L81を例
にして以下に説明する。
Conventionally, a selective oxidation method has generally been used as a method for isolating elements in the manufacturing process of semiconductor devices*K MO81, 81. This method will be explained below using the n-channel MO8L81 as an example.

まず、第1図(、)に示す如(’(10G)の結晶面を
もつp型81基板1上に5so2膜2を熱酸化によシ成
長させ、更にこの8102膜2上に81iN4膜Sを堆
積する。つづいて、写真蝕刻法によシ素子形成部にレジ
スト膜4を形成し、これをマスクとして素子形成部以外
の511iNJ膜をエツチング除去して815N4ノタ
ーンS′を形成する。その後、例えばIロンのイオン注
入を行なってフィールド部にチャンネルストツ/4領域
としてのp”l[域5を形成する(第1図(b)図示)
、レジスト膜4を除去後、813N、ノ譬ターンS′を
マスクとしてウェット酸化を施し選択的に厚いフィール
ド酸化膜6を成長させる(第1図(、)図示)、ひきつ
づき゛、813N4ツヤターンS′及び8102膜2を
エツチング除去してフィールド酸化膜6で分離された素
子形成領域1を形成する(第1図(d)図示X次いで、
第1図(・)に示す如く素子形成領域1に2−ト酸化膜
Iを介して多結晶シリコンからなる?−)電極りを形成
した後、例えば砒素を拡散してソース、ドレインとして
の?領域10゜JJを形成する。最後に層間絶縁膜とし
てのCVD−glozl!J Jを堆積し、?領域10
.11及びr−)電極jlIfc対応するCVD−81
02膜12部分にコンタクトホール13・・・を開孔し
た後、ムL配線14・・・を形成して難チャンネルMO
8L8Iを製造する(第15!!(f)図示)。
First, a 5SO2 film 2 is grown by thermal oxidation on a p-type 81 substrate 1 having a (10G) crystal plane as shown in FIG. Next, a resist film 4 is formed in the element formation area by photolithography, and using this as a mask, the 511iNJ film other than the element formation area is etched away to form an 815N4 noturn S'. For example, ions of Iron are implanted to form a p''l region 5 as a channel stock/4 region in the field portion (as shown in FIG. 1(b)).
, After removing the resist film 4, wet oxidation is performed using the 813N glossy turn S' as a mask to selectively grow a thick field oxide film 6 (as shown in FIG. 1(, )). ' and 8102 film 2 are removed by etching to form element formation region 1 separated by field oxide film 6 (X shown in FIG. 1(d)).
As shown in FIG. 1 (), the element forming region 1 is made of polycrystalline silicon with a 2-oxide film I interposed therebetween. -) After forming the electrodes, for example, diffuse arsenic to form sources and drains? A region 10°JJ is formed. Finally, CVD-glozl as an interlayer insulation film! Deposit J J? Area 10
.. 11 and r-) electrode jlIfc corresponding CVD-81
After opening contact holes 13... in the 02 film 12 portion, forming the muL interconnections 14... and forming the difficult channel MO
8L8I is manufactured (No. 15!! (f) shown).

しかしながら、上述した従来の選択酸化法を用いてMO
gLllIを製造する方法にあっては次に示すような種
々の欠点があった。
However, using the conventional selective oxidation method mentioned above, MO
The method for producing gLllI had various drawbacks as shown below.

第2図は前記第1図(@)に示す8M!lN4Aターン
S′をマスクにしてフィールド酸化膜6を形成し九時の
断固構造を詳しく描いたものである。一般に選択酸化法
ではフィールド酸化膜6が813N4dターン5′の下
の領域に喰い込んで成長する仁とが知られている(同第
2図の?領域)。これはフィールド酸化中に酸化剤が8
13N4−り−73′下の薄い引02膜2を通して拡散
していく九めに酸化膜が形成される部分り、いわゆるバ
ードビークとフィールド酸化膜Cの厚い部分が横方向に
も回シ込んだ部分Eとからなる6Fの長さけたとえば別
5N4/リーン3′の厚さが100OA。
Figure 2 shows 8M! shown in Figure 1 (@) above! The field oxide film 6 is formed using the 1N4A turn S' as a mask, and the structure at 9 o'clock is detailed. Generally, in the selective oxidation method, it is known that the field oxide film 6 grows by digging into the region below the 813N4d turn 5' (region ? in FIG. 2). This means that during field oxidation, the oxidizer
13N4-RI-73' The part where the oxide film is formed at the ninth point where it diffuses through the thin 02 film 2, the so-called bird's beak, and the part where the thick part of the field oxide film C has also sunk in laterally. For example, the thickness of another 5N4/Lean 3' is 100OA.

その下の8102膜2がIGOOAの条件で1smの膜
J1[のフィールド酸化膜6を成長させた場合、約1趨
に達する。このため、フィールド領域の巾Cは815N
4)譬ターン3′間の距離Aを2Jeaとすると、Fが
1411であるから4.#11以下に小さくできずLS
Iの集積化にとって大きな妨げとなる。このようなこと
から、最近、813N、パターンS′を厚くし、この下
の8102膜2を薄くしてバードC−り(図中のD部分
)を抑制する方法やフィールド酸化膜6の成長膜厚を薄
くしフィールド酸化膜の喰い込み(巧を抑制する方法が
試みられている。しかし、前者ではフィールド端部にお
けるストレス゛が大きくなり、欠陥が生じ易くなシ、後
者ではフィールド反転電圧低下などの問題がTo〕、選
択酸化法による高集積化には限界がある・ また、チャンネルストッ/譬−用にイオン注入し九−口
ンがフィールド酸化中に横方向に再拡散して、第3図(
1)に示す如く素子形成領域1の一部がp0領域5とな
シ、実効的な素子領域がGの幅からMOmitで狭くな
りてしまう、この結果、トランジスタの電流が減少した
り、しきい値電圧が上がってしまうなどのナロクチャン
ネル効果が生じ、素子の微細化と共に問題となる。
When the field oxide film 6 of the 8102 film 2 of 1 sm thick is grown under IGOOA conditions, the 8102 film 2 reaches approximately 1 trend. Therefore, the width C of the field area is 815N
4) If the distance A between the turns 3' is 2Jea, F is 1411, so 4. LS cannot be made smaller than #11
This is a major hindrance to the integration of I. For this reason, recently, a method has been developed to suppress bird C-driving (portion D in the figure) by increasing the thickness of the 813N pattern S' and thinning the 8102 film 2 underneath, and the growth film of the field oxide film 6. Attempts have been made to reduce the thickness of the field oxide film to suppress the field oxide penetration. However, the former increases the stress at the field edges and is more likely to cause defects, while the latter causes problems such as field inversion voltage drop. The problem is that there is a limit to the high integration achieved by selective oxidation.In addition, the ions implanted for channel stops/holes re-diffuse laterally during field oxidation, as shown in Figure 3. (
As shown in 1), when a part of the element formation region 1 becomes the p0 region 5, the effective element region becomes narrower than the width of G by MOmit.As a result, the current of the transistor decreases and the threshold Naroch channel effects, such as an increase in value voltage, occur, which becomes a problem as devices become smaller.

しかも、P0領域5が横方向に広がることKよシ、嬉s
g(b)o如く素子形成領域7における?領域11(1
0)とp0領域5の接合部が広くな〕、n0領域10.
11と基板1間の浮遊キヤ/ヂシタが大きくなる。この
浮遊キャノぐシタは素子が小さくなるに従い無視できな
くなる。
Moreover, I am happy that the P0 area 5 expands laterally.
g(b) in the element formation region 7 like o? Area 11 (1
0) and p0 region 5 is wide], n0 region 10.
11 and the substrate 1 becomes large. This floating noise cannot be ignored as the device becomes smaller.

本発明は上記′問題点を解消するためになされえもので
、新規な素子分離方式の確立によシ高集積化と高性能化
を達成した半導体装置の製造方法を提供しようとするも
のである。
The present invention has been made to solve the above-mentioned problems, and aims to provide a method for manufacturing a semiconductor device that achieves high integration and high performance by establishing a new element isolation method. .

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、半導体基板上に溝部形成予定部が除去され九マス
ク材、例えばレジスト/4ターンを形成した後、該マス
ク材から露出する基板部分を所望深さ選択エツチングし
て溝部を設ける。この場合溝部の側面の傾斜角OをO’
(ij(9Q’とする。エツチングはたとえばKOHで
(100)シリコン基板を選択エツチングするようにし
である程度の傾斜角0をもたせてもよいし、i九すイド
エツチングの多い方法でエツチングしてチーツク−をも
たせてもよい、iたリアクティブイオンエツチングなど
を用いてもよい。溝部の数は。
First, a portion of a semiconductor substrate where a groove is to be formed is removed and a nine-mask material, for example, a four-turn resist, is formed, and then the portion of the substrate exposed from the mask material is selectively etched to a desired depth to form a groove. In this case, the inclination angle O of the side surface of the groove is O'
(Ij (9Q'). Etching may be done by selectively etching a (100) silicon substrate with KOH to give a certain degree of inclination angle 0, or by etching with a method that involves a lot of i-9 side etching. - You may also use reactive ion etching or the like.The number of grooves.

基板中に1つ或いは2つ以上設けてもよく、溝部の深さ
溝部の巾を変えてもよい。
One or more grooves may be provided in the substrate, and the depth and width of the groove may be changed.

つづいて、マスク材の除去後、溝部を含む半うに堆積し
て少なくとも1つの溝部の開口部まで絶縁材料で埋める
。かかる絶縁材料としては、例えば8102 、81a
Na或いは*z2o3等を挙げるこもよい、ζO1@縁
材料の堆積手段としてはcvn法、ス/中ツタ法などの
PVD法等を挙げることができる。tた、この堆積時に
おいて、絶縁材料を溝部の開口部O短い巾をaとしたと
き(a cot(#/2))/2  より小さい厚さで
堆積すると、溝部内KI[め込壕れた絶縁材料に開口部
と連通する凹状穴が形成され、エツチングに際し、凹状
穴を介して溝部内の絶縁材料がエツチングされるという
不都合さを生じる。なお、絶縁材料の堆積に先立って溝
部内に基板と同導電型の不純物を選択的にドーピングし
て基板にチャンネルストッパ領域を形成してもよい、t
た、絶縁材料の堆積に先立って溝部を有する半導体基板
全体、もしく紘一部の少なくとも一部を酸化又は窒化処
理して溝部が塞がれない程度の酸化膜1は窒化膜を成長
されてもよい、このような方法を併用することによって
、得られたフィールド領域状溝部の基板Kllた緻密性
の優れ九酸化膜又は窒化膜と堆積によシ形成された絶縁
材料とから構成され、絶縁材料のみからなるもOK比べ
て素子分離性能を著しく向上できる。更に絶縁砒素等を
ドーピングし、熱処理して皺絶綴属の例えば♂ロン硅化
ガラス(BAG)、リン硫化ガラれかの処理を施しても
よい。このような手段を連用するととくよって、絶縁材
料の堆積条件によって溝部に対応する部分が凹状となっ
た場合、その凹状部を壇めて平坦化でき、その結果全面
エツチングに際して溝部に残存した絶縁材料がその開口
部のレベルより下になるという不都合さを防止できる等
の効果を有する。
Subsequently, after removing the mask material, the insulating material is deposited in the half including the groove, and the insulating material is filled up to the opening of at least one groove. Examples of such insulating materials include 8102 and 81a.
Examples of the method for depositing the ζO1@ edge material include Na or *z2o3, and PVD methods such as the CVN method and the S/Naka-vine method. In addition, during this deposition, if the insulating material is deposited to a thickness smaller than (a cot(#/2))/2, where a is the short width of the opening O of the groove, the insulating material will be deposited in the groove. A concave hole communicating with the opening is formed in the insulating material, which causes the inconvenience that the insulating material within the groove is etched through the concave hole during etching. Note that a channel stopper region may be formed in the substrate by selectively doping an impurity of the same conductivity type as the substrate in the trench before depositing the insulating material.
In addition, prior to the deposition of the insulating material, the entire semiconductor substrate having the groove, or at least a part of the groove, is oxidized or nitrided to an extent that the groove is not blocked, even if a nitride film is grown. By using such a method in combination, the obtained field region-shaped groove substrate Kll is composed of a highly dense nine-oxide film or nitride film and an insulating material formed by deposition. Element isolation performance can be significantly improved compared to OK, which is made only of the following materials. Furthermore, it may be doped with insulating arsenic or the like, heat treated, and subjected to a wrinkle-resistant treatment such as ferrous silica glass (BAG) or phosphorus sulfide glass. By repeatedly using such a method, if the part corresponding to the groove becomes concave due to the deposition conditions of the insulating material, the concave part can be flattened, and as a result, the insulating material remaining in the groove can be removed when the entire surface is etched. This has the effect of preventing the inconvenience of the opening being below the level of the opening.

次いで、半導体基板上に堆積し九絶縁膜をマスク材を用
いずに溝部以外の半導体基板部が露出するまでエツチン
グ除去して溝部内に絶縁材料を残置させ11!フイール
ド領域を形成する。この工11におけるエツチング手段
としては、例えばエツチング液或いは!ラズマ千ツチ勿
トを用い九全面エツチング法さらKはリアクティブイオ
ンエツチング法などが採用し得る。その後、フィールド
領域で分離された素子形成領域にMOS、パイ一−ツ等
の能動素子を形成して半導体装置を製造する。
Next, the insulating film deposited on the semiconductor substrate is removed by etching without using a mask material until the semiconductor substrate parts other than the groove are exposed, leaving the insulating material in the groove 11! Form a field area. As the etching means in this process 11, for example, an etching liquid or! A nine-plane etching method using a laser beam, a reactive ion etching method, etc. can be employed. Thereafter, active elements such as MOS and piezo elements are formed in the element formation regions separated by the field regions to manufacture a semiconductor device.

しかして、本発明によれば半導体基板に傾斜した側面を
有し、その傾斜角0をO<#<90’の範囲とした溝部
を設け、該溝部を含む基板全面に絶縁材料を少なくとも
一つの溝部の開口部の短い巾を1とし九とき(a e 
o t (e/2”))72以上の厚さとなるように堆
積した後、絶縁膜を溝部以外の基板部分が露出するまで
エツチングするととkよって、マスク合せ余裕度をとる
ことなく溝部に対して竜ルアアラインで絶縁材料を残置
でき、これによシフイールド領域を形成できるため、以
下に示すような種々の効果を有する半導体装置を提供で
きる。
According to the present invention, a groove having an inclined side surface and an inclination angle 0 in a range of O<#<90' is provided in a semiconductor substrate, and at least one insulating material is applied to the entire surface of the substrate including the groove. Let the short width of the opening of the groove be 1 and 9 (a e
After depositing the insulating film to a thickness of 72 or more, the insulating film is etched until the parts of the substrate other than the groove are exposed. Since an insulating material can be left in the luer alignment and a shift field region can be formed thereby, a semiconductor device having various effects as shown below can be provided.

(1)  フィールr領域の面積祉基板に予め設けた溝
部の面積で決まるため、溝部の面積を縮小化することK
よって容易に所期目的の微細なフィールド領域を形成で
き、高集積度の半導体装置を得ることができる@ (2)  フィールド寄生MO8)ランジスタのチャン
ネル長には水平方向の成分に加え垂直の成分4も大きく
寄与する為、素子間の電流リーク等をフィールド領域で
確実に阻止でき高性能の半導体装置を得ることができる
(1) Area of the feel r area Since it is determined by the area of the groove provided in advance on the substrate, the area of the groove can be reduced.
Therefore, it is possible to easily form the desired fine field region and obtain a highly integrated semiconductor device. Also, since current leakage between elements can be reliably prevented in the field region, a high-performance semiconductor device can be obtained.

(3)  溝部を設け、チャンネルストツノ!用の不純
物を溝部に選択的にドーピングした後においては、従来
の選択酸化法のような高温、長時間の熱酸化1椙をとら
ない九め、誼不純物領域が再拡散して素子形成領域の表
面まで延びて実効的な素子形成領域の縮小化を防止でき
る。この場合、不純物のドーピングをイオン注入により
行なえばその不純物イオンの濃度が溝部の底部で濃く、
側部で薄くなる為その後の熱工程中に拡散しても素子形
成領域の表層(素子形成部)Klで濃度の高い不純物領
域が延びることがない丸め、実効的な素子形成領域の縮
小を防止できると共に、素子形成部の不純物領域への阻
害化も防止できる。
(3) Create a groove and create a channel straight horn! After selectively doping the trench with impurities, the impurity region is re-diffused and the element forming region is heated, which eliminates the need for high-temperature, long-term thermal oxidation as in the conventional selective oxidation method. It extends to the surface and can prevent the effective element formation area from being reduced. In this case, if the impurity doping is performed by ion implantation, the concentration of the impurity ions will be higher at the bottom of the groove,
Because it becomes thinner on the sides, the high concentration impurity region in the surface layer (element forming part) Kl of the element forming area does not extend even if it diffuses during the subsequent thermal process. Rounding prevents reduction of the effective element forming area. At the same time, it is possible to prevent the impurity region of the element forming portion from being inhibited.

(4)溝部の全てに絶縁材料を残置させてフィールr領
域を形成した場合、基板は平坦化される丸め、その後の
電極電線の形成に際して段切れを生じるのを防止できる
(4) When the feel r region is formed by leaving the insulating material in all of the groove portions, it is possible to prevent the substrate from being rounded during flattening and from causing breakage during the subsequent formation of electrode wires.

次k、本原第2の発明の詳細な説明する。Next, the second invention will be explained in detail.

前記し九本願第1の発明と同様な工程を餞て半導体基板
上に絶縁材料を第1の発明と同様な条件を用いて堆積す
る。次いで、少なくとも絶縁材料により開口部まで堰め
込まれ丸溝部上の一部を含む絶縁属の領域もしくは溝部
以外のフィールド領域となるべき絶縁膜の領域のうちの
少なくともいずれかをマスク材、例えばレジストIり一
部等で覆う、つづ−て、マスク材及び溝部以外の基板部
分が露出するまでエツチングし、溝部内に絶縁材料を残
置させてフィールド領域を、溝部以外の基板上にもフィ
ールド領域を形成する。この場合、溝部以外の基板上に
形成されたフィールド領域は該溝部のフィールド領域と
一体化されたものをも含む、その後、フィールド領域で
分離された素子形成領域Ki[)8、・々イポーラ等の
能動素子を形成して半導体装置を製造する。
An insulating material is deposited on a semiconductor substrate using the same steps as in the first aspect of the present invention described above and using the same conditions as in the first aspect of the present invention. Next, at least one of the insulating material region that is filled up to the opening with the insulating material and includes a part of the round groove portion, or the region of the insulating film that is to become the field region other than the groove portion is covered with a masking material, such as a resist. Then, etching is performed until the mask material and parts of the substrate other than the groove are exposed, and the insulating material is left in the groove to form a field area, and a field area is also formed on the substrate other than the groove. Form. In this case, the field regions formed on the substrate other than the trench include those integrated with the field region of the trench, and then the element forming regions Ki[)8, etc., which are separated by the field region, etc. A semiconductor device is manufactured by forming active elements.

しかして、本願第2の発明によれば、前述した種々の効
果を有する他K、半導体基板内に瀧込まれたフィールド
領域と、溝部以外の半導体基板上に該フィールド領域と
一体的もしくは分離された異種形態のフィールド領域と
を備えた半導体装置を得ることができる。
According to the second invention of the present application, in addition to having the various effects described above, the field region embedded in the semiconductor substrate and the field region integrated with or separated from the field region on the semiconductor substrate other than the groove portion are provided. A semiconductor device having field regions having different shapes can be obtained.

次K、本発明をnチャンネルMD8LSIの製造に適用
した例について図面を参照して説明する。
Next, an example in which the present invention is applied to the manufacture of an n-channel MD8LSI will be described with reference to the drawings.

実施例1 〔1〕まず、第4図(a) K示す如((10G)の結
晶面をもつPWIlシリコン基板101上に酸化膜など
のマスヤング材料膜XOZを堆積し九後、写真蝕刻法な
どによって/lターニングしてマスク材102′を形成
した(第4図(b)図示)、つづいてマスク材102′
を用いてシリコン基板101を例えばKOHでエツチン
グした。このとき、第4図(@)K示す如く、傾斜角−
の側面を有するV字形の溝部10Bが形成された。ひき
つづき。
Example 1 [1] First, a mass young material film XOZ such as an oxide film is deposited on a PWIl silicon substrate 101 having a (10G) crystal plane as shown in FIG. The mask material 102' was formed by /l turning (as shown in FIG. 4(b)), and then the mask material 102'
The silicon substrate 101 was etched with KOH, for example. At this time, as shown in Fig. 4 (@) K, the inclination angle -
A V-shaped groove portion 10B having side surfaces of . Continuing.

同マスク材102′を用いて基板101に該基板101
と同導電型の不純物であるがロンを加速電圧50 k@
V %l’−1量5X 10”761104に件ティオ
ン注入した後、熱処理を施して溝部103底部にチャン
ネルストッ/ぐ領域としてのp0領域104を形成した
(第4図(荀図示) 〔11〕  次いでマスク材102′を除去した後、8
10!をGつ法によシ溝部103の開口部の幅をaとし
たとき、膜厚が(a@・t(e/2))72以上となる
ように堆積した。この時、5io2は基板101及び溝
部101内wiK徐々に堆積され、1s4図(・)K示
す如く溝部101の開口部まで充分埋め込まれ九〇VD
−810を膜1015が形成された。この様子を第5図
(a) 、 (b)を参照して詳述する。傾斜角−の側
面を有するーWo3に(至)−8102膜 。
The substrate 101 is coated on the substrate 101 using the same mask material 102'.
Although it is an impurity of the same conductivity type, Ron is accelerated at a voltage of 50 k@
After injecting ions in an amount of V%l'-1 of 5X 10"761104, a heat treatment was performed to form a p0 region 104 as a channel stocking region at the bottom of the groove 103 (see FIG. 4) [11] After removing the mask material 102', 8
10! The film was deposited using the G method so that the film thickness was (a@·t(e/2))72 or more, where a is the width of the opening of the groove 103. At this time, 5io2 is gradually deposited on the substrate 101 and inside the groove 101, and is fully buried up to the opening of the groove 101 as shown in Fig.
A film 1015 was formed at -810. This situation will be explained in detail with reference to FIGS. 5(a) and 5(b). -Wo3 (to) -8102 membrane with sides of - inclination angle.

105を堆積していくと、膜厚がlくなシ1051゜1
06冨・・・となるに従い溝部103が次第に浅くなっ
ていく、そして、基板101表面と溝部103側面の交
差する角ψの2等分線LlsL1の交点よシもCVD−
8102膜105が厚く堆積(cvn−sto2膜10
15畠の状態)されれば溝部103はJlまってしまう
、(第5図(、)図示)、このとき0CVD−8102
膜105の膜厚を同図(b)を参照して求めてみる。溝
部108の傾斜角−1開口部の巾をaとすると簡単な計
算によシα=お、前記CVD−8102膜xosの堆積
時においては選択酸化法の如く高温、長時間の熱酸化処
理が解消されることKよシ、p4領域104の再拡散は
殆んど起きなかった。但し、この工程においてマスク材
102′はかならずしも除去しなくともよい。
As 105 is deposited, the film thickness becomes 1051°1.
06..., the groove 103 gradually becomes shallower, and the intersection of the bisector LlsL1 of the angle ψ where the surface of the substrate 101 intersects the side surface of the groove 103 also becomes CVD-
8102 film 105 is thickly deposited (cvn-sto2 film 10
15), the groove 103 becomes Jl (as shown in FIG.
The thickness of the film 105 will be determined with reference to FIG. Inclination angle of the groove 108 - 1 If the width of the opening is a, then a simple calculation can be made. Despite the resolution, almost no re-diffusion of the p4 region 104 occurred. However, the mask material 102' does not necessarily have to be removed in this step.

(iil)  次すで、(至)−8102膜105を弗
化アンモンまたはプラズマエツチング又はリアクティブ
イオンエツチングなどで、溝部108以外のシリ;ン基
板101部分が露出す養まで全面エツチングしな、この
時、基板101上の(至)−8!02膜部分O膜厚分だ
け除去され、第4図(f) K示す如く溝部103内に
のみcv′D−8102が残置し、これによって基板1
01内KJIめ込まれたフィールド領域1011が形成
された。その後、常法に従ってフィールド領域10Cで
分離され九島状の素子形成領域Kr−)酸化膜101を
介して多結晶シリコンからなる?−)電極108を形成
し、砒素拡散を行なってソース、ドレインとしての11
°領域109.110を形成した。
(iii) Next, the entire surface of the -8102 film 105 is etched using ammonium fluoride, plasma etching, reactive ion etching, etc. until the silicon substrate 101 portion other than the groove 108 is exposed. At this time, the -8!02 film portion on the substrate 101 is removed by the O film thickness, and cv'D-8102 remains only in the groove 103 as shown in FIG.
A field region 1011 in which KJI was embedded within 01 was formed. Thereafter, according to a conventional method, the field regions 10C are separated, and nine island-shaped element formation regions Kr-) are formed of polycrystalline silicon via an oxide film 101. -) Form the electrode 108 and perform arsenic diffusion to form the electrode 11 as the source and drain.
° regions 109 and 110 were formed.

更に、 cvn−sio2からなる眉間絶縁膜111を
堆積し、r−)電極1011及び?領域109゜110
に対応する層間絶縁膜111部分にコンタクトホール1
12・・・(?−)電極のコンタク、トホールは図示せ
ず)を開孔した後、全[KAt膜を蒸着し電極分離を施
してンース攻出しムを電極113.ドレイン取出しAt
電極114及びr−)取出しムを電極(図示せず)を形
成してnチャンネル!KJBL81を製造し九(第4図
(−図示)。
Furthermore, a glabellar insulating film 111 made of cvn-sio2 is deposited, and the r-) electrode 1011 and the ? Area 109°110
A contact hole 1 is formed in a portion of the interlayer insulating film 111 corresponding to
12...(?-) Electrode contacts and holes are not shown) After opening a hole, a KAt film is deposited on the electrode, the electrode is separated, and the electrode 113. Drain takeout At
Electrode 114 and r-) are taken out to form an electrode (not shown) to form an n-channel! KJBL81 was manufactured (Fig. 4 (-illustration)).

本実施例1で得られ九MO51L81はフィールド領域
106が溝部103の幅で決定されるととkより、幅が
1胸という極めて黴細な面積にでき、LSI中に占める
フィールド領域の面積の縮小化、ひいては高集積化を達
成できた。tた、従来の選択酸化法で第6図の如く狭い
幅のフィールド酸化膜Cを形成すると、素子間のチャン
ネル長(1,lが短くな抄、フィールyの反転電圧が下
がシ、素子間に9−り電流が流れ易くなる傾向くあった
。これに対し、本実施例1のフィールド領域10gは第
7図に示す如く幅が狭くと4、深さも十分深いためK、
素子間のチャンネル長(L’)を十分長くでき、素子間
にリーク電流が流れるのを防止できた。
In the nine MO51L81 obtained in Example 1, when the field area 106 is determined by the width of the groove 103, the width can be made into an extremely narrow area of one width, reducing the area of the field area occupied in the LSI. technology, and by extension, achieved high integration. In addition, if a field oxide film C with a narrow width is formed using the conventional selective oxidation method as shown in FIG. On the other hand, as shown in FIG. 7, the field region 10g of Example 1 had a narrow width of 4 and a sufficiently deep depth, so that K,
The channel length (L') between the elements could be made sufficiently long, and leakage current could be prevented from flowing between the elements.

更に、フィールド領域106形成後のシリコン基板10
1は前記工種のIs4図(f)に示す如くフィールド領
域と素子形成領域の間に段差がなく平坦であるため、ム
を電極111.114を形成した場合、フィールド領域
と素子形成領域間で段切れを起こすのを防止できえ、チ
ャンネルストツノ領域としてのp0領域104はフィー
ルド酸化などの熱処理がない為素子形成領域まで拡散し
K<<、ナロウチャンネル効果などによる素子特性の劣
化、p0領域104とソース、ドレインとしての♂領域
109,110(011合によるm0領域1011,1
10の浮遊容量の増大を防止できた。更Ktえ、選択酸
化法のようなフィールド酸化がない九めに、フィールド
酸化膜が811NJ膜下に喰い込むときに生じるストレ
スに伴なうシリコン基板の欠陥発生を防止できる。
Furthermore, the silicon substrate 10 after the field region 106 is formed
1 is flat with no step between the field region and the element formation region as shown in Figure (f) of Is4 of the above-mentioned process, so when electrodes 111 and 114 are formed, there is no step between the field region and the element formation region. Since the p0 region 104, which serves as a channel stop horn region, is not subjected to heat treatment such as field oxidation, it diffuses to the element formation region, resulting in deterioration of device characteristics due to the narrow channel effect, etc. and male regions 109, 110 as sources and drains (m0 regions 1011, 1 due to 011 coupling)
It was possible to prevent an increase in stray capacitance of 10. Furthermore, since there is no field oxidation as in the selective oxidation method, it is possible to prevent defects in the silicon substrate due to stress caused when the field oxide film digs under the 811NJ film.

なお、上記実施例1ではシリコン基板101に酸化膜な
どのマスク材102′を形成した後、このマスク材10
2′を用いて基板101に溝部108を設けたが、第8
図(、)に示す如く、シリコン基板101に絶縁膜11
5を堆積した後、この上にレジスト/母ターン116を
形成し、これをマスクとしてリアクティブイオンエツチ
ングなどkよシ絶縁膜111をエツチングして開孔11
1を設け、更にその下の基板1011/C溝部103を
設け、レゾストをはくシせずにレゾストをマス久として
不純物のイオン注入を行ってもよい(第8図(b)図示
)。
Note that in the first embodiment, after forming the mask material 102' such as an oxide film on the silicon substrate 101, this mask material 102' is formed on the silicon substrate 101.
2′ was used to provide the groove portion 108 in the substrate 101.
As shown in the figure (,), an insulating film 11 is formed on a silicon substrate 101.
5, a resist/mother turn 116 is formed thereon, and using this as a mask, the dielectric film 111 is etched by reactive ion etching to form the opening 11.
1, and further provide a substrate 1011/C groove 103 therebelow, and perform impurity ion implantation using the resist as a mask without removing the resist (as shown in FIG. 8(b)).

またこの場合、第9図(1)の如くシリコン基板101
上に直磯しジストIリーンI1gを形成し、これをマス
クとして 工、チンダを行ない 溝部103を形成してもよい(第9図(b)図示)。
Moreover, in this case, as shown in FIG. 9(1), the silicon substrate 101
A groove 103 may be formed by forming a resist I lean I1g directly on the surface and using this as a mask for machining and cindering (as shown in FIG. 9(b)).

実施例2 〔1〕  まず、第10図(、)に示す如く、p型シリ
コン基板101に写真蝕刻法などKより開口部の巾が’
1 e s、 * s=と異なる傾斜した側面を有する
3種の溝部J 03.10B’、 J all”を設け
た。なお、開口部幅の大小は81<8B<8゜の関係と
する。つづいて、 5to2をCVD法によ)(s、 
cOt(#/り)/2よシ若干厚くなるように堆積した
。この時、第10図(b) K示す如く溝部103゜1
03’にCVD−8iOz膜105がその開口部まで十
分堰まるが、該溝部108,103’よシ開ロ部幅ノ大
きい溝部103″にはCVD−8102膜106がその
内周11fKLか堆積されず凹状の窪み部118が形成
された。
Embodiment 2 [1] First, as shown in FIG.
Three types of grooves J 03.10B', J all'' having different sloped side surfaces as 1 e s, * s= were provided.The opening widths are in a relationship of 81<8B<8°. Next, 5to2 was processed using the CVD method) (s,
It was deposited so that it was slightly thicker than cOt(#/ri)/2. At this time, as shown in FIG. 10(b) K, the groove 103°1
03', the CVD-8iOz film 105 is sufficiently weired to the opening, but the CVD-8102 film 106 is deposited on the inner periphery 11fKL of the groove 103'', which is wider than the grooves 108 and 103'. A concave depression 118 was formed.

〔i:〕  次いで、基板101上の(至)−8102
膜105の厚さ分だけ弗化アンモンでエツチングし九と
ころ、第10図(@)K示す如く開口部の幅が8..8
.0溝部10 s、 J Os’KBCvD−sio、
が残置され所定のフィールド領域106゜106′が形
成され九が、溝部10s“内のcvn −8101は全
て除去され凹状部となった。こうした凹状部祉その後O
工種で7MO8領域等として利用でき、フィールド領域
形成後に再度凹部を作るための写真蝕刻工1を膚〈こと
ができた。
[i:] Next, (to) -8102 on the substrate 101
After etching with ammonium fluoride to the thickness of the film 105, the width of the opening was 8.9 mm, as shown in FIG. 10 (@)K. .. 8
.. 0 groove part 10 s, J Os'KBCvD-sio,
was left behind to form a predetermined field area 106°106', and all of the cvn-8101 within the groove 10s'' was removed to form a concave portion.
It can be used as a 7MO8 area, etc., and a photo-etching process 1 can be used to create a recess after forming a field area.

実施例3 まず、第11図に示す如<pml!シリコン基板101
にリアクテイツイオンエッチングを用い九写真蝕刻法に
よシ開ロ部の幅が81 m 81 eSl、8sと断続
的に変化する傾斜した側面を有する溝部10 j”を設
けた。なお、溝部1 o fl/にシける開口部幅の大
小はas <B露<8■の関係となる0次いで、810
2を■法によl(81cot(6/2 ) )/2よシ
若干厚くなるように堆積して一部10 j”の開口部幅
がS、、S曹の部分にCVD −5soz膜を十分纏め
込み、開口部幅がSIの部分には内周1ftK堆積した
後基板101上OCVD−8102膜の厚さ分だけ弗化
アン毫ンでエツチングしたところ、第11図(b)の如
く開口部幅がsi # 81部部分 CVD −81(
h II 1 o Jが残置され、同#1s1の部分が
除去され開口しえフィールド領域leg“が得られた。
Example 3 First, as shown in FIG. 11, <pml! Silicon substrate 101
A groove 10j" having an inclined side surface whose width at the bottom of the opening intermittently changes from 81 m to 8 s was formed by photoetching using reactive ion etching. The size of the opening width in relation to fl/is the relationship as < B dew < 8.
2 was deposited using the ■ method so that it was slightly thicker than l(81cot(6/2))/2. After thoroughly consolidating and depositing 1 ftK on the inner circumference in the part where the opening width is SI, etching was performed with fluoride annealing by the thickness of the OCVD-8102 film on the substrate 101, resulting in an opening as shown in FIG. 11(b). Part width is si # 81 part CVD -81 (
h II 1 o J was left and the portion #1s1 was removed to obtain an open field region leg''.

実施例4 〔1〕マず、第12図(a) K示す如<pmシリコン
基板21)Jに互に連結する夫々間中の複数、O傾斜し
九側面を有する溝部1081.108.。
Embodiment 4 [1] First, as shown in FIG. 12(a), a plurality of groove portions 1081, 108.108. .

1011.10:14を設は虎後、5102をCVD法
によシ各溝部1031・・・1034の開口部の幅をa
としたとき(a not(#/2))/2以上の厚さと
なるように堆積してCVD−8102膜1015を形成
した(第12図(b)図示)。
After setting 1011.10:14, 5102 was made by CVD method and the width of the opening of each groove 1031...1034 was a.
A CVD-8102 film 1015 was formed by depositing the film to a thickness of (a not (#/2))/2 or more (as shown in FIG. 12(b)).

(ii)  次いで、基板101から溝部103gの一
部にかかるCVD −8102膜105部分、溝部10
8.0一部から溝部10S4の一部に亀るCVD−51
10!膜106部分及び基板101上のCVD−110
z膜105部分に夫々写真蝕刻法によ〉レジスト膜11
#、〜119sで覆った(第1211(e)図示)。そ
の後、レジスト膜1191〜119s及び溝部1011
〜1034以外の基板101部分が露出す4tで弗化ア
ンモン又はプラズマエツチング又はリアクティブイオン
エツチングでエツチングしたところ第12図(d)に示
す如く溝部1011内にCVD−8102が残置したフ
ィールド領域10g、溝部103曹内に残置したm1i
02と基板101上に残置し九CVD−8102が一体
化されて構成されたフィールド領域7011.溝部10
8j及び1084に残置し&CVD−aio2と基板1
0°1上に残置シタCVD−11102が一体化されて
構成され九フィールド領域J##1、並びに基板101
上に残置され九〇VD−102からなる広幅のフィール
ド領域10#1が形成され九、こうしたシリコン基板x
orlIC常法に従つてl&)8 )ランジスタを複数
設ける際、基板101上OCVD−8102$残置した
形態のフィールド領域1061.10g、。
(ii) Next, a portion of the CVD-8102 film 105 extending from the substrate 101 to a part of the groove 103g and the groove 10
8.0 CVD-51 warping from a part to a part of the groove part 10S4
10! CVD-110 on the film 106 part and the substrate 101
A resist film 11 is formed on each part of the Z film 105 by photolithography.
#, covered by ~119s (as shown in No. 1211(e)). After that, the resist films 1191 to 119s and the groove portion 1011
When etching was performed using ammonium fluoride, plasma etching, or reactive ion etching at 4t when the parts of the substrate 101 other than 1034 were exposed, the field region 10g where CVD-8102 remained in the groove 1011 as shown in FIG. 12(d). m1i left in groove 103
02 and nine CVD-8102 left on the substrate 101 are integrated into a field region 7011. Groove 10
Leave it on 8j and 1084 & CVD-aio2 and board 1
The remaining position CVD-11102 is integrated on the 0°1 field area J##1 and the substrate 101.
A wide field region 10#1 made of VD-102 is left on top of the silicon substrate x.
8) Field region 1061.10g of the form in which OCVD-8102 $ is left on the substrate 101 when a plurality of transistors are provided according to the orlIC conventional method.

106″′を利用して配線を形成することができた。Wiring could be formed using 106''.

実施例5 〔1〕  まず、pHシリコン基板101VC夫々開口
部幅を同等の3つの傾斜した側面を有する溝部1011
.1031.108mを設けた後、光蝕刻法によシ溝部
101.,1111.間の基板101部分が除去された
レジスト・母ターン119′を形成した(第13図(、
)図示)、つづいてレジスト膜やターン119′をマス
クとして溝部103、.1011@間の基@1ot1e
tlI!面をエツチングして除去部121jを形成した
後、レジストI4ターン119′を除去し九(第13図
(b)図示)・ 〔i1〕  次1/%”t’、8102ヲCVD法によ
シ各溝部1011〜103@の幅をaとしたとき(a 
5et(#/2))/2より若干厚くなるように堆積し
た。この時、第13図(・)に示す如く溝部1031・
・・101mの開口部まで(7)−8i02膜105で
十分纏められると共に、#央部1201C対応するα>
5j02膜J Oj’部分が他の領域よシ陥没した。
Example 5 [1] First, the pH silicon substrate 101VC has a groove portion 1011 having three inclined side surfaces each having the same opening width.
.. 1031. After providing 108 m, groove portion 101. , 1111. A resist/mother turn 119' was formed by removing the portion of the substrate 101 between them (see FIG. 13()).
), the groove portions 103, . 1011@group between @1ot1e
tlI! After etching the surface to form a removed portion 121j, the resist I4 turn 119' is removed (as shown in FIG. 13(b)). When the width of each groove 1011 to 103@ is a, (a
The film was deposited to be slightly thicker than 5et(#/2)/2. At this time, as shown in FIG. 13(), the groove 1031.
...The opening of 101 m is sufficiently gathered up by the (7)-8i02 film 105, and the α corresponding to #central part 1201C>
5j02 membrane J Oj' part was more depressed than other areas.

(tlD  次いで、第13図(4)K示す如く光蝕刻
法により陥没したG■−5toz膜105′部分をレジ
スト膜121で覆った後、レジスト膜121及び溝部1
#11・・・103s以外の基板101部分が露出する
まで弗化アンモン又はプラズマエツチング又はリアクテ
ィブイオンエツチングでエツチングしたとζろ、溝部1
0B、・・・103s内1(CVD−8102が残置し
たフィールド領域10σl1−1a@及び溝部J OI
s s  J OjsのCVO−stto2と一体化さ
れ、上面が基板1010レベルとなる広幅のCVD−m
1i02からなるフィールド領域Jag“が形成された
(第13図(・)図示)。
(tlD) Next, as shown in FIG. 13 (4) K, after covering the depressed G-5toz film 105' portion by the photoetching method with a resist film 121, the resist film 121 and the groove portion 1 are
When etching is performed using ammonium fluoride, plasma etching, or reactive ion etching until the parts of the substrate 101 other than #11...103s are exposed, groove portion 1 is etched.
0B,...1 in 103s (field area 10σl1-1a@ left by CVD-8102 and groove J OI
A wide CVD-m that is integrated with the CVO-stto2 of ss J Ojs and whose top surface is at the substrate 1010 level.
A field region Jag" consisting of 1i02 was formed (as shown in FIG. 13(-)).

こうし良シリ;ン基板1t)IK常法に従りてMol 
)ランジスタを複数設ける際、基板101上0CYD−
111ozからなる広幅のフィールド領域10IIF″
″を利用して配線を形成できると共に、該フィールド領
域10.l////は基板101と同レベルであるため
配線の段切れも防止できた。
1t) Molded silicon substrate according to IK standard method
) When providing multiple transistors, 0CYD- on the board 101
Wide field area 10IIF'' consisting of 111oz
In addition, since the field region 10.l//// is at the same level as the substrate 101, it was possible to prevent the wiring from breaking.

次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

(イ)上記実施例では溝部としてV字形のものを用いた
が、これに限らず、第14図に示す如く底部が平坦な溝
部5ortを基板101に形成してもよい、この時、堆
積すべき絶縁属の厚さは既述したのと同様(a e o
 * (#/2 ))/2以上にする。
(B) In the above embodiment, a V-shaped groove was used, but the groove is not limited to this, and a groove with a flat bottom may be formed on the substrate 101 as shown in FIG. 14. The thickness of the insulating metal is the same as described above (a e o
* (#/2))/2 or more.

(ロ)溝部の形状は側面がかならずしも平面でなくとも
よく、第15図に示す如く傾斜した曲面からなる側面を
有する溝部303を基板’101に形成してもよい、こ
の時、堆積すべき絶縁属の厚さは溝部303の開口部で
0III面の傾斜角を0とすれば既述と同様、(&璧・
t (#/2))/2 以上にする。
(b) The shape of the groove part does not necessarily have to be flat on the side surfaces, and as shown in FIG. If the inclination angle of the 0III plane at the opening of the groove 303 is 0, the thickness of the
t (#/2))/2 or more.

0う 第16図(、)に示す如く、基板101上に燐添
加ガラス膜(PEG膜)などのエツチングレートの速い
被膜122を堆積し、マスク材、例えばレジストIリー
ン116を形成した後、これをマスクとして前記被膜1
22.基板101を例えば弗硝酸系のエツチング液、7
”?オマエッチング液などでエツチングして傾斜した側
面を有する構部gosを形成してもよい(第16図(b
)図示)。
As shown in FIG. 16(,), a film 122 with a high etching rate such as a phosphorous-doped glass film (PEG film) is deposited on the substrate 101, and a mask material such as a resist I-lean 116 is formed. The coating 1 is applied as a mask.
22. The substrate 101 is coated with, for example, a fluoronitric acid-based etching solution, 7
"?The structural part gos having an inclined side surface may be formed by etching with an etching solution or the like (see Fig. 16(b)).
).

に)第17図(a) K示す如く基板101上に酸化膜
などの絶縁膜115を堆積し、これをグッズマ雰囲気中
に曝した後、マスク材1例えばレジストパターン11g
を形成し、これをマスクとして絶縁膜115及び基板1
01をエツチングして溝部101を形成してもよい(第
17図(b)図示)。
2) As shown in FIG. 17(a) K, an insulating film 115 such as an oxide film is deposited on the substrate 101, and after this is exposed to a gas masking atmosphere, a mask material 1, for example, a resist pattern 11g is deposited.
is formed, and using this as a mask, the insulating film 115 and the substrate 1
01 may be etched to form the groove portion 101 (as shown in FIG. 17(b)).

(ホ)第18図(a) K示す如く、基板101に傾斜
し九儒習を有する溝部101を形成し、更に絶縁膜11
5を堆積してこれをエツチングする際、必ずしも基板1
01が露出するまでエツチングする必要はなく、第18
図(b)に示す如くフィールド領域1011以外の基板
101表面に絶縁膜11g′を残存させるようにエツチ
ングし、この残存絶縁膜115′を?−)絶縁膜や層間
絶縁膜等に、或いはそれらの一部として使用してもよい
(e) As shown in FIG. 18(a) K, a groove portion 101 having an inclined groove 101 having a nine-sided shape is formed in the substrate 101, and an insulating film 11 is formed.
When depositing 5 and etching it, it is not necessary to deposit 5 on substrate 1.
It is not necessary to etch until the 01 is exposed, and the 18th
As shown in Figure (b), the insulating film 11g' is etched to remain on the surface of the substrate 101 other than the field region 1011, and this remaining insulating film 115' is etched. -) It may be used for an insulating film, an interlayer insulating film, etc., or as a part thereof.

(へ)第19図(a) K示す如く基板101上の引0
2等からなるマスク材J 02’を用いて傾斜し九側面
を有する溝部10sを設け、とのマスク材10 f’を
残置した状態で絶縁膜115を堆積し九後、マスク材1
02′が残るように絶縁膜118をエツチングしてフィ
ールド領域106を形成してもよい(第19図(b)図
示)。
(to) Figure 19 (a) As shown in K, the pull 0 on the board 101
An insulating film 115 is deposited with the mask material 10 f' left behind, and then the mask material 1
The field region 106 may be formed by etching the insulating film 118 so that 02' remains (as shown in FIG. 19(b)).

(ト)菖20図に示す如く基板101の傾斜した側面を
有する溝部1011内に基板表面より円弧状に央出する
ように絶縁膜105′を残存させてフィールド領域10
6を形成してもよい。
(g) As shown in FIG. 20, an insulating film 105' is left in a groove 1011 having an inclined side surface of the substrate 101 so as to extend in the center in an arc shape from the substrate surface, and a field region 105' is formed.
6 may be formed.

以上詳述した如く、本発明によればマスク合わせ余裕を
とることなく、任意かつ微細なフィールド領域を溝部に
対してセルファラインで形成でき、もって高集積度、高
信頼性、高性能の半導体装置を製造し得る方法を提供で
きるものである・
As described in detail above, according to the present invention, an arbitrary and fine field region can be formed in the trench by self-line without taking mask alignment margin, thereby achieving high integration, high reliability, and high performance semiconductor devices. It is possible to provide a method for manufacturing

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)〜(f)は従来の選択酸化法を採用し九n
チャンネルMO8L8Iの製造工程を示す断面図、第2
図は前記工檻の選択酸化後の半導体基板の状態を示す拡
大新面図、第3図(a) 、 (b)は従来の選択酸化
法の問題点を説明する丸めの断面図、第4図(a)〜ω
は本発明の実施例IGCおけるMO1iiLSI断爾図
、第6511.第7図は従来法及び実施例1で形成し九
フィールド領域で分離され九素子間o−ll−5蜜化を
示す断面図、第8図(、)、(b)、99図(a) e
 Cb>は本発明0@施例1の蜜形例を示す溝部形成t
でO1薯の断面図、第10図(、)〜(、)は本発W1
4OW麹例2における題5LSIのフィールド領域形成
工1を示す断vM閣、第11図(a) 、 (b)は本
発明の実施例3におけるMO8L81のフィールド領域
形成工1を示す平面図、第12図(、)〜(d)は本発
明の実施例4におけるMO8LSIのフィールド領域形
成1御を示す断面図、第13図(−〜(・)は本発明の
実施例5におけるMO8L8Iのフィールド領域形成工
程を示す断面図、第14図、第15図、第16図(a)
 、 (b)、第17図(a) 、 (b)、第18図
(a)、 (b)、第19図(a)、(b)、第20図
鉱夫々本発明の他の実施例を示す断面図である。 101・・・p′W1シリコン基板、102’・・・マ
スク材、103,103’、10B’: 103”、2
63%〜x o s4゜〜106m・・・フィールド領
域、10g・・・ダート電極、109,110・・・n
0領域(ソース、ドレイン)、l1g、11−・・・A
t電極、115・・・絶縁膜、rlr;・・・レジスト
−pぐターン。 出願人代理人  弁理士 鈴 江 武 廖s5図 第6図      第7図 第8図 第9図 第10図 第11図 (a)         (b) 第18図 第19図 第20図
Figures 1(,) to (f) show 9n using the conventional selective oxidation method.
Cross-sectional view showing the manufacturing process of channel MO8L8I, 2nd
The figure is an enlarged new view showing the state of the semiconductor substrate after selective oxidation of the cage, Figures 3(a) and 3(b) are rounded cross-sectional views illustrating the problems of the conventional selective oxidation method, and Figure 4 Figure (a) ~ ω
6511. is a cutaway diagram of the MO1iiLSI in the IGC according to the embodiment of the present invention. FIG. 7 is a cross-sectional view showing O-LL-5 condensation between nine elements formed by the conventional method and Example 1 and separated by nine field regions; FIGS. 8(a), (b), and 99(a) e
Cb> is the groove formation t showing the honey-shaped example of the present invention 0 @ Example 1
The cross-sectional view of O1 potato, Figure 10 (,) to (,) is the main W1
11(a) and 11(b) are plan views showing field area forming process 1 of MO8L81 in Example 3 of the present invention. 12(,) to (d) are cross-sectional views showing the field region formation 1 of MO8LSI in Embodiment 4 of the present invention, and FIG. Cross-sectional views showing the formation process, FIGS. 14, 15, and 16 (a)
, (b), Fig. 17 (a), (b), Fig. 18 (a), (b), Fig. 19 (a), (b), Fig. 20 Other embodiments of the present invention FIG. 101...p'W1 silicon substrate, 102'...mask material, 103, 103', 10B': 103", 2
63%~x o s4°~106m...Field area, 10g...Dart electrode, 109,110...n
0 region (source, drain), l1g, 11-...A
T electrode, 115...Insulating film, rlr;...Resist-P turn. Applicant's agent Patent attorney Liao Suzu

Claims (1)

【特許請求の範囲】 1、半導体基板の所望部分に傾斜した側面を有し、その
傾斜角−がO<#<900の範囲をなす溝部を少なくと
も1つ以上設ける工程と、溝部を含む半導体基板全面に
絶縁材料を少なくとも1’)12)溝部の開口部の短い
巾をaとし九とき(a eat(□))A以上の厚さと
なるように堆積する工程と、この絶縁膜をエツチングし
て少なくとも1つの溝部内に絶縁材料を残存させフィー
ルド領域を屡成する工程とを具備したことを特徴とする
半導体装置の製造方法。 2、半導体基板に溝部を設けた後、絶縁材料を堆積する
前に、半導体基板全面もしくは少なくとも溝部の一部を
酸化又は窒化処理して溝部が塞がれない程度の酸化膜又
は窒化膜を成長せしめることを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法。 1 半導体基板に溝部を設けた後、絶縁材料を堆積する
前に、溝部内に基板と同導電型の不純物を選択的Kl’
lピーグすることを特徴とする特許請求の範囲第1項又
は第2項記載の半導体装置の製造方法。 熱処理を施して鋏絶鎌膜のドーピング層を溶融化し、し
かる後に絶縁膜のエツチングを行なうことを特徴とする
特許請求の範囲第1頂乃至第311[いずれか記載の半
導体装置の製造方法。 溶融性絶IIkJI[を溶融化し、しかる後にこれら絶
縁膜のエツチングを行なうことを特徴とする特許請求の
範囲第1項乃至第3項いずれか記載の半導体装−〇製造
方法。 6、半導体基板の所望部分に傾斜し念側面を有し、その
傾斜角−がQ(#(90°の範囲をなす一部を少なくと
も1つ以上設ける工程と、溝部を含む半導体基板全面に
絶縁材料を少なくとも1つの溝部の開口一部の短い巾を
aとしたとき(a cot(#/2))/2 @44以
上の厚さとなるように堆積する工程と、少なくとも絶縁
材料によ〕開口部まで堰め込すれた溝部上の一部を含む
絶縁膜の領域龜しくは溝部以外のフィールド領域となる
べき絶縁膜の領域の少なくともいずれかをマスク材で覆
り友後、絶縁属を、マスク材及び溝部以外の半導体基板
が露出するまでエツチングし、溝部内に絶縁材料を残置
させてフィールド領域を、溝部以外にもフィールド領域
を、形成する工程とを具備したことを特徴とする半導体
装置の製造方法。 7、半導体基板に溝部を設は良後、絶縁材料を堆積する
前に、半導体基板全面もしく杜少なくとも溝部の一部を
酸化又拡窒化処理して溝部が塞がれない程度の酸化膜又
は窒化膜を成長せしめることを特徴とする特許請求の範
囲第6項記載の半導体装置の製造方法。 8、半導体基板に溝部を設けた後、絶縁材料を堆積する
前に、溝部内に基板と同導電型の不純物を選択的にドー
ピングすることを特徴とする特許請求の範囲第6項又は
第7項記載の半導体装置の製造方法。 し、熱J611を施して皺絶鍬膜のドーピング層を溶融
化し、しかる後にマスク材を覆い絶縁膜のエツチングを
行なうことを特徴とする特許請求の範囲第6項乃至第8
項いずれか記載の半導体装置の製造方法。 溶融性絶縁膜を溶融化し、しかる後にこれら絶41m膜
をマスク材で覆いエツチングを行なうことを特徴とする
特許請求の範囲第6項乃至第8項いずれか記載の半導体
装置の製造方法。
[Claims] 1. A step of providing at least one groove portion having an inclined side surface in a desired portion of a semiconductor substrate, the inclination angle of which falls within the range of O<#<900; and a semiconductor substrate including the groove portion. 12) Depositing an insulating material over the entire surface to a thickness of at least 1') 12) Denoting the short width of the opening of the groove as a (a eat (□)) A, and etching this insulating film. 1. A method of manufacturing a semiconductor device, comprising the step of leaving an insulating material in at least one trench to form a field region. 2. After providing a groove in the semiconductor substrate and before depositing an insulating material, oxidize or nitride the entire surface of the semiconductor substrate or at least a portion of the groove to grow an oxide or nitride film to the extent that the groove is not blocked. 2. A method of manufacturing a semiconductor device according to claim 1, further comprising the step of: 1 After forming a groove in a semiconductor substrate and before depositing an insulating material, an impurity having the same conductivity type as that of the substrate is selectively added to the groove.
3. A method for manufacturing a semiconductor device according to claim 1 or 2, characterized in that the semiconductor device is subjected to l peaking. A method for manufacturing a semiconductor device according to any one of claims 1 to 311, characterized in that the doped layer of the scissor-cutting film is melted by heat treatment, and then the insulating film is etched. A method for manufacturing a semiconductor device according to any one of claims 1 to 3, characterized in that the insulating film is melted and then the insulating film is etched. 6. The step of providing at least one part of the semiconductor substrate having an inclined surface at a desired portion and having an inclination angle of −Q(#(90°); A step of depositing the material to a thickness of at least (a cot (#/2))/2@44 where the short width of the opening part of at least one groove is a; After covering at least one of the areas of the insulating film including a part of the top of the groove that has been dammed up to the groove, or the area of the insulating film that is to become a field area other than the groove with a mask material, the insulating metal is removed. A semiconductor device comprising the steps of: etching the semiconductor substrate other than the mask material and the groove, leaving an insulating material in the groove to form a field region, and forming a field region in addition to the groove. 7. After the grooves are formed in the semiconductor substrate, before depositing the insulating material, the entire surface of the semiconductor substrate or at least a part of the grooves is oxidized or nitrided to an extent that the grooves are not blocked. 8. A method for manufacturing a semiconductor device according to claim 6, characterized in that an oxide film or a nitride film of A method for manufacturing a semiconductor device according to claim 6 or 7, characterized in that the semiconductor device is selectively doped with an impurity of the same conductivity type as the substrate. Claims 6 to 8 are characterized in that the doping layer is melted, and then the mask material is covered and the insulating film is etched.
A method for manufacturing a semiconductor device according to any one of paragraphs. 9. The method of manufacturing a semiconductor device according to claim 6, wherein the meltable insulating film is melted, and then the insulating film is covered with a mask material and etched.
JP56140774A 1981-09-07 1981-09-07 Manufacture of semiconductor device Pending JPS5842252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140774A JPS5842252A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140774A JPS5842252A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5842252A true JPS5842252A (en) 1983-03-11

Family

ID=15276434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140774A Pending JPS5842252A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5842252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997212A (en) * 1996-09-30 1999-12-07 Hinode, Ltd. Cover for underground structures, body thereof and frame therefor
US6000878A (en) * 1996-07-29 1999-12-14 Hinode, Ltd. Cover for underground structures
JP2009002139A (en) * 2007-06-22 2009-01-08 Jhy-Cheng Chen Handhole and lid of manhole, manufacturing method for these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000878A (en) * 1996-07-29 1999-12-14 Hinode, Ltd. Cover for underground structures
US5997212A (en) * 1996-09-30 1999-12-07 Hinode, Ltd. Cover for underground structures, body thereof and frame therefor
JP2009002139A (en) * 2007-06-22 2009-01-08 Jhy-Cheng Chen Handhole and lid of manhole, manufacturing method for these

Similar Documents

Publication Publication Date Title
US4532696A (en) Method of manufacturing a semiconductor device for forming a deep field region in a semiconductor substrate
JPS5836499B2 (en) Method for manufacturing semiconductor devices using a two-layer mask
US4398964A (en) Method of forming ion implants self-aligned with a cut
US4494304A (en) Forming chan-stops by selectively implanting impurity ions through field-oxide layer during later stage of MOS-device fabrication
JP2619340B2 (en) High voltage transistor structure of semiconductor device and method of manufacturing the same
JPS6355780B2 (en)
JPS5842252A (en) Manufacture of semiconductor device
JPS5989457A (en) Manufacture of semiconductor device
US6291284B1 (en) Method of fabricating semiconductor device
JPS6119111B2 (en)
JPS58200554A (en) Manufacture of semiconductor device
JPS6310896B2 (en)
JPS5848437A (en) Manufacture of semiconductor device
JPS643070B2 (en)
KR100347149B1 (en) Manufacturing method for semiconductor device
JPH0779101B2 (en) Manufacturing method of semiconductor device
JPH08288406A (en) Semiconductor device and manufacture thereof
JPH02161750A (en) Manufacture of semiconductor device
KR100253344B1 (en) Manufacturing method for contact hole of semiconductor memory
JPS60245250A (en) Manufacture of semiconductor device
KR0151190B1 (en) Transistor
JPH0214788B2 (en)
JPS60251641A (en) Semiconductor device and manufacture thereof
JPH0376225A (en) Manufacture of semiconductor device
JPH04179239A (en) Manufacture of semiconductor device