JPS5839907B2 - Surface damage resistant alloy cast iron - Google Patents

Surface damage resistant alloy cast iron

Info

Publication number
JPS5839907B2
JPS5839907B2 JP14103173A JP14103173A JPS5839907B2 JP S5839907 B2 JPS5839907 B2 JP S5839907B2 JP 14103173 A JP14103173 A JP 14103173A JP 14103173 A JP14103173 A JP 14103173A JP S5839907 B2 JPS5839907 B2 JP S5839907B2
Authority
JP
Japan
Prior art keywords
cast iron
chill
chilling
value
surface damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14103173A
Other languages
Japanese (ja)
Other versions
JPS5090521A (en
Inventor
正義 黒沢
康仁 山内
公勝 森重
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14103173A priority Critical patent/JPS5839907B2/en
Publication of JPS5090521A publication Critical patent/JPS5090521A/ja
Publication of JPS5839907B2 publication Critical patent/JPS5839907B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 本発明は、耐表面損傷性合金鋳鉄に関するものである。[Detailed description of the invention] The present invention relates to surface damage resistant alloyed cast iron.

機械部分あるいはエンジン部品で高応力下で摺動する部
分は、摩耗、スカッフィング、ピッチングなどの表面損
傷を非常に受けやすい。
Mechanical or engine parts that slide under high stress are highly susceptible to surface damage such as wear, scuffing, and pitting.

このため従来から摺動部分の硬さを上昇せしめ、耐表面
損傷性を向上させる種々′の方法が採用されている。
For this reason, various methods have been used to increase the hardness of the sliding parts and improve the surface damage resistance.

例えば自動車用エンジンのカムシャフトを例にとると、
浸炭鋼、焼入鋼、焼入鋳鉄が使用されているが、これ等
の材質には次の如き種々の欠点をあげることができる。
For example, if we take the camshaft of an automobile engine as an example,
Carburized steel, hardened steel, and hardened cast iron are used, but these materials have various drawbacks as follows.

即ち鋼材は鍛造品であるため鋳鉄に比し製造コストが高
く、また性能的にもスカッフィングや摩耗を生じやすい
し、焼入鋳鉄材は被削性が悪く製造コストが高いばかり
でなく、やはりスカッフィングや摩耗を生じやすいので
、特に接触応力の高いエンジンには殆んど使用すること
はできない。
In other words, since steel is a forged product, its manufacturing cost is higher than that of cast iron, and in terms of performance, it is more prone to scuffing and wear. Hardened cast iron has poor machinability and is not only expensive to manufacture, but also suffers from scuffing. Since it is easy to cause wear and tear, it can hardly be used especially in engines with high contact stress.

鋳鉄は前記三者に比ベコストあるいは耐表面損傷性の点
でかなり改善されるが、チル部の硬さが低く、ピッチン
グを生じ完全なものとは言えない。
Although cast iron is considerably improved in terms of cost and surface damage resistance compared to the above three, the hardness of the chilled portion is low and pitting occurs, so it cannot be said to be perfect.

しかしチル鋳鉄はCr。Mo、Niなどの合金を添加し
馴ピッチングを上昇させたものもあるが、被削部の硬さ
が上昇し被削性が悪くなり、製造コストは高価とならざ
るを得ない。
However, chilled cast iron is Cr. There are some products in which alloys such as Mo and Ni are added to increase the pitching, but the hardness of the cut part increases, resulting in poor machinability, and the manufacturing cost is unavoidably high.

本発明は、被削性をそこなうことなくm1表面損傷性を
増加せしめた合金チル鋳鉄によって、前記欠点を解消せ
んとするものであり、更に詳くは、CE値が高くなると
硬度が上昇するとの知見にもとづき、従来カム等のピッ
チングの関係から使用されなかったCE値4.1以上の
チル鋳鉄に、チル化促進元素及びチル化抑制元素を添加
して加工性等の悪化を防止し、チル鋳鉄として使用せん
とするものである。
The present invention aims to solve the above-mentioned drawbacks by using alloyed chilled cast iron with increased m1 surface damage resistance without impairing machinability. Based on this knowledge, chilled cast iron with a CE value of 4.1 or higher, which was not conventionally used due to pitting in cams, etc., is added with chilling promoting elements and chilling suppressing elements to prevent deterioration of workability etc. It is intended to be used as cast iron.

本発明者等は、合金鋳鉄について種々研究を進めた結果
、カムノーズ部硬さとピッチング面積率との関係を示す
第1図によって、自動車用カムシャフトのカムノーズ部
の硬さはHv 500以上が必要であり、C%+1/3
Si%で表わされるCE値(炭素当量)とチル部の硬さ
との間には第2図の如き関係のあることを見出した。
As a result of conducting various studies on cast iron alloys, the present inventors found that the hardness of the cam nose part of an automobile camshaft must be Hv 500 or more, as shown in Figure 1, which shows the relationship between the hardness of the cam nose part and the pitching area ratio. Yes, C%+1/3
It has been found that there is a relationship as shown in FIG. 2 between the CE value (carbon equivalent) expressed in Si% and the hardness of the chilled portion.

前記ピッチング面積率は、ピッチング部に網の如きマス
目を当てそのマス日数を数えてピッチング面積を求め、
更に次式により算出した。
The pitching area ratio is determined by placing a square like a net on the pitching area and counting the number of square days, and calculating the pitching area.
Further, it was calculated using the following formula.

なお第2図のバラツキを考慮すれば、チル硬さHv 5
00以上とするには、CE値が4.1以上であることが
必要である。
In addition, if we take into account the variations in Figure 2, the chill hardness Hv 5
In order to make it 00 or more, the CE value needs to be 4.1 or more.

CE値が高くなると一般にチル深さが減少することは知
られているが、チル鋳鉄ではCE値を高くするとチル深
さが極度に浅くなる傾向があってカム作用面は軟い非チ
ル部となり、耐表面損傷を著しく劣化させる結果となる
It is known that the chill depth generally decreases as the CE value increases, but in chilled cast iron, when the CE value increases, the chill depth tends to become extremely shallow, and the cam action surface becomes a soft non-chill part. , resulting in a significant deterioration of surface damage resistance.

本発明者等は、前記二つの相反する現象を両立させるた
めには、使用する鋳鉄においてけい素(Si)および炭
素(C)を20φ< S i≦3.0幅および3.1係
≦C≦4.0%の範囲で含有せしめかつCE値を上昇さ
せチル硬さを高くし、チル深さの減少分をチル化促進元
素例えばMn、Cr、W、V等によって補うことが有効
な手段であるとの知見にもとずき本発明を完成したもの
である。
The present inventors have determined that in order to reconcile the above two contradictory phenomena, silicon (Si) and carbon (C) should be adjusted to 20φ<Si≦3.0 width and 3.1 coefficient≦C in the cast iron used. An effective means is to contain it in a range of ≦4.0%, increase the CE value, increase the chill hardness, and compensate for the decrease in chill depth with chilling promoting elements such as Mn, Cr, W, V, etc. The present invention was completed based on this knowledge.

しかし、チル化促進元素を添加し過ぎると加工部分にも
チルが入る結果となるので、チル促進元素の添加をおさ
えるか、あるいは冷し金を当てた部分のチル深さをあま
り減少させずに切削部のチル化を抑制する元素、例えば
P、Cu、Ni等を同時に添加する。
However, if too much of the chilling-promoting element is added, chill will also enter the processed area, so it is necessary to suppress the addition of the chilling-promoting element or to avoid reducing the chill depth of the area to which the cold metal is applied. Elements that suppress chilling of the cut portion, such as P, Cu, Ni, etc., are added at the same time.

ただし、CE値が5.0以上になるとチル化促進元素は
多量の添加が必要となりコスト高となるので、CE値は
チル硬さHv500以上にするためと二つの理由から4
.1〜5.0に限定した。
However, if the CE value is 5.0 or more, it is necessary to add a large amount of chilling promoting elements, which increases the cost, so the CE value is set at 4.
.. It was limited to 1 to 5.0.

本発明でSi量を上記に限定した理由は、Siは黒鉛化
を助ける元素で、これが2.0俤を割るとチル化傾向が
増加し、本来チルが入ってはいけない部分にチルが入り
、被剛性が損われるためであり、また3、0φより多く
なると上記CE値の範囲ではチル化促進元素を用いても
チルが入りにくくなるためである。
The reason why the amount of Si is limited to the above range in the present invention is that Si is an element that helps graphitization, and when it is less than 2.0 yen, the tendency to chill increases, and chill enters areas where chill should not normally enter. This is because the rigidity is impaired, and when the CE value exceeds 3.0φ, it becomes difficult to generate chill even if a chilling promoting element is used in the range of the above CE value.

またC量については、3.1俤より少ないと必要な硬度
が得られずまた4、0%より多いと上記CE値が得られ
ないため、ピッチング面積率が低くまたチル深さが極度
に浅くなるため上記のように限定した。
Regarding the amount of C, if it is less than 3.1%, the required hardness cannot be obtained, and if it is more than 4.0%, the above CE value cannot be obtained, so the pitching area ratio is low and the chill depth is extremely shallow. Therefore, it is limited as above.

チル化促進元素の添加量は、2%以上になると鋳造性が
悪化し、巣などができ易くなり、また最もチル化促進効
果の高い■が0.1%で十分な効果が得られるので、0
.1〜2.0俤の範囲とした。
If the amount of the chilling promoting element added is 2% or more, the castability will deteriorate and cavities will easily form. 0
.. The range was 1 to 2.0 yen.

チル化抑制元素の添加量は、チル化促進元素によっては
添加を必要としないものもあるが、0.5%以上になる
とチル硬さを低下させ、耐摩耗性を悪化せしめるので0
.5%以下の範囲とした。
The amount of the chilling suppressing element added may not be necessary depending on the chilling promoting element, but if it exceeds 0.5%, it will reduce the chill hardness and worsen the wear resistance.
.. The range was set at 5% or less.

次に、本発明の合金鋳鉄を実施例により具体的に説明す
る。
Next, the alloy cast iron of the present invention will be specifically explained using examples.

実施例 1 FC25相当の戻し材を高周波炉で溶解し、これに加炭
剤と75係Fe−8iおよびF e−Mnを添加して成
分調整を行ない、1500℃で10分間保持した後出湯
して1370℃で注湯を行なった。
Example 1 Returning material equivalent to FC25 was melted in a high-frequency furnace, a recarburizing agent and 75% Fe-8i and Fe-Mn were added to adjust the composition, and the melt was kept at 1500°C for 10 minutes before being tapped. The pouring was carried out at 1370°C.

この溶湯の化学組成はC3,51係、Si2.16係。The chemical composition of this molten metal is C3.51 and Si2.16.

Mn0.96%、他に80.054%、Po、037%
を含有し、残部Feであった。
Mn 0.96%, others 80.054%, Po, 037%
The balance was Fe.

なお、実施例1のチル化促進元素のMnの含有量を変え
たもの(実施例2〜3)、実施例1のチル化促進元素の
MnをW、Cr、Vに変えたもの(実施例4〜12)、
前記チル促進元素の外にチル化抑制元素(P、Cu、N
i)を添加したもの(実施例13〜21)およびチル促
進元素を2種以上(実施例22〜24)を添加した本発
明合金鋳鉄を製造した。
In addition, examples in which the Mn content of the chilling promoting element in Example 1 was changed (Examples 2 to 3), and those in which the Mn content in the chilling promoting element in Example 1 was changed to W, Cr, and V (Examples 4-12),
In addition to the chill-promoting elements, chill-inhibiting elements (P, Cu, N
Cast iron alloys of the present invention were manufactured, including those to which i) was added (Examples 13 to 21) and two or more chill promoting elements (Examples 22 to 24).

実施例1〜24の合金組成を第1表に示す。The alloy compositions of Examples 1 to 24 are shown in Table 1.

前記実施例によって得られた本発明合金鋳鉄を用いて第
3図および第4図に示す自動車用カムシャフトを製作し
た。
An automobile camshaft shown in FIGS. 3 and 4 was manufactured using the cast iron alloy of the present invention obtained in the above example.

第3図は自動車用カムシャフトの断面図であり、第4図
は第3図のA−A線に沿った断面図で、本発明の合金鋳
鉄により、第4図に示す冷し金3を用いて第3図のチル
化させたカム部2と切削部1を有するカムシャフトを製
造し、夫々についてCE値、チル深さく冗0、チル硬さ
くHv)、切削部硬さくHv)を次の測定方法により調
査した。
FIG. 3 is a sectional view of an automobile camshaft, and FIG. 4 is a sectional view taken along the line A-A in FIG. 3. A camshaft having a chilled cam part 2 and a cutting part 1 as shown in FIG. The investigation was conducted using the following measurement method.

OCE値・・・得られた製品の1部を切り出し、それを
化学分析しCとSiの含有量を求め、次式によりCE値
を算出した。
OCE value: A portion of the obtained product was cut out and chemically analyzed to determine the content of C and Si, and the CE value was calculated using the following formula.

CE−C%+1/3Si悌 0チル深さ・・・カム部頂部から中心に向ってのクリア
ーチル深さを求めチル深さとした。
CE-C%+1/3Si 0 Chill depth...The clear chill depth from the top of the cam part toward the center was determined as the chill depth.

○チル硬さ・・・カム部2を軸に対して直角方向に切断
し、カム頂部付近で表面から2關の位置の°任意の3点
を荷重20kgのビッカース硬度計で測定した値を平均
し求めた。
○Chill hardness: Cut the cam part 2 in a direction perpendicular to the axis, and measure the average of the values measured at three arbitrary points two degrees from the surface near the top of the cam using a Vickers hardness tester with a load of 20 kg. I asked for it.

0切削部硬さ・・・切削部1を軸に対して直角方向に切
断し、表面から2關の位置の任意の5点を荷重20kg
のビッカース硬度計で測定した値を平均し求めた。
0 Cutting part hardness...Cutting part 1 is cut in a direction perpendicular to the axis, and a load of 20 kg is applied to any 5 points at two positions from the surface.
It was determined by averaging the values measured with a Vickers hardness tester.

結果は第1表に示す。The results are shown in Table 1.

なお、前記本発明合金鋳鉄と比較するため、従来使用さ
れる合金鋳鉄を次の如く製造した。
In addition, in order to compare with the alloy cast iron of the present invention, a conventionally used alloy cast iron was manufactured as follows.

従来法 I FC25相当の戻し材を高周波炉で溶解し、これに加炭
材と75φFe−8iを添加して成分調整を行ない、1
500’Cで10分間保持した後出湯して1370 ’
Cで注湯を行なった。
Conventional method I Melt the returning material equivalent to FC25 in a high frequency furnace, add recarburizer and 75φFe-8i to adjust the composition,
After holding at 500'C for 10 minutes, take out the hot water and heat it to 1370'
Pouring was carried out at C.

この溶湯の化学組成はC3,21% 、 Si 1.
98%で他にMn0.64俤、80.052係、Po、
037係を含有し、残部Feであった。
The chemical composition of this molten metal is C3, 21%, Si 1.
98% and also Mn0.64 t, 80.052, Po,
037, and the remainder was Fe.

従来法 2 FC25相当の戻し材を高周波炉で溶解し、これに加炭
材と75 %Fe −8i 、 Fe −Mo 、 F
e −Crを添加して成分調整を行ない1500℃で1
0分間保持した後出湯して1370’Cで注湯を行なっ
た。
Conventional method 2 A return material equivalent to FC25 is melted in a high frequency furnace, and a recarburized material and 75% Fe-8i, Fe-Mo, F
e -Cr was added to adjust the composition and 1 at 1500°C.
After holding for 0 minutes, the hot water was tapped and poured at 1370'C.

この溶湯の化学組成はC3,22%。Si 2.46
% 、 Mo 0.30% 、 Cr O,51%で他
にMn 0.61%、80.049%、Po、038%
を含有し、残部鉄であった。
The chemical composition of this molten metal is C3, 22%. Si 2.46
%, Mo 0.30%, CrO, 51%, and Mn 0.61%, 80.049%, Po, 038%
The balance was iron.

前記従来法1および2の合金鋳鉄を実施例と同様にCE
値、合金元素、チル深さく關)、チル硬さくHv)を測
定した。
The alloy cast irons of Conventional Methods 1 and 2 were subjected to CE in the same manner as in the Examples.
The alloying elements, chill depth (Hv), and chill hardness (Hv) were measured.

結果を第3表に示す。The results are shown in Table 3.

第1表の本発明の合金鋳鉄は、CまたはCとSiを増加
させ、CE値を高めるとともにチル化促進元素を1種ま
たは2種を添加するか、またはチル化促進元素とチル化
抑制元素とを添加して、チル効果を調整したものである
が、第3表の従来法1および2に比較して、共にチル深
さ、切削部硬さは劣化することなく、チル硬さがいずれ
も著しく増加していることが判明した。
The cast iron alloy of the present invention shown in Table 1 is prepared by increasing C or C and Si to increase the CE value and adding one or two chilling promoting elements, or by adding a chilling promoting element and a chilling inhibiting element. The chill effect was adjusted by adding It was also found that there was a significant increase.

以上の様に本発明の合金鋳鉄は従来品で得られなかった
チル部の硬さとチル深さをカムシャフトに好都合のもの
に両立させると同時に、被削性をも害することなくカム
シャフトの製造を可能にしたものであり、カムシャフト
の製造のみならず高応力下の摺動部分に適用し得るもの
である。
As described above, the cast iron alloy of the present invention achieves both the hardness of the chilled part and the depth of the chill, which cannot be obtained with conventional products, which are convenient for camshafts, and at the same time, it is possible to manufacture camshafts without impairing machinability. This makes it possible to apply this method not only to the manufacture of camshafts, but also to sliding parts under high stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、カムノーズ部硬さとピッチング面積率との関
係をあられすグラフを示す。 第2図は、CE値とチル部との関係をあられすグラフを
示す。 第3図は、自動車用カムシャフトの断面図をあられす。 第4図は、第3図A−A線に沿った断面図をあられす。 図中の1は切削部を、2はチルを生じせしめるカム部を
、3は冷し金をあられす。
FIG. 1 shows a graph showing the relationship between cam nose hardness and pitching area ratio. FIG. 2 shows a graph showing the relationship between the CE value and the chill portion. Figure 3 shows a cross-sectional view of an automobile camshaft. FIG. 4 is a sectional view taken along the line A--A in FIG. 3. In the figure, 1 is the cutting part, 2 is the cam part that generates the chill, and 3 is the chiller.

Claims (1)

【特許請求の範囲】 1 けい素(Si)および炭素(C)を重量比で2.0
%<Si≦3,0係および3.1φ≦C≦4.0%の範
囲で含有したCE値(炭素当量)が4.1〜5.0の合
金鋳鉄において、チル化促進元素o、1%〜2.0%を
含有し、必要部分のみチル化された耐表面損傷性合金鋳
鉄。 2 けい素(Si)および炭素(C)を重量比で2.0
%<Si≦3.0%および3.1係≦C≦4.0%の範
囲で含有したCE値(炭素当量)が4.1〜5.0の合
金鋳鉄において、チル化促進元素0.1〜2.0%とチ
ル化抑制元素0.5%以下を含有し、必要部分のみチル
化された面4表面損傷性合金鋳鉄。
[Claims] 1 Silicon (Si) and carbon (C) in a weight ratio of 2.0
In alloyed cast iron with a CE value (carbon equivalent) of 4.1 to 5.0, which is contained in the range of %<Si≦3.0 and 3.1φ≦C≦4.0%, chilling promoting elements o, 1 % to 2.0%, surface damage resistant alloy cast iron that is chilled only in necessary parts. 2 Silicon (Si) and carbon (C) at a weight ratio of 2.0
%<Si≦3.0% and 3.1 coefficient≦C≦4.0% in alloyed cast iron having a CE value (carbon equivalent) of 4.1 to 5.0, containing 0.0% of the chilling promoting element. 1 to 2.0% and 0.5% or less of a chilling-inhibiting element, and is chilled only in necessary areas.
JP14103173A 1973-12-12 1973-12-12 Surface damage resistant alloy cast iron Expired JPS5839907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14103173A JPS5839907B2 (en) 1973-12-12 1973-12-12 Surface damage resistant alloy cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14103173A JPS5839907B2 (en) 1973-12-12 1973-12-12 Surface damage resistant alloy cast iron

Publications (2)

Publication Number Publication Date
JPS5090521A JPS5090521A (en) 1975-07-19
JPS5839907B2 true JPS5839907B2 (en) 1983-09-02

Family

ID=15282595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14103173A Expired JPS5839907B2 (en) 1973-12-12 1973-12-12 Surface damage resistant alloy cast iron

Country Status (1)

Country Link
JP (1) JPS5839907B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252727B2 (en) * 1983-05-04 1990-11-14 Marutoku Sangyo Kk
JPH0436321Y2 (en) * 1985-10-14 1992-08-27
JPH0573104U (en) * 1991-11-07 1993-10-05 株式会社日本アルミ Expansion joint device protection structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118049A (en) * 1986-11-07 1988-05-23 Mazda Motor Corp Apex seal for rotary piston engine and its production
JP3382326B2 (en) * 1993-12-10 2003-03-04 本田技研工業株式会社 Cast iron sliding member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252727B2 (en) * 1983-05-04 1990-11-14 Marutoku Sangyo Kk
JPH0436321Y2 (en) * 1985-10-14 1992-08-27
JPH0573104U (en) * 1991-11-07 1993-10-05 株式会社日本アルミ Expansion joint device protection structure

Also Published As

Publication number Publication date
JPS5090521A (en) 1975-07-19

Similar Documents

Publication Publication Date Title
JPS63303030A (en) Locker arm
US2051415A (en) Heat treated alloy steel
JPS5858254A (en) Alloy steel
JPS63174798A (en) Corrosion resistant alloy for build-up welding
JPS5839907B2 (en) Surface damage resistant alloy cast iron
JP3217661B2 (en) High strength ductile cast iron
JPS57185961A (en) Production of al-based alloy plate for magnetic disc substrate
JPH03208825A (en) Press bending of glass plate
US4547221A (en) Abrasion-resistant refrigeration-hardenable ferrous alloy
JPS5940212B2 (en) Co-based alloy for engine valves and valve seats of internal combustion engines
JPS6112843A (en) Co base alloy for engine valve and it valve sheet
US3472651A (en) Engine components of cast iron having ni,cr,and ti as alloying elements
JPH076031B2 (en) Abrasion resistant Fe-base casting alloy for rocker arms having high strength and toughness
JPS5911656B2 (en) High hardness wear-resistant cast iron
JPH0138861B2 (en)
JP2733773B2 (en) Rocker arm
JP2564489B2 (en) Rocker arm with high strength, high toughness and wear resistance
JPS62120453A (en) Ni-metal material for nitriding
KR930006291B1 (en) Manufacture of sliding member made or cast iron
SU1504281A1 (en) Cast iron
JPS6032701B2 (en) Ni-based alloy for engine valves and valve seats of internal combustion engines
JP2000254715A (en) Material for rolling roll
JPH0140102B2 (en)
JP2581025B2 (en) High-strength and high-toughness wear-resistant Fe-based cast alloy for rocker arms
US1839089A (en) Stable surface alloy steel