JPS5839761B2 - Oxygen recycling ozone generator - Google Patents
Oxygen recycling ozone generatorInfo
- Publication number
- JPS5839761B2 JPS5839761B2 JP8943577A JP8943577A JPS5839761B2 JP S5839761 B2 JPS5839761 B2 JP S5839761B2 JP 8943577 A JP8943577 A JP 8943577A JP 8943577 A JP8943577 A JP 8943577A JP S5839761 B2 JPS5839761 B2 JP S5839761B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- ozone
- desorption
- adsorption
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Description
【発明の詳細な説明】
この発明は酸素を原料気体とし、オゾン発生器から供給
されるオゾン化酸素中のオゾンを低温シリカゲルに吸着
させ、オゾン化されない酸素をオゾン発生器に還流する
とともに、シリカゲルに吸着されたオゾンを脱着用気体
により脱着させ、効率よくオゾンを供給するようにした
酸素リサイクリングオゾン発生装置に関するものである
。Detailed Description of the Invention This invention uses oxygen as a raw material gas, allows ozone in ozonized oxygen supplied from an ozone generator to be adsorbed on low-temperature silica gel, and refluxes the oxygen that is not ozonated to the ozone generator. This invention relates to an oxygen recycling ozone generator that efficiently supplies ozone by desorbing ozone adsorbed by a desorbing gas.
第1図は従来の装置の構成を示す回路図で、図において
、1は低温の原料酸素を供給する液体酸素容器、2は液
体酸素蒸発冷却器、3は原料酸素を供給され、対向する
電極間に高電圧を印加し、容器内の酸素の一部をオゾン
に変換させるオゾン発生器、4は熱交換器、5,6はシ
リカゲルを収容する吸脱着容器5a〜5d、5a〜6d
は電磁弁で、5a、5aはオゾン化酸素供給用電磁弁、
5b、6bは吸脱着容器5,6内の酸素をオゾン発生器
3に還流させる酸素排出用電磁弁、5c。FIG. 1 is a circuit diagram showing the configuration of a conventional device. In the figure, 1 is a liquid oxygen container that supplies low-temperature raw material oxygen, 2 is a liquid oxygen evaporative cooler, and 3 is an electrode that is supplied with raw material oxygen and is opposed to it. 4 is a heat exchanger; 5 and 6 are adsorption/desorption containers 5a to 5d, 5a to 6d that house silica gel;
is a solenoid valve, 5a and 5a are solenoid valves for supplying ozonized oxygen,
Reference numerals 5b and 6b refer to oxygen discharge electromagnetic valves 5c that return oxygen in the adsorption/desorption containers 5 and 6 to the ozone generator 3;
6cは脱着気体例えば乾燥空気あるいは乾燥酸素等を供
給する脱着気体供給用電磁弁、5d 、 5dは低温シ
リカゲルから脱着されたオゾンを排出するオゾン排出用
電磁弁、7は吸脱着容器5,6から容器内の酸素を吸引
し、オゾン発生器3に圧送するブロワ−である。6c is a desorption gas supply solenoid valve that supplies desorption gas such as dry air or dry oxygen, 5d and 5d are ozone discharge solenoid valves that discharge ozone desorbed from low-temperature silica gel, and 7 is a desorption gas supply solenoid valve that supplies desorption gas such as dry air or dry oxygen; This is a blower that sucks the oxygen in the container and sends it under pressure to the ozone generator 3.
なお、第2図に示されるように、吸脱着容器5,6の内
部にはシリカゲル5eを充満させてあり、上部と下部は
フィルタ付隔板5fで隔離している。As shown in FIG. 2, the interiors of the adsorption/desorption containers 5 and 6 are filled with silica gel 5e, and the upper and lower parts are separated by a filter-equipped partition plate 5f.
以上のように構成されており、液体酸素容器1かも供給
された酸素はオゾン発生器3により一部をオゾンに転換
させ、電磁弁5a、5bを開(ことにより、オゾン化酸
素は低温、加圧状態で吸脱着容器5に供給され、容器5
内の低温シリカゲル5eにオゾンを吸着させる。The structure is as described above, and part of the oxygen supplied from the liquid oxygen container 1 is converted into ozone by the ozone generator 3, and the solenoid valves 5a and 5b are opened. The pressure is supplied to the adsorption/desorption container 5, and the container 5
Ozone is adsorbed to the low temperature silica gel 5e inside.
第3図は吸着過程の進行状態を示す図で、図において左
端Aがオゾン化空気供給側(以下入口側と称す)、右端
Bが酸素排出側(以下出口側と称す)で、縦軸にシリカ
ゲルに吸着された単位容積あたりのオゾンすなわち固相
オゾン濃度を示す。Figure 3 is a diagram showing the progress of the adsorption process. In the figure, the left end A is the ozonized air supply side (hereinafter referred to as the inlet side), and the right end B is the oxygen discharge side (hereinafter referred to as the outlet side). It shows the ozone per unit volume adsorbed on silica gel, that is, the solid phase ozone concentration.
また、t1〜tnの曲線群は時刻t、からtnに進行す
るときの容器5内のシリカゲルのオゾン濃度の状態を示
すもので、図示のように入口側からシリカゲルのオゾン
吸着の飽和が始まり、吸着過程の進行とともに飽和は出
口側のシリカゲ゛ルに進む。In addition, the curve group from t1 to tn shows the state of the ozone concentration of the silica gel in the container 5 as it progresses from time t to tn, and as shown in the figure, the ozone adsorption of the silica gel starts to saturate from the inlet side. As the adsorption process progresses, saturation progresses to the silica gel on the outlet side.
これがさらに進むと、出口側から排出される酸素中にオ
ゾンが含まれるようになり、この時点が吸着過程を終了
させる。If this progresses further, ozone will be included in the oxygen discharged from the outlet side, at which point the adsorption process ends.
つぎに、電磁弁5aを閉じることにより、容器5内の圧
力を低下させ、所定の圧力まで低下したとき、電磁弁5
bを閉じ、電磁弁5c、5dを開き、脱着気体を容器5
内に供給し、脱着過程に入る。Next, by closing the solenoid valve 5a, the pressure inside the container 5 is lowered, and when the pressure has decreased to a predetermined level, the solenoid valve 5a is closed.
b, open the solenoid valves 5c and 5d, and transfer the desorbed gas to the container 5.
and enters the desorption process.
第4図は脱着過程の進行状態を示す図で、図において右
端Bが脱着気体供給側(以下入口側と称す)、左端Aが
オゾン排出側(以下出口側と称す)で、第3図と同様縦
軸にシリカゲルの固相オゾン濃度を示す。Figure 4 is a diagram showing the progress of the desorption process. Similarly, the solid phase ozone concentration of silica gel is shown on the vertical axis.
従って脱着過程開始時において容器5内のシリカゲルの
固相オゾン濃度t。Therefore, the solid phase ozone concentration t of the silica gel in the container 5 at the start of the desorption process.
は第3図におけるtnに相当し、脱着過程の進行ととも
に、シリカゲルに吸着されたオゾン量は減少するので、
出口側から排出される単位脱着気体中のオゾン量すなわ
ち気相オゾン濃度は低下する。corresponds to tn in Figure 3, and as the desorption process progresses, the amount of ozone adsorbed on silica gel decreases, so
The amount of ozone in the unit desorbed gas discharged from the outlet side, that is, the gas phase ozone concentration decreases.
第5図はこの状態を示す図である。FIG. 5 is a diagram showing this state.
実際の吸着、脱着は一方の吸脱着容器5を吸着過程とし
ているときは他方の吸脱着容器6を脱着過程に使用し、
吸着、脱着作用の低下とともに、吸着と脱着とを交互に
切換えて使用する。In actual adsorption and desorption, when one adsorption/desorption container 5 is used for the adsorption process, the other adsorption/desorption container 6 is used for the desorption process,
As adsorption and desorption effects decrease, adsorption and desorption are alternately used.
その結果、オゾン排出用電磁弁5dあるいは6dから排
出されるオゾン濃度は第6図に示されるオゾン濃度曲線
を繰返すことになり、オゾン濃度の変動が大きく、オゾ
ンを利用する立場からは余り好しい状態ではなかった。As a result, the ozone concentration discharged from the ozone discharge electromagnetic valve 5d or 6d repeats the ozone concentration curve shown in Fig. 6, which causes large fluctuations in ozone concentration, which is not desirable from the standpoint of ozone users. It was not a condition.
この発明は上記の点に鑑みなされたもので、排出される
気体中のオゾン濃度の変動をできるだけ少くした酸素リ
サイクルオゾン発生装置を提供するものである。The present invention has been made in view of the above points, and it is an object of the present invention to provide an oxygen recycling ozone generator in which fluctuations in the ozone concentration in the emitted gas are minimized.
以下、この発明の一実施例を第6図〜第10図により説
明する。An embodiment of the present invention will be described below with reference to FIGS. 6 to 10.
図において、第1図〜第5図と同一符号は同一または相
当部分を示し、5g。In the figure, the same reference numerals as in FIGS. 1 to 5 indicate the same or corresponding parts, 5g.
6gは吸脱着容器5,6の下部に設けられた脱着気体供
給用電磁弁、5h、6hは容器5,6の上部と下部の中
間部に設けられたオゾン排出用電磁バルブ、8 a 、
8 bは脱着気体の供給量を調整する調整弁である。6g is a desorption gas supply solenoid valve provided at the bottom of the adsorption/desorption containers 5, 6; 5h, 6h is an ozone discharge solenoid valve provided at an intermediate portion between the top and bottom of the containers 5, 6; 8a;
Reference numeral 8b denotes a regulating valve that regulates the supply amount of desorption gas.
なお、オゾン排出用電磁バルブ5h 、6hは容器5,
6の中間部に設けられたフィルタ付隔板5f、、SL、
によって形成される混合室5f3に連通して設けられる
。In addition, the ozone discharge electromagnetic valves 5h and 6h are the containers 5,
6, the filter-equipped partition plate 5f, SL,
The mixing chamber 5f3 is provided in communication with the mixing chamber 5f3 formed by the mixing chamber 5f3.
また、脱着気体は調整弁8a、8bを通り、吸脱着容器
5または6の電磁弁5cおよび5gまたは電磁弁6cお
よび6gから供給する。Further, the desorption gas passes through the regulating valves 8a and 8b and is supplied from the solenoid valves 5c and 5g or the solenoid valves 6c and 6g of the adsorption/desorption container 5 or 6.
以上のように構成され、吸着過程は第1図に示される従
来のものと全く同様であり、また、第8図に示される吸
着過程における容器5または6の固相オゾン濃度の状況
も、第3図に示される従来のものと全く同様であるので
説明は省略する。With the above structure, the adsorption process is exactly the same as the conventional one shown in FIG. Since it is exactly the same as the conventional one shown in FIG. 3, the explanation will be omitted.
つぎに脱着過程は従来と異なり、吸脱着容器5または6
の上部の電磁弁5cまたは6cならびに下部の電磁弁5
gまたは6gを開いて、上部および下部から脱着気体を
供給し、容器5または6の中間部の電磁弁5hまたは6
hを開き、オゾンを取出すようにしたもので、脱着過程
における容器5または6内のシリカゲルの固相オゾン濃
度の変化状況を第9図に示す。Next, the desorption process is different from the conventional one, and the adsorption/desorption container 5 or 6 is
The upper solenoid valve 5c or 6c and the lower solenoid valve 5
g or 6g is opened to supply desorption gas from the upper and lower parts, and the solenoid valve 5h or 6 in the middle of the container 5 or 6 is opened.
Fig. 9 shows how the solid phase ozone concentration of the silica gel in the container 5 or 6 changes during the desorption process.
図においてAは吸着過程におけるオゾン化酸素供給口、
Bは酸素排出口、Cは脱着過程におけるオゾン排出口の
位置を示す。In the figure, A is the ozonized oxygen supply port during the adsorption process;
B indicates the position of the oxygen outlet, and C indicates the position of the ozone outlet during the desorption process.
脱着過程開始時のシリカゲルの固相オゾン濃度t。Solid phase ozone concentration t of silica gel at the start of the desorption process.
は吸着過程終了時のシリカゲルの固相オゾン濃度に相当
し、脱着の進行とともにt1〜tnと変化する。corresponds to the solid phase ozone concentration of silica gel at the end of the adsorption process, and changes from t1 to tn as desorption progresses.
B−C間の固相オゾン濃度の変化状況は第4図に示され
るものと一致するが、A−C間については脱着気体の供
給側が従来のものと反対となるため、従来のものと異な
り、C点において不連続となる。The change in solid phase ozone concentration between B and C matches that shown in Figure 4, but between A and C, the supply side of the desorption gas is opposite to the conventional one, so it is different from the conventional one. , becomes discontinuous at point C.
また、オゾンの排出口における気相オゾン濃度はA側か
ら供給されたものは、脱着過程の進行とともに高くなり
、B側から供給されたものは低くなる。Further, the gas phase ozone concentration at the ozone outlet increases as the desorption process progresses for the ozone supplied from the A side, and decreases for the ozone supplied from the B side.
オゾン排出口における気相オゾン濃度(以下単にオゾン
濃度という)はA側から供給されたものと、B側から供
給されたものとが混合室5f3において混合され、オゾ
ン排出口から排出される。Regarding the gas phase ozone concentration (hereinafter simply referred to as ozone concentration) at the ozone outlet, what is supplied from the A side and what is supplied from the B side are mixed in the mixing chamber 5f3, and the mixture is discharged from the ozone outlet.
その結果、オゾン濃度は平均化され、脱着過程開始時か
ら徐々に低下するが、第10図P1曲線に示されるよう
に変動幅は小さくなる。As a result, the ozone concentration is averaged and gradually decreases from the start of the desorption process, but the fluctuation range becomes smaller as shown by the P1 curve in FIG. 10.
なお以上は脱着気体の供給量は従来の場合と等しいもの
として説明したが、脱着気体の供給量を調整することに
より、排出されるオゾン濃度を調整することができる。Although the above description has been made assuming that the supply amount of the desorption gas is the same as in the conventional case, by adjusting the supply amount of the desorption gas, the emitted ozone concentration can be adjusted.
すなわち、調整弁8aにより単位時間あたりの脱着気体
供給量を減少することにより、排出オゾン濃度は高める
ことができ、第10図のP2.P3,44曲線により示
されるように、オゾン濃度の変動をさらに小さくするこ
とができる。That is, by reducing the amount of desorption gas supplied per unit time using the regulating valve 8a, the emitted ozone concentration can be increased, resulting in P2. As shown by the P3,44 curve, the variation in ozone concentration can be further reduced.
第11図はこの発明の他の実施例を示すもので、オゾン
排出口を中央部に限らず、複数個設けたもので、排出オ
ゾン濃度の変動幅縮少に有効である。FIG. 11 shows another embodiment of the present invention, in which a plurality of ozone discharge ports are provided instead of being limited to the central portion, which is effective in reducing the range of variation in the discharged ozone concentration.
以上は、いずれも2個の吸脱着容器を備えた場合につい
て説明したが、第12図に示されるように、並列に接続
される吸脱着容器の数を増し、吸着過程、脱着過程のサ
イクルをずらせて行わせることにより、排出オゾン濃度
の変動幅をさらに縮少することができる。The above explanations are based on the case where two adsorption/desorption containers are provided, but as shown in Fig. 12, the number of adsorption/desorption containers connected in parallel can be increased to increase the cycle of adsorption and desorption processes. By staggering the measurements, it is possible to further reduce the fluctuation range of the emitted ozone concentration.
以上のように、この発明は脱着過程において脱着気体を
、吸着過程におけるオゾン化酸素供給側と酸素排出側の
双方から供給し、その中間部から脱着されたオゾンを排
出するようにしたので、脱着過程における排出オゾン濃
度が平均化され、オゾン濃度の変動幅を縮少することが
できる。As described above, in the desorption process, the present invention supplies desorption gas from both the ozonized oxygen supply side and the oxygen discharge side in the adsorption process, and exhausts the desorbed ozone from the intermediate part. The emitted ozone concentration during the process is averaged, and the fluctuation range of ozone concentration can be reduced.
第1図〜第5図は従来の装置を示すもので、第1図は構
成を示す回路図、第2図は吸脱着容器の断面図、第3図
は吸着過程におけるシリカゲルのオゾン濃度特性図、第
4図は脱着過程におけるシリカゲルのオゾン濃度特性図
、第5図は脱着過程における排出オゾン濃度特性図であ
る。
第6図〜第10図はこの発明の一実施例を示すもので、
第6図は構成を示す回路図、第7図は吸脱着容器の断面
図、第8図は吸着過程におけるシリカゲルのオゾン濃度
特性図、第9図は脱着過程におけるシリカゲルのオゾン
濃度特性図、第10図は脱着過程における排出オゾン濃
度特性図である。
第11図は他の実施例を示す吸脱着容器の断面図、第1
2図はさらに他の実施例の構成を示す回路図である。
図において、同一符号は同一または相当部分を示し、5
,6は吸脱着容器、5a、6aはオゾン化酸素供給用電
磁弁、5b、6bは酸素排出用電磁弁、5C25g、6
c、5gは脱着気体供給用電磁弁、5h、6hはオゾン
排出用電磁弁、8a。
8bは調整弁である。Figures 1 to 5 show a conventional device. Figure 1 is a circuit diagram showing the configuration, Figure 2 is a cross-sectional view of the adsorption/desorption container, and Figure 3 is a diagram of ozone concentration characteristics of silica gel during the adsorption process. , FIG. 4 is a characteristic diagram of the ozone concentration of silica gel during the desorption process, and FIG. 5 is a characteristic diagram of the emitted ozone concentration during the desorption process. Figures 6 to 10 show an embodiment of this invention.
Fig. 6 is a circuit diagram showing the configuration, Fig. 7 is a cross-sectional view of the adsorption/desorption container, Fig. 8 is a characteristic diagram of ozone concentration of silica gel in the adsorption process, Fig. 9 is a characteristic diagram of ozone concentration of silica gel in the desorption process, FIG. 10 is a characteristic diagram of emitted ozone concentration during the desorption process. FIG. 11 is a sectional view of an adsorption/desorption container showing another embodiment, the first
FIG. 2 is a circuit diagram showing the configuration of still another embodiment. In the figures, the same reference numerals indicate the same or corresponding parts, 5
, 6 is an adsorption/desorption container, 5a, 6a are solenoid valves for supplying ozonized oxygen, 5b, 6b are solenoid valves for discharging oxygen, 5C25g, 6
c, 5g are solenoid valves for supplying desorbed gas; 5h, 6h are solenoid valves for ozone discharge; 8a; 8b is a regulating valve.
Claims (1)
を低温シリカゲルに吸着させ、また脱着気体を供給され
、吸着されたオゾンを脱着させる吸脱着容器を備えた酸
素リサイクリングオゾン発生装置において、上記吸脱着
容器の一方にオゾン化酸素供給口を、他方に容器内の酸
素を排出する酸素排出口を設けるとともに、上記オゾン
化酸素供給口側と上記酸素排出口側の双方に脱着気体供
給口を、上記オゾン化酸素供給口側と上記酸素排出口側
の中間部に脱着されたオゾンを排出するオゾン排出口を
設けた酸素リサイクリングオゾン発生装置。 2 脱着用気体供給口に脱着気体の供給量を調整する調
整装置を設けた特許請求の範囲第1項記載の酸素リサイ
クリングオゾン発生装置。[Claims] 1. Oxygen recycling equipped with an adsorption/desorption container that is supplied with ozonized oxygen and adsorbs ozone in the ozonized oxygen onto low-temperature silica gel, and is also supplied with desorption gas and desorbs the adsorbed ozone. In the ozone generator, an ozonized oxygen supply port is provided on one side of the adsorption/desorption container, and an oxygen discharge port for discharging oxygen in the container is provided on the other side, and both the ozonized oxygen supply port side and the oxygen discharge port side are provided. The oxygen recycling ozone generator is provided with a desorption gas supply port at the side of the ozonized oxygen supply port and an ozone discharge port for discharging desorbed ozone at an intermediate portion between the ozonized oxygen supply port side and the oxygen discharge port side. 2. The oxygen recycling ozone generator according to claim 1, wherein the desorption gas supply port is provided with an adjustment device for adjusting the supply amount of the desorption gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8943577A JPS5839761B2 (en) | 1977-07-26 | 1977-07-26 | Oxygen recycling ozone generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8943577A JPS5839761B2 (en) | 1977-07-26 | 1977-07-26 | Oxygen recycling ozone generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5424293A JPS5424293A (en) | 1979-02-23 |
JPS5839761B2 true JPS5839761B2 (en) | 1983-09-01 |
Family
ID=13970584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8943577A Expired JPS5839761B2 (en) | 1977-07-26 | 1977-07-26 | Oxygen recycling ozone generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5839761B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT392256B (en) * | 1989-06-26 | 1991-02-25 | Voest Alpine Ind Anlagen | METHOD FOR PRODUCING OXYGEN AND / OR OZONE |
JP4101314B2 (en) * | 1996-03-01 | 2008-06-18 | 三菱電機株式会社 | Power conversion storage method and apparatus |
JP3980091B2 (en) * | 1996-03-01 | 2007-09-19 | 三菱電機株式会社 | Ozone storage equipment |
JPH1143307A (en) * | 1997-07-24 | 1999-02-16 | Mitsubishi Electric Corp | Apparatus for producing ozone |
JP2001248794A (en) * | 2000-03-02 | 2001-09-14 | Kansai Electric Power Co Inc:The | Method and device for storing ozone |
-
1977
- 1977-07-26 JP JP8943577A patent/JPS5839761B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5424293A (en) | 1979-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1029577B1 (en) | Apparatus for producing oxygen enhanced gas from air | |
US20020124732A1 (en) | Evaporated fuel treatment apparatus | |
KR20010013739A (en) | Pressure swing adsorption apparatus and method | |
WO2003004135A1 (en) | Medical oxygen concentrator | |
US6344130B1 (en) | Method for continuously generating highly concentrated ozone gas | |
JPS5839761B2 (en) | Oxygen recycling ozone generator | |
US4100421A (en) | Ozone-generating apparatus | |
JPH09225247A (en) | Adsorption method of nitrogen from gaseous mixture by pressure alternating adsorption method using zeolite | |
CA1320155C (en) | Separation of gaseous mixtures | |
US7195028B2 (en) | Self-contained oxygen generator | |
EP0893400B1 (en) | Ozone supplying apparatus | |
CN108344222B (en) | Refrigerator, humidity control device and method | |
JPS5910925B2 (en) | Oxygen recycling ozone generator | |
JPH0691127A (en) | Adsorption separator | |
CN108332474B (en) | Refrigerator, humidity control device and method | |
JP3709591B2 (en) | Ozone adsorption / desorption method and apparatus | |
JPH1190159A (en) | Method for feeding high concentration ozone and apparatus therefor | |
JPS5490073A (en) | Mixed gas concentrator | |
JPH03131504A (en) | Oxygen concentrator | |
JPH0690988A (en) | Apparatus for production of carbonated spring | |
JPS5910926B2 (en) | Oxygen recycling ozone generator | |
JPS594364B2 (en) | Oxygen recycling ozone generation method | |
JPH09132403A (en) | Ozone adsorbing vessel | |
JPH04306426A (en) | Air conditioner | |
JPH03186269A (en) | Apparatus for producing carbonated spring |