JPS63294922A - Structure of adsorption tower in psa-type adsorbing method - Google Patents

Structure of adsorption tower in psa-type adsorbing method

Info

Publication number
JPS63294922A
JPS63294922A JP62128203A JP12820387A JPS63294922A JP S63294922 A JPS63294922 A JP S63294922A JP 62128203 A JP62128203 A JP 62128203A JP 12820387 A JP12820387 A JP 12820387A JP S63294922 A JPS63294922 A JP S63294922A
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
partition plate
tower
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62128203A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
昭夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62128203A priority Critical patent/JPS63294922A/en
Publication of JPS63294922A publication Critical patent/JPS63294922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To reduce purging loss by dividing the inside of an adsorption tower into two parts with a partition plate or a double-pipe structure, and providing fins to the partition plate or the inner pipe, and providing the outlet and inlet nozzles of gas to the top side of the tower and an installation side respectively. CONSTITUTION:An adsorption tower 1 is divided into two parts with a partition plate 2 and the bottom part of the tower is opened and an adsorbent 3 is closely packed excepting the vicinities of an inlet nozzle 4 of gas, an outlet nozzle 5 of gas and gas diffusers 6. The rodlike fins 7 are fitted to the partition plate 2 and heat transfer effect is raised and the temp. distribution of a packed layer is eliminated. Dead space is made small by the structure of such the adsorption tower as this and purging loss is reduced. A double-pipe structure can be adopted instead of the partition plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PSA式吸着法によるガス分離に係り、特に
デッドスペース低減に好適な吸着塔構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to gas separation by a PSA adsorption method, and particularly to an adsorption tower structure suitable for reducing dead space.

〔従来の技術〕[Conventional technology]

従来の装置は、塔底(あるいは塔頂)よりガスを供給し
、塔頂(あるいは塔底)より製品を抜き出している。こ
の場合、特に塔底側は吸着剤を支えるサポート類が取り
つけられるため、かなりのデッドスペース(空間部)が
生じ、パージロスを大きくする原因となっていた。また
、塔径が大きくなるにつn吸脱暑熱が蓄積し塔底側は降
温さn脱着性能が低下し、また塔頂側は昇温さn吸着性
能が低下し、全体の性能低下を引きおこしていた。
In conventional equipment, gas is supplied from the bottom (or top) of the column, and the product is extracted from the top (or bottom). In this case, supports are attached to support the adsorbent, especially on the bottom side of the tower, which creates a considerable dead space, causing a large purge loss. In addition, as the column diameter increases, heat absorption and desorption heat accumulates, and the temperature at the bottom of the column decreases and desorption performance decreases, while the temperature rises at the top of the column and adsorption performance decreases, leading to a decrease in overall performance. It was waking up.

なお、この種の装置として関連するものには、例えば、
特開昭56−163753号、特開昭57−10722
5号等が挙げられる。
Note that related devices of this type include, for example,
JP-A-56-163753, JP-A-57-10722
Examples include No. 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、PSA式吸着法によって問題となるパ
ージロス低減の点について配慮がさnておらず、真空ポ
ンプやブロアに負荷がかかる(M単位やコストがアップ
する)という問題があった。
The above-mentioned conventional technology does not take into consideration the reduction of purge loss, which is a problem with the PSA adsorption method, and has the problem of placing a load on the vacuum pump and blower (increasing the M unit and cost).

また、塔径が大きくなるにつnて充填層の温度分布が大
きくなり、該進度分布解消の対策は殆んどなさnておら
ず、性能の低下をもたらすと云う問題があった。
In addition, as the column diameter increases, the temperature distribution in the packed bed increases, and there are few measures to eliminate this progress distribution, resulting in a decrease in performance.

未発明の目的は、パージロス低減と充填層の温度分布を
解消するとともに充填剤サポート等を廃止することにあ
る。
The purpose of this invention is to reduce purge loss, eliminate temperature distribution in the packed bed, and eliminate filler support and the like.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、吸着塔内を仕切板あるいは二重管構造によ
り2分割し、該仕切板あるいは内管にフィンを設け、ガ
スの出、入口ノズルをおのおの塔頂側に設置することに
より、達成さnる。
The above objective can be achieved by dividing the inside of the adsorption tower into two parts using a partition plate or double pipe structure, installing fins on the partition plate or inner pipe, and installing gas outlet and inlet nozzles on the top side of each tower. nru.

〔作  用〕[For production]

吸着塔内の仕切り板あるいは内管は、吸着塔を2分割し
、ガスの供給、排出を塔頂で行なえるようにするととも
に伝熱板やガス分散板の役目を果している。従ってこれ
らに例えばフィン等を取り付けることにより、その伝熱
効果やガス分散効果は更に向上する。
The partition plate or inner tube within the adsorption tower divides the adsorption tower into two parts, allowing gas to be supplied and discharged at the top of the tower, and also serves as a heat transfer plate and a gas distribution plate. Therefore, by attaching, for example, fins to these, the heat transfer effect and gas dispersion effect are further improved.

〔実 施 例〕〔Example〕

以下本発明の一実施例を第1図〜第4図により説明する
。第1図はPSA吸着における吸着塔の縦断面図、第2
図は第1図のA−A線断面図、第3図はガス分散器の詳
細図、第4図はガス分散板の詳細図を示す。図において
、吸着塔1は、仕切板2により中心で2分割さnており
、塔底部は開口(仕切られていない)している。吸着剤
3は、ガス出入口ノズル(ガス入口ノズル4.ガス出口
ノズル5)およびガス分散器6付近を除いて密に充填さ
nている。仕切板2は、空間部を除いてその板厚は薄(
て良い。また、該仕切板2に一種の棒状フィン7が取り
付けらnており、伝熱効果を上げるとともにガス分散効
果も上げている。更に塔底の開口部には分散板8が取り
付けてあり、ガスのシ賃−トパスを防いでいる。なお、
塔底のノズル9は吸着剤抜出口、塔頂のノズル10は吸
着剤投入口である。吸着剤3の元填高さはPSAでは非
定常操作のため高鳴できず、最大3mが限度であるので
、ここでは最大1.5mとする。原料の空気(ガス)は
ガス入口ノズル4より吸着塔!内へ加圧供給さnガス分
散器6により均一分散(第3図参照)されて吸着剤3中
を通過して行く。この際、空気(ガス)中のH2O1N
2 (吸着物質)が吸着剤3に吸着さn、02(製品ガ
ス)が徐々に濃縮さnて行って出口ノズル5で90%前
後の製品ガスとなる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Figure 1 is a vertical cross-sectional view of the adsorption tower in PSA adsorption, Figure 2
The figure shows a cross-sectional view taken along the line A-A in FIG. 1, FIG. 3 shows a detailed view of the gas distributor, and FIG. 4 shows a detailed view of the gas distribution plate. In the figure, an adsorption tower 1 is divided into two at the center by a partition plate 2, and the bottom of the tower is open (not partitioned). The adsorbent 3 is densely packed except in the vicinity of the gas inlet/outlet nozzle (gas inlet nozzle 4, gas outlet nozzle 5) and the gas distributor 6. The partition plate 2 is thin (except for the space).
It's good. Further, a type of rod-shaped fin 7 is attached to the partition plate 2 to improve the heat transfer effect and the gas dispersion effect. Furthermore, a dispersion plate 8 is attached to the opening at the bottom of the column to prevent the gas from passing through. In addition,
The nozzle 9 at the bottom of the column is an adsorbent outlet, and the nozzle 10 at the top of the column is an adsorbent inlet. The initial height of the adsorbent 3 is set to be 1.5 m at maximum here since PSA cannot perform high-pitched operation due to unsteady operation and is limited to a maximum of 3 m. The raw material air (gas) is sent to the adsorption tower from the gas inlet nozzle 4! The gas is supplied under pressure into the adsorbent 3, is uniformly dispersed by the gas distributor 6 (see FIG. 3), and passes through the adsorbent 3. At this time, H2O1N in the air (gas)
2 (adsorbed substance) is adsorbed by the adsorbent 3, and 02 (product gas) is gradually concentrated to become a product gas of about 90% concentration at the outlet nozzle 5.

一方、吸着塔lの再生(吸着されたH2O,N2(吸着
物質)を脱着し除去する)は、減圧下で行なわ3H20
,N2(吸着物質)の排気ガスはガス入口ノズル4より
吸着塔1外へ排出さnる(この時、ガス出口ノズル5は
閉状態)。
On the other hand, regeneration of the adsorption tower 1 (desorption and removal of adsorbed H2O and N2 (adsorbed substances)) was carried out under reduced pressure.
, N2 (adsorbed substance) is discharged to the outside of the adsorption tower 1 from the gas inlet nozzle 4 (at this time, the gas outlet nozzle 5 is closed).

この吸着、再生時、吸着塔l内にある空間部(デッドス
ペース)が大きい程、圧力変化に伴なって生ずるパージ
ロスが増加し、原料ガス、排気ガス盪の増加をもたらす
ようになり、回転機コストや原単位が増加する。ここで
従来の吸着塔と本吸着塔1のパージロスを比較してみた
ところ、従来ベースでは吸着圧力1.5ata、脱看圧
力350Torr (0,48ata ) 、切替サイ
クル1分、原料空気(ガス)10,00ONm”/H,
吸着塔径3m。
During adsorption and regeneration, the larger the dead space inside the adsorption tower, the more purge loss occurs due to pressure changes, resulting in an increase in raw material gas and exhaust gas. Costs and basic units will increase. Here, when we compared the purge loss between the conventional adsorption tower and the present adsorption tower 1, we found that on the conventional basis, the adsorption pressure was 1.5 ata, the degassation pressure was 350 Torr (0.48 ata), the switching cycle was 1 minute, and the feed air (gas) was 10 ,00ONm”/H,
Adsorption tower diameter 3m.

2:1楕円鏡として算出すると、そのパージロスは原料
空気(ガス)の15チ以上となるのに対し、本実施例に
よる吸着塔1(操作条件を同一とし、分散器6の100
0下まで吸着剤3を充填、塔径4.2m1O%サラ形鏡
使用)では5%以下で済むことが判った。二〇を原料空
気(ガス)量で比較すると従来の91%以下で済むこと
が確認できた。
When calculated as a 2:1 elliptical mirror, the purge loss is 15 or more of the feed air (gas), whereas the purge loss of the adsorption tower 1 according to this embodiment (with the same operating conditions and 100 g of the disperser 6)
It was found that when the adsorbent 3 was filled to below 0 and the column diameter was 4.2 m and a 10% flat type mirror was used, the amount was 5% or less. Comparing No. 20 in terms of raw material air (gas) amount, it was confirmed that the amount was 91% or less compared to conventional methods.

また、この一連の操作において、吸着は発熱反応脱着は
吸熱反応となり、ガス流による熱移動によってガス入口
側の吸着剤湿度は下降、ガス出口側の吸着剤湿度は上昇
するが本吸着塔1では、低温部(ガス入口ノズル4側吸
肴剤3)と高温部(ガス出口ノズル5側吸看剤3)が仕
切板2で隣接しており、更に棒状フィン7の効果で、そ
の温度差を小さくすることが可能となった。ちなみに、
従来法では、このクラス(1o、ooo Ni/Hの原
料空気(ガス)湿度20℃)で、塔底側lO℃以下、壱
頂側30℃以上となりその湯度差(軸方向温度差)が2
0℃以上であったが、本実施例では。
In addition, in this series of operations, adsorption is an exothermic reaction and desorption is an endothermic reaction, and due to heat transfer by the gas flow, the adsorbent humidity on the gas inlet side decreases and the adsorbent humidity on the gas outlet side increases. , the low temperature part (gas inlet nozzle 4 side absorbent 3) and the high temperature part (gas outlet nozzle 5 side absorbent 3) are adjacent to each other with a partition plate 2, and the rod-shaped fins 7 further reduce the temperature difference. It became possible to make it smaller. By the way,
In the conventional method, in this class (1o, ooo Ni/H raw air (gas) humidity 20°C), the temperature difference (axial temperature difference) is below 10°C at the bottom of the column and above 30°C at the top. 2
In this example, the temperature was 0°C or higher.

調度差(ガス入口側と出口側)が10℃以下となり、温
度による性能低下を大巾に小さくすることが可能となっ
た。
The difference in temperature (between the gas inlet and outlet sides) is now 10°C or less, making it possible to significantly reduce performance deterioration due to temperature.

史に、本実施例では伝熱効果を上げるための棒状フィン
7によって吸着剤3中を流nるガスの偏流をこの分数効
果によって緩和(第4図参照)をさせることも可能とな
り、吸着剤3の有効度も向上させることができるように
なった。
Historically, in this embodiment, it is also possible to alleviate the uneven flow of gas flowing through the adsorbent 3 by the fractional effect (see Fig. 4) by using the rod-shaped fins 7 to increase the heat transfer effect. It is now possible to improve the effectiveness of 3.

次に本発明による他の実施例として、二重管構造による
ものを第5図〜′158図により説明する。
Next, as another embodiment of the present invention, one having a double pipe structure will be described with reference to FIGS. 5 to 158.

第5図は二重管構造の吸着塔の縦断面図、第6゜第7図
はガス分散器の詳細図、第8図は分散板の詳細図を示す
。図において、吸着塔11は、内管12により仕切らn
2分割(内管12部と外管部の断面積を等しく分割する
)さnており塔底部は開口している。吸着剤13はガス
入口ノズル14.ガス出口ノズル15およびガス分散器
16.17付近を除いて密に充填さnている。内管玖に
は内外面に棒状フィン18が取り付けられており、更に
塔底部の内側には分散板19を設置しである。以上の構
成において本吸着塔の機能は、りS1図〜第4図に説明
した内容と同様である。但しガス分散器16.17と分
散板19の形状は異っている。パージロスの低減は前記
実施例とほぼ同様であるが5m度分布の均一化は本吸着
塔11の方が更に改善されている。
FIG. 5 is a vertical sectional view of an adsorption tower having a double pipe structure, FIGS. 6 and 7 are detailed views of the gas distributor, and FIG. 8 is a detailed view of the dispersion plate. In the figure, an adsorption tower 11 is partitioned by an inner pipe 12.
It is divided into two sections (the cross-sectional areas of the inner tube 12 and the outer tube are equally divided), and the bottom of the column is open. The adsorbent 13 is inserted into the gas inlet nozzle 14. It is densely packed except around the gas outlet nozzle 15 and the gas distributor 16,17. Rod-shaped fins 18 are attached to the inner and outer surfaces of the inner tube, and a dispersion plate 19 is further installed inside the bottom of the column. In the above configuration, the function of the present adsorption tower is the same as that explained in Figs. S1 to 4. However, the shapes of the gas distributors 16 and 17 and the distribution plate 19 are different. Although the reduction in purge loss is almost the same as in the previous example, the present adsorption tower 11 has further improved the uniformity of the 5 m degree distribution.

本実施例によnば、パージロスを低減するとともに、吸
着塔l、11内の澗度分戸を小さくすることができるの
で性能維持の効果も期待できる。
According to this embodiment, it is possible to reduce the purge loss and to reduce the degree of separation in the adsorption towers 1 and 11, so that the effect of maintaining performance can be expected.

〔発明の効果〕〔Effect of the invention〕

本発明によnば、PEA式吸着塔のパージロスが低減で
きるので、真空ポンプおよびブロアの負荷を低減させる
ことができ、原単位やコストを低減させる効果がある。
According to the present invention, since the purge loss of the PEA type adsorption tower can be reduced, the load on the vacuum pump and blower can be reduced, and there is an effect of reducing the basic unit and cost.

更に、吸着塔内の潤度分布を小さくできるので性能低下
を緩和する効果もあ第1図は本発明の一実施例を不す吸
着塔の縦断面図、第2図は第1図のA−A線断面図、第
3図は141図のガス分散器詳細図、第4図は第1図の
分散板詳細図、第5図は本発明の他の実施例な示す吸着
塔の縦断面図、第6図と第7図は第5図のガス分散器詳
細図、第8図は第5図の分散板詳細図である。
Furthermore, since the moisture distribution within the adsorption tower can be made smaller, it has the effect of alleviating performance deterioration. Fig. 1 is a vertical cross-sectional view of an adsorption tower that does not include an embodiment of the present invention, and Fig. 2 is a cross-sectional view of A in Fig. 1. -A line sectional view, Figure 3 is a detailed view of the gas distributor in Figure 141, Figure 4 is a detailed view of the dispersion plate in Figure 1, and Figure 5 is a longitudinal cross-section of an adsorption tower showing another embodiment of the present invention. 6 and 7 are detailed views of the gas distributor shown in FIG. 5, and FIG. 8 is a detailed view of the distribution plate shown in FIG. 5.

l・・・・・・吸着塔、2・・・・・・仕切板、3・・
・・・・吸着剤、4・・・・・・ガス入口ノズル、5・
・・・・・ガス出口ノズル、6・・・・・・ガス分散器
、7・・・・・・棒状コイン、8・・・・・″分散板、
11・・・・・・吸着塔、校・・・・・・内管、13・
・・・・・吸着剤、11図 /−−一専inシ   5−−−fjス出ロlカレター
−−−/スルイ3図   イ4図
l...Adsorption tower, 2...Partition plate, 3...
...Adsorbent, 4...Gas inlet nozzle, 5.
... Gas outlet nozzle, 6 ... Gas distributor, 7 ... Bar-shaped coin, 8 ...'' Dispersion plate,
11...Adsorption tower, tube...Inner pipe, 13.
...Adsorbent, Fig. 11/--In-house 5---Fj output rouletter--/Thrui Fig. 3 Fig. A4

Claims (1)

【特許請求の範囲】 1、PSA式吸着法によるガス分離において、吸着塔内
に塔底部のみ通じる仕切部材を取付け、仕切部材の両面
におのおのフィンを設け、かつ塔頂部の一方に入口分散
器、他方に出口分散器を設けたことを特徴とするPSA
式吸着法における吸着塔構造。 2、特許請求の範囲第1項において、仕切部材を仕切板
としたことを特徴とするPSA式吸着法における吸着塔
構造。 3、特許請求の範囲第1項において、仕切部材を内管と
したことを特徴とするPSA式吸着法における吸着塔構
造。 4、特許請求の範囲第1項において、仕切部材の塔底部
に分散板を設けたことを特徴とするPSA式吸着法にお
ける吸着塔構造。
[Claims] 1. In gas separation by PSA adsorption method, a partition member that communicates only with the bottom of the tower is installed in the adsorption tower, fins are provided on both sides of the partition member, and an inlet disperser is provided on one of the tops of the tower. PSA characterized in that the other side is provided with an outlet disperser
Adsorption tower structure in formula adsorption method. 2. The adsorption tower structure in the PSA adsorption method according to claim 1, characterized in that the partition member is a partition plate. 3. The adsorption tower structure in the PSA adsorption method according to claim 1, characterized in that the partition member is an inner tube. 4. The adsorption tower structure in the PSA adsorption method according to claim 1, characterized in that a dispersion plate is provided at the bottom of the partition member.
JP62128203A 1987-05-27 1987-05-27 Structure of adsorption tower in psa-type adsorbing method Pending JPS63294922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128203A JPS63294922A (en) 1987-05-27 1987-05-27 Structure of adsorption tower in psa-type adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128203A JPS63294922A (en) 1987-05-27 1987-05-27 Structure of adsorption tower in psa-type adsorbing method

Publications (1)

Publication Number Publication Date
JPS63294922A true JPS63294922A (en) 1988-12-01

Family

ID=14979021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128203A Pending JPS63294922A (en) 1987-05-27 1987-05-27 Structure of adsorption tower in psa-type adsorbing method

Country Status (1)

Country Link
JP (1) JPS63294922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043352A (en) * 2014-08-22 2016-04-04 Jfeスチール株式会社 Adsorption tower of pressure swing adsorption type gas separation unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043352A (en) * 2014-08-22 2016-04-04 Jfeスチール株式会社 Adsorption tower of pressure swing adsorption type gas separation unit

Similar Documents

Publication Publication Date Title
US3594984A (en) Refining separation procedure of oxygen from air
EP0719578B1 (en) Gas flow distribution in adsorbent beds
US4614525A (en) Pressure swing process for the adsorptive separation of gaseous mixtures
US6231644B1 (en) Air separation using monolith adsorbent bed
US7122073B1 (en) Low void adsorption systems and uses thereof
US3323288A (en) Selective adsorption process and apparatus
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
US10413859B2 (en) Adsorber with rotary dryer
KR100263941B1 (en) Method and apparatus for separation gas mixture
AU1354102A (en) adsorption processes
US2678108A (en) Apparatus for flowing gas through a permeable adsorbent bed
JP4754358B2 (en) Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower
US3231512A (en) Adsorption device
JPS60129116A (en) Adsorbing device regenerable without heating
GB2281229A (en) An adsorber vessel
JPH0621006B2 (en) High-concentration oxygen gas production equipment by pressure fluctuation adsorption method
JPS63294922A (en) Structure of adsorption tower in psa-type adsorbing method
CN106512644A (en) Multi-layer adsorption tower for purifying electronic grade polycrystalline silicon tail gas
JPH11512971A (en) Method and plant for the treatment of gas mixtures by pressure swing adsorption
JPH0783816B2 (en) Adsorber
JPH1190157A (en) Method and plant for separating air by adsorption
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
RU2257944C1 (en) Adsorber
JPH04293513A (en) Production of oxygen-rich gas by pressure fluctuation adsorption process
JP2001104738A (en) Oxygen concentrator for medical treatment