JPH0621006B2 - High-concentration oxygen gas production equipment by pressure fluctuation adsorption method - Google Patents

High-concentration oxygen gas production equipment by pressure fluctuation adsorption method

Info

Publication number
JPH0621006B2
JPH0621006B2 JP60291296A JP29129685A JPH0621006B2 JP H0621006 B2 JPH0621006 B2 JP H0621006B2 JP 60291296 A JP60291296 A JP 60291296A JP 29129685 A JP29129685 A JP 29129685A JP H0621006 B2 JPH0621006 B2 JP H0621006B2
Authority
JP
Japan
Prior art keywords
type
nitrogen
adsorbent
pressure fluctuation
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291296A
Other languages
Japanese (ja)
Other versions
JPS62148304A (en
Inventor
輝二 金子
俊文 橋本
雅人 川井
泰治 岸田
昭一 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP60291296A priority Critical patent/JPH0621006B2/en
Publication of JPS62148304A publication Critical patent/JPS62148304A/en
Publication of JPH0621006B2 publication Critical patent/JPH0621006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸素、窒素を含む空気の如き混合ガスを原料
とし、圧力変動吸着法により窒素を吸着分離して高濃度
の酸素ガスを製造する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention uses a mixed gas such as air containing oxygen and nitrogen as a raw material and adsorbs and separates nitrogen by a pressure fluctuation adsorption method to produce a high concentration oxygen gas. Related to the device.

〔従来の技術〕[Conventional technology]

圧力変動吸着法によって例えば空気より高濃度の酸素ガ
スを製造する装置は、一般に窒素を選択的に吸着する合
成あるいは天然のゼオライトの充填された複数基の吸着
筒と原料ガスを供給するための送風機と、吸着筒を再生
するための真空ポンプを主要構成部としている。この概
要を第3図で説明すると、1は送風機、2a,2b,2
cは3基設けられ切換使用される吸着筒、3は酸素圧縮
機、4は真空ポンプであって、原料ガスは、送風機1よ
り供給され、切換弁5a,5b,5cを経て吸着筒2
a,2b,2c内を流れる過程で窒素ガスが吸着分離さ
れ、残りの高濃度酸素ガスは出口側切換弁6a,6b,
6cおよび制御弁7を介して酸素圧縮機3に入り所望の
圧力まで昇圧された後、消費先へ供給される。いま、吸
着筒2aが吸着工程、2bが充圧工程、2cが再生工程
にあると、原料ガスは切換弁5a、吸着筒2aに供給さ
れて高濃度酸素ガスが製造され、その一部が分岐されて
管8より切換弁9a,9b,9cの一つである切換弁9
bを経て吸着筒2bに導入される。又吸着筒2cは真空
ポンプ4により、吸着窒素が分離され切換弁10a,1
0b,10cの一つである切換弁10cより排気され
る。
An apparatus for producing oxygen gas having a higher concentration than air, for example, by a pressure fluctuation adsorption method is generally a plurality of adsorption columns filled with synthetic or natural zeolite that selectively adsorb nitrogen and a blower for supplying a raw material gas. And a vacuum pump for regenerating the adsorption cylinder is a main component. An outline of this will be described with reference to FIG. 3. 1 is a blower, 2a, 2b, 2
c is three adsorption cylinders that are used for switching, 3 is an oxygen compressor, 4 is a vacuum pump, the raw material gas is supplied from the blower 1, and the adsorption cylinder 2 is passed through the switching valves 5a, 5b, 5c.
Nitrogen gas is adsorbed and separated in the process of flowing in a, 2b, and 2c, and the remaining high-concentration oxygen gas is discharged to the outlet side switching valves 6a, 6b,
After entering the oxygen compressor 3 via 6c and the control valve 7 and increasing the pressure to a desired pressure, it is supplied to the consumer. Now, when the adsorption cylinder 2a is in the adsorption step, 2b is the charging step, and 2c is in the regeneration step, the raw material gas is supplied to the switching valve 5a and the adsorption cylinder 2a to produce high-concentration oxygen gas, and part of it is branched. The switching valve 9 which is one of the switching valves 9a, 9b, 9c from the pipe 8
It is introduced into the adsorption cylinder 2b via b. Also, the adsorption cylinder 2c separates the adsorbed nitrogen by the vacuum pump 4 and the switching valves 10a, 1
It is exhausted from the switching valve 10c which is one of 0b and 10c.

このように、吸着工程、充圧工程および再生工程を各吸
着筒2a,2b,2cが順次繰返すことにより連続的に
高濃度の酸素ガスが得られるが、この種装置における吸
着筒は通常吸着剤としてCa−Na−A型と呼ばれるゼ
ロライトが使用され第4図に示す如く、吸水剤と併用さ
れるのが一般的である。即ち、吸着筒2内に原料ガス入
口側からアルミナ系あるいはシリカ系の水分を吸着除去
する吸水剤50と、窒素吸着剤51としてCa−Na−
A型ゼオライトが充填されている。
As described above, the adsorption step, the charging step and the regeneration step are sequentially repeated by each of the adsorption columns 2a, 2b and 2c to continuously obtain a high concentration of oxygen gas. Xerrite called Ca-Na-A type is generally used as shown in FIG. 4, and is generally used together with a water absorbing agent. That is, a water absorbing agent 50 that adsorbs and removes alumina-based or silica-based water from the raw material gas inlet side into the adsorption column 2, and Ca-Na- as the nitrogen adsorbent 51.
A type zeolite is filled.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし乍ら、上記した如き構成でなる高濃度の酸素ガス
を製造する装置は主として2つの要因により吸着筒内の
温度変化、殊に温度低下によって性能が劣化する。これ
は窒素吸着剤として一般に使用されているCa−Na−
A型ゼオライトが常温以下特に氷点下の温度において窒
素吸着容量は増大するが、同時に酸素吸着容量も増大す
るため選択性が低下することによる。ここで吸着筒内の
温度低下をもたらす要因とは、冬期あるいは寒冷地の
大気温低下により吸着筒に流入する原料ガス(殊に空
気)温度の低下によるもの、特公昭54−16953
号公報に記載の発明にみられる如く、圧力変動法を採用
した吸着装置の吸着筒では必然的に常温以下の低温度域
が存在することである。このため、従来より種々の対策
が講じられ、例えば送風機の前又は後にヒーター等の加
熱装置を設け、原料ガスを加温した後供給するかあるい
は原料ガスを真空ポンプ等を収納する機械室に導入し電
動機等が発生する熱で昇温した後供給する方法である。
しかし、これらの対策は要因に係るものであり、要因
については筒内温度分布を熱伝導体等で平均化するか
あるいはガス均圧手段で低温度化を減少させる等の方法
が提案されているが、実行に乏しい欠点がある。
However, the performance of the apparatus for producing a high-concentration oxygen gas having the above-described structure is deteriorated mainly due to the temperature change in the adsorption cylinder, especially the temperature decrease, due to two factors. This is Ca-Na- which is commonly used as a nitrogen adsorbent.
This is because the A-type zeolite has an increased nitrogen adsorption capacity at a temperature lower than room temperature, especially at a temperature below freezing point, but at the same time, an oxygen adsorption capacity also increases, which lowers the selectivity. Here, the cause of the temperature decrease in the adsorption cylinder is that the temperature of the raw material gas (especially air) flowing into the adsorption cylinder due to the decrease in the atmospheric temperature in the winter or in the cold region decreases.
As can be seen from the invention described in Japanese Patent Laid-Open Publication No. JP-A-2003-242, there is inevitably a low temperature region below room temperature in the adsorption cylinder of the adsorption device that employs the pressure fluctuation method. For this reason, various measures have been taken from the past, for example, by providing a heating device such as a heater before or after the blower and supplying the raw material gas after warming it or introducing the raw material gas into a machine room that houses a vacuum pump or the like. This is a method in which the temperature is raised by the heat generated by the electric motor or the like and then the temperature is supplied.
However, these measures are related to factors, and for the factors, methods such as averaging the in-cylinder temperature distribution with a heat conductor or reducing the low temperature with a gas pressure equalizing means have been proposed. However, it has the drawback of being poorly implemented.

このようなことから、装置の操作条件を低温域とし、低
温度下において選択性能のよい例えばNa−X型あるい
はNa−Y型ゼオライトを吸着剤として使用する提案も
みられるが、全体の系を低温度下での操作とするため装
置が複雑化する不都合のあることは否めない。
Therefore, there is a proposal that the operating conditions of the apparatus are set to a low temperature range and, for example, Na-X type or Na-Y type zeolite having good selection performance at low temperature is used as an adsorbent, but the whole system is low. It cannot be denied that there is a disadvantage that the device becomes complicated because it is operated at a temperature.

本発明は、このようなことより、特別な設備を設けるこ
となく冬期等の気温低下および圧力変動吸着法の必然的
な温度低下がもたらす性能低下を改善することを目的と
したものである。
Therefore, the present invention aims to improve the performance deterioration caused by the temperature decrease in the winter and the inevitable temperature decrease of the pressure fluctuation adsorption method without providing special equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、窒素を選択的に吸着
する吸着剤の充填してなる複数基の吸着筒を切換使用す
るよう構成し、圧力変動吸着法によって酸素および窒素
を含む混合ガスから高濃度の酸素ガスを製造する装置に
おいて、前記吸着筒の窒素吸着剤として第1発明は、原
料ガス入口側にNa−X型又はNa−Y型あるいはCa
−X型ゼオライトが、出口側にCa−Na−A型ゼオラ
イトが充填されることを特徴とし、第2発明は原料ガス
入口側にNa−X型又はNa−Y型ゼオライトが、出口
側にCa−Na−A型ゼオライトが、Ca−X型ゼオラ
イトを介在させてそれぞれ充填された構成とすることを
特徴とするものである。
In order to achieve the above object, the present invention is configured such that a plurality of adsorption columns filled with an adsorbent that selectively adsorbs nitrogen are switched and used, and a mixed gas containing oxygen and nitrogen is mixed by a pressure fluctuation adsorption method. In a device for producing a high-concentration oxygen gas, the first invention as a nitrogen adsorbent for the adsorption column is Na-X type or Na-Y type or Ca on the raw material gas inlet side.
-X type zeolite is characterized in that Ca-Na-A type zeolite is filled on the outlet side, and the second invention is that Na-X type or Na-Y type zeolite is on the source gas inlet side and Ca is on the outlet side. -Na-A type zeolite is characterized in that each is filled with Ca-X type zeolite interposed.

即ち、前記したように圧力変動吸着法による酸素製造装
置は必然的に吸着筒内の温度低下をもたらすが、これの
温度分布は全体的なものではなく原料ガス入口側に寄っ
た部分に最低温度部がある。即ち窒素吸着剤充填部にお
いて原料ガス入口側より約60%(容量)は低温域が生
成され、温度分布に従って各部分の吸着分離性能が総合
的に全体性能を示すことになる。この低温域殊に最低温
部位では、吸着筒入口の原料ガス温度より30〜60℃
低下し、例えば原料ガス温度が20℃の場合、−10〜
−40℃の温度となる。
That is, as described above, the oxygen production apparatus by the pressure fluctuation adsorption method inevitably brings about a temperature decrease in the adsorption cylinder, but the temperature distribution of this is not the entire one, but the lowest temperature in the portion near the raw material gas inlet side. There are departments. That is, in the nitrogen adsorbent filling portion, a low temperature region is generated in about 60% (capacity) from the raw material gas inlet side, and the adsorption / separation performance of each portion generally shows the overall performance according to the temperature distribution. In this low temperature region, especially in the lowest temperature region, the temperature is 30 to 60 ° C from the temperature of the raw material gas at the inlet of the adsorption cylinder.
When the temperature of the raw material gas is 20 ° C.
A temperature of -40 ° C is reached.

第5図は各種窒素吸着剤の温度に対する窒素吸着容量と
酸素/窒素選択係数の傾向を示したものであるが、第5
図より明らかなようにこの種装置で一般的に用いられて
いるCa−Na−A型ゼオライトは前記した低温域での
温度下では窒素吸着容量は大きいが酸素/窒素の分離性
能は低下する。次にNa−X型ゼオライトの場合は(N
a−Y型も同様である)窒素吸着量は全域においてCa
−Na−A型ゼオライトに劣るが酸素/窒素選択係数は
温度低下に従って向上し、全体の分離性能として0〜−
10℃の範囲でCa−Na−A型を上廻るようになる。
又、Ca−X型ゼオライトはCa−Na−A型に比し、
吸着容量においてほぼ同等か上廻り、かつ低温度におい
ても酸素/窒素選択係数が低下しない特性をもってい
る。しかし乍ら回収酸素濃度が低濃度の場合は、他より
高い回収率を示すが、高濃度の酸素を得る場合はさした
る効果が得られず、又空気流通により吸着破過テストで
は他の吸着剤より、高濃度酸素域の物質移動帯の長いこ
とが知見された。従って上記した特性はもつが、これを
吸着筒に単体で用いた場合、高濃度の酸素を得る装置と
して好ましい結果は期待できない。
FIG. 5 shows the tendency of nitrogen adsorption capacity and oxygen / nitrogen selectivity coefficient with respect to the temperature of various nitrogen adsorbents.
As is clear from the figure, the Ca-Na-A type zeolite generally used in this type of device has a large nitrogen adsorption capacity under the temperature in the above-mentioned low temperature range, but the oxygen / nitrogen separation performance is deteriorated. Next, in the case of Na-X type zeolite, (N
The same applies to the a-Y type).
-Inferior to Na-A type zeolite, but the oxygen / nitrogen selectivity increases with decreasing temperature, and the overall separation performance is 0-
It exceeds the Ca-Na-A type in the range of 10 ° C.
In addition, Ca-X type zeolite is more than Ca-Na-A type,
The adsorption capacity is almost equal or higher, and the oxygen / nitrogen selectivity coefficient does not decrease even at low temperature. However, when the concentration of recovered oxygen is low, the recovery rate is higher than that of others, but when high concentration of oxygen is obtained, the effect is not so great, and due to the air flow, the adsorption breakthrough test shows that other adsorbents are used. It was found that the mass transfer zone in the high concentration oxygen region is long. Therefore, even though it has the above-mentioned characteristics, when it is used alone in the adsorption column, favorable results cannot be expected as an apparatus for obtaining high concentration oxygen.

本発明はこのような知見に基づいて、吸着筒内の温度分
布に対応した吸着剤を選択し、かつ積層して充填するも
のである。
Based on such knowledge, the present invention selects an adsorbent corresponding to the temperature distribution in the adsorption cylinder, and stacks and adsorbs it.

〔実施例〕〔Example〕

以下これを第1図および第2図によって説明する。 This will be described below with reference to FIGS. 1 and 2.

第1図は吸着筒2内に吸水剤20と、2種類の窒素吸着
剤(I)21および(II)22を積層したものであり、
吸水剤20は周知のアルミナあるいはシリカ系等の水分
吸着剤である。窒素吸着剤(I)21にはNa−X型
(又はNa−Y型)ゼオライトか、あるいはCa−X型
ゼオライトを又窒素吸着剤(II)22には、Ca−Na
−A型ゼオライトが使用される。即ち、吸着筒2内の温
度分布より、原料ガスの入口側に近い低温域に低温下で
選択性能が高い吸着剤を充填し、出口側の常温で高濃度
酸素域に常温下で選択性が良く、かつ吸着容量の大きい
Ca−Na−A型ゼオライトを充填したものである。こ
こで窒素吸着剤(I)21にNa−X型(又はNa−Y
型)ゼオライトを採用した場合、これの充填量は、全体
の窒素吸着剤(I)21および(II)22に対し重量比
で0.1〜0.6であり、好ましくは0.2〜0.4で
ある。又Ca−X型ゼオライトを窒素吸着剤(I)21
として採用した場合の重量比は0.2〜0.7であり、
好ましくは0.2〜0.5である。
FIG. 1 shows a case where a water absorbing agent 20 and two kinds of nitrogen adsorbents (I) 21 and (II) 22 are laminated in an adsorption cylinder 2,
The water absorbing agent 20 is a well-known moisture absorbing agent such as alumina or silica. The nitrogen adsorbent (I) 21 is Na-X type (or Na-Y type) zeolite or Ca-X type zeolite, and the nitrogen adsorbent (II) 22 is Ca-Na.
-A type zeolite is used. That is, according to the temperature distribution in the adsorption column 2, an adsorbent having high selectivity at low temperature is filled in a low temperature region close to the inlet side of the raw material gas, and selectivity at high temperature in the high concentration oxygen region at the outlet side is maintained at room temperature. It is filled with Ca-Na-A type zeolite having good and large adsorption capacity. Here, the nitrogen adsorbent (I) 21 has a Na-X type (or Na-Y).
Type) zeolite, the filling amount thereof is 0.1 to 0.6 by weight ratio to the total nitrogen adsorbents (I) 21 and (II) 22, and preferably 0.2 to 0. .4. Further, Ca-X type zeolite is used as a nitrogen adsorbent (I) 21.
When adopted as, the weight ratio is 0.2 to 0.7,
It is preferably 0.2 to 0.5.

第2図は、吸水剤30と3種類の窒素吸着剤(I)3
1、(II)32および(III)33を原料ガス入口側よ
り順に吸着筒2に積層したものであり、吸水剤30と、
窒素吸着剤(I)31および(III)33は前記同様、
アルミナあるいはシリカ系筒の水分吸着剤、Na−X型
(又はNa−Y型)ゼオライトおよびCa−Na−A型
ゼオライトである。又窒素吸着剤(II)32は、Ca−
X型ゼオライトが充填され、窒素吸着域を三区分し、そ
れぞれの温度分布に適した吸着剤が選択使用される。即
ち、最低温度域には低温に従い選択性能が向上するNa
−X型(又はNa−Y型)ゼオライトを、低温〜常温で
かつ低濃度酸素域には選択性能、吸着容量に優れるが高
濃度酸素域で物質移動帯が長い特性をもつCa−X型ゼ
オライトを又常温でかつ高濃度酸素域には常温下で選択
性が良い上、吸着容量の大きいCa−Na−A型ゼオラ
イトが充填される。ここで各窒素吸着剤の充填割合は、
全体の窒素吸着剤に対し重量比でNa−X型(又はNa
−Y型)ゼオライトが0.1〜0.3、Ca−X型ゼオ
ライトが0.1〜0.6である。
FIG. 2 shows a water absorbing agent 30 and three kinds of nitrogen adsorbents (I) 3
1, (II) 32 and (III) 33 are laminated in this order on the adsorption cylinder 2 from the raw material gas inlet side, and the water absorbing agent 30 and
The nitrogen adsorbents (I) 31 and (III) 33 are the same as above.
Alumina or silica based water adsorbents, Na-X type (or Na-Y type) zeolite and Ca-Na-A type zeolite. The nitrogen adsorbent (II) 32 is Ca-
The X-type zeolite is filled, the nitrogen adsorption region is divided into three, and an adsorbent suitable for each temperature distribution is selected and used. That is, in the lowest temperature range, the selection performance improves as the temperature decreases.
-X type (or Na-Y type) zeolite is a Ca-X type zeolite which has excellent selectivity and adsorption capacity in low temperature to normal temperature and low concentration oxygen region, but has long mass transfer zone in high concentration oxygen region. In addition, Ca-Na-A type zeolite, which has a high adsorption capacity at room temperature and a high concentration of oxygen and has a high adsorption capacity at room temperature, is filled. Here, the filling ratio of each nitrogen adsorbent is
The weight ratio of Na-X type (or Na
-Y type) zeolite is 0.1 to 0.3, and Ca-X type zeolite is 0.1 to 0.6.

なお上記説明では、吸水剤を吸着筒に充填してあるが、
これは、別途吸水筒を設け、吸着筒は窒素吸着剤のみを
充填する構成でもよいことは云う迄もない。
In the above description, the water absorbing agent is filled in the adsorption cylinder,
It goes without saying that a separate water absorption cylinder may be provided and the adsorption cylinder may be filled with only the nitrogen adsorbent.

以下に第1図及び第2図に示す吸着筒を3基もった第3
図に示す装置による実験例を示す。
The third with three suction cylinders shown in FIG. 1 and FIG. 2 below
An experimental example using the apparatus shown in the figure is shown.

第1実験例 第1図に示す吸着筒2を用い、吸水剤20としてアルミ
ナゲル、窒素吸着剤(I)21としてNa−X型ゼオラ
イト、窒素吸着剤(II)22としてCa−Na−A型ゼ
オライトを充填した。Na−X型ゼオライトは、Na−
X型とCa−Na−A型ゼオライト合計重量の40%と
し、合計580kgとした。その結果をCa−Na−A型
ゼオライトのみを充填した場合と共に表1に示す。
First Experimental Example Using the adsorption column 2 shown in FIG. 1, alumina gel was used as the water absorbing agent 20, Na-X type zeolite was used as the nitrogen adsorbent (I) 21, Ca-Na-A type was used as the nitrogen adsorbent (II) 22. Zeolite was loaded. Na-X type zeolite is Na-
The total weight of the X-type and Ca-Na-A type zeolite was 40%, and the total weight was 580 kg. The results are shown in Table 1 together with the case where only Ca-Na-A type zeolite was packed.

操作条件 吸着圧力:0.25kgf/cm2G 再生圧力:200Torr 入口空気温度:20℃ 一吸着工程時間:70秒 回収酸素純度:93.5%O この結果、製品酸素の採取量は若干低下したが、酸素収
率として約7%向上した。収率向上は直接に電力原単位
の低減をもたらし、長期運転上は、製品酸素の採取量低
下により吸着筒増大のコスト上昇分を充分に補い、大き
な効果を得ることが出来る。
Operating conditions Adsorption pressure: 0.25 kgf / cm 2 G Regeneration pressure: 200 Torr Inlet air temperature: 20 ° C One adsorption process time: 70 seconds Recovered oxygen purity: 93.5% O 2 As a result, the amount of product oxygen collected was slightly reduced, but the oxygen yield was improved by about 7%. Improving the yield directly brings about a reduction in the electric power consumption rate, and in the long-term operation, the cost increase due to the increase in the adsorption column due to the decrease in the amount of product oxygen collected can be sufficiently compensated, and a great effect can be obtained.

第2実験例 第1図に示す吸着筒2を用い、吸水剤20としてアルミ
ナゲル、窒素吸着剤(I)21としてCa−X型ゼオラ
イト、窒素吸着剤(II)22としてCa−Na−A型ゼ
オライトを充填した。又、Ca−X型/(Ca−X型+
Ca−Na−A型)を重量比とし50%、合計580kg
とした。その結果を表2に示す。
Second Experimental Example Using the adsorption column 2 shown in FIG. 1, alumina gel was used as the water absorbing agent 20, Ca-X type zeolite was used as the nitrogen adsorbent (I) 21, Ca-Na-A type was used as the nitrogen adsorbent (II) 22. Zeolite was loaded. In addition, Ca-X type / (Ca-X type +
Ca-Na-A type) 50% by weight, total 580 kg
And The results are shown in Table 2.

操作条件 吸着圧力:0.25kgf/cm2G 再生圧力:200Torr 入口空気温度:20℃ 一吸着工程時間:70秒 回収酸素純度:93.5%O この結果、製品酸素採取量において約4%の向上、また
酸素収率においては約9%の向上があった。
Operating conditions Adsorption pressure: 0.25 kgf / cm 2 G Regeneration pressure: 200 Torr Inlet air temperature: 20 ° C One adsorption process time: 70 seconds Recovered oxygen purity: 93.5% O 2 As a result, the product oxygen collection amount was improved by about 4%, and the oxygen yield was improved by about 9%.

第3実験例 第2図に示す吸着筒2を用い、吸水剤30としてアルミ
ナゲル、窒素吸着剤(I)31としてNa−X型ゼオラ
イト、窒素吸着剤(II)32としてCa−X型ゼオライ
ト、窒素吸着剤(III)33としてCa−Na−A型ゼ
オライトを充填し、全窒素吸着剤重量に対し、Na−X
型は20%、Ca−X型は40%とし、全量で580kg
とした。その結果を表3に示す。
Third Experimental Example Using the adsorption column 2 shown in FIG. 2, alumina gel was used as the water absorbing agent 30, Na-X type zeolite was used as the nitrogen adsorbent (I) 31, Ca-X type zeolite was used as the nitrogen adsorbent (II) 32, Ca-Na-A type zeolite was filled as the nitrogen adsorbent (III) 33, and Na-X was added to the total nitrogen adsorbent weight.
Type is 20%, Ca-X type is 40%, total amount is 580kg
And The results are shown in Table 3.

操作条件 吸着圧力:0.25kgf/cm2G 再生圧力:200Torr 入口空気温度:20℃ 一吸着工程時間:70秒 回収酸素純度:93.5%O この結果、製品酸素採取量において約2%の向上、また
酸素収率において約10%の向上があった。
Operating conditions Adsorption pressure: 0.25 kgf / cm 2 G Regeneration pressure: 200 Torr Inlet air temperature: 20 ° C One adsorption process time: 70 seconds Recovered oxygen purity: 93.5% O 2 As a result, the product oxygen collection amount was improved by about 2%, and the oxygen yield was improved by about 10%.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明に係る高濃度の酸
素製造装置は、吸着筒内の温度分布に対応した窒素吸着
剤を積層したものであるから多くの効果をもたらす。例
えば、前記実施例で示したように従来方法による装置に
比し、いずれも酸素収率が7〜10%向上するが、これ
は使用電力源単位を7〜10%減少せしめることになり
大幅なコストの低減が図れる。又第2及び第3実施例を
採用した場合は、酸素採取量も2〜4%向上するので更
にコスト低減化を望むことが出来る。
As is clear from the above description, the high-concentration oxygen production apparatus according to the present invention is a stack of nitrogen adsorbents corresponding to the temperature distribution in the adsorption column, and therefore brings many effects. For example, as shown in the above-mentioned examples, the oxygen yield is improved by 7 to 10% as compared with the conventional method, but this means that the power source unit used is reduced by 7 to 10%, which is a large amount. The cost can be reduced. Further, when the second and third embodiments are adopted, the oxygen collection amount is also improved by 2 to 4%, so that further cost reduction can be expected.

次に前記したように斯種装置がもつ低温特性に対処する
ため従来は装置を低温化で運転する等の手段によってい
たり、冬期等の大気温低下に格別の構成を余儀なくされ
ていたが本発明は、一切不要である。
Next, as described above, in order to cope with the low temperature characteristics of such a device, conventionally, the device is operated by a low temperature, or a special configuration is obliged to reduce the atmospheric temperature such as winter. Is completely unnecessary.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す吸着筒の断面図、第2
図は本発明の他の実施例を示す吸着筒の断面図、第3図
は圧力変動吸着法による高濃度酸素ガス製造装置の系統
図、第4図は従来の吸着筒の断面図、第5図は各種窒素
吸着剤の温度に対する窒素吸着容量と酸素/窒素選択係
数の傾向を示した図である。 2……吸着筒、20,30……吸水剤、21,22,3
1,32,33……窒素吸着剤
FIG. 1 is a sectional view of a suction cylinder showing an embodiment of the present invention, and FIG.
FIG. 4 is a sectional view of an adsorption column showing another embodiment of the present invention, FIG. 3 is a system diagram of a high-concentration oxygen gas production apparatus by the pressure fluctuation adsorption method, FIG. 4 is a sectional view of a conventional adsorption column, and FIG. The figure shows the tendency of nitrogen adsorption capacity and oxygen / nitrogen selectivity with respect to the temperature of various nitrogen adsorbents. 2 ... Adsorption cylinder, 20,30 ... Water absorbing agent 21, 22, 3
1,32,33 ... Nitrogen adsorbent

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】窒素を選択的に吸着する吸着剤の充填して
なる複数基の吸着筒を切換使用するよう構成し、圧力変
動吸着法によって酸素および窒素を含む混合ガスから高
濃度の酸素ガスを製造する装置において前記吸着筒の窒
素吸着剤として原料ガス入口側にNa−X型又はNa−
Y型あるいはCa−X型ゼオライトが、又出口側にCa
−Na−A型ゼオライトがそれぞれ充填されてなること
を特徴とする圧力変動吸着法による高濃度酸素ガス製造
装置。
1. A plurality of adsorbing cylinders filled with an adsorbent for selectively adsorbing nitrogen are switched and used, and a high-concentration oxygen gas is mixed from a mixed gas containing oxygen and nitrogen by a pressure fluctuation adsorption method. In the apparatus for manufacturing the above, as a nitrogen adsorbent of the adsorption column, Na-X type or Na-
Y-type or Ca-X type zeolite is also used on the outlet side for Ca
A high-concentration oxygen gas production apparatus by a pressure fluctuation adsorption method, characterized in that each is filled with Na-A type zeolite.
【請求項2】全窒素吸着剤に対する原料ガス入口側に充
填される前記ゼオライトの重量比は、Na−X型又はN
a−Y型の場合が0.1〜0.6であり、Ca−X型の
場合が0.2〜0.7であることを特徴とする特許請求
の範囲第1項記載の圧力変動吸着法による高濃度酸素ガ
ス製造装置。
2. The weight ratio of the zeolite charged on the inlet side of the raw material gas to the total nitrogen adsorbent is Na-X type or N type.
The pressure fluctuation adsorption according to claim 1, wherein the a-Y type is 0.1 to 0.6, and the Ca-X type is 0.2 to 0.7. High-concentration oxygen gas production equipment by the method.
【請求項3】前記吸着筒の窒素吸着剤の前段に水分吸着
剤が充填されてなることを特徴とする特許請求の範囲第
1項又は第2項記載の圧力変動吸着法による高濃度酸素
ガス製造装置。
3. A high-concentration oxygen gas according to the pressure fluctuation adsorption method according to claim 1 or 2, characterized in that a moisture adsorbent is filled in a preceding stage of the nitrogen adsorbent in the adsorption column. Manufacturing equipment.
【請求項4】窒素を選択的に吸着する吸着剤の充填して
なる複数基の吸着筒を切換使用するよう構成し、圧力変
動吸着法によって酸素および窒素を含む混合ガスから高
濃度の酸素ガスを製造する装置において、前記吸着筒の
窒素吸着剤として原料ガス入口側にNa−X型又はNa
−Y型ゼオライトが、又出口側にCa−Na−A型ゼオ
ライトが、これらの中間にCa−X型ゼオライトを介在
させてそれぞれ充填されてなることを特徴とする圧力変
動吸着法による高濃度酸素ガス製造装置。
4. A plurality of adsorbing cylinders filled with an adsorbent for selectively adsorbing nitrogen are switched and used, and a high-concentration oxygen gas is mixed from a mixed gas containing oxygen and nitrogen by a pressure fluctuation adsorption method. In the apparatus for manufacturing the above, as a nitrogen adsorbent of the adsorption cylinder, Na-X type or Na
-Y type zeolite, Ca-Na-A type zeolite on the outlet side, and Ca-X type zeolite interposed in the middle between them to provide high concentration oxygen by pressure fluctuation adsorption method Gas production equipment.
【請求項5】全窒素吸着剤に対する前記ゼオライトの重
量比は、前記Na−X型又はNa−Y型が0.1〜0.
3であり、前記Ca−X型が0.1〜0.6であること
を特徴とする特許請求の範囲第4項記載の圧力変動吸着
法による高濃度酸素ガス製造装置。
5. The weight ratio of the zeolite to the total nitrogen adsorbent is 0.1 to 0. 0 for the Na-X type or Na-Y type.
3. The high concentration oxygen gas production apparatus by the pressure fluctuation adsorption method according to claim 4, wherein the Ca-X type is 0.1 to 0.6.
【請求項6】前記吸着筒の窒素吸着剤の前段に水分吸着
剤が充填されてなることを特徴とする特許請求の範囲第
4項又は第5項記載の圧力変動吸着法による高濃度酸素
ガス製造装置。
6. A high-concentration oxygen gas according to the pressure fluctuation adsorption method according to claim 4 or 5, characterized in that a moisture adsorbent is filled in a preceding stage of the nitrogen adsorbent in the adsorption column. Manufacturing equipment.
JP60291296A 1985-12-23 1985-12-23 High-concentration oxygen gas production equipment by pressure fluctuation adsorption method Expired - Lifetime JPH0621006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291296A JPH0621006B2 (en) 1985-12-23 1985-12-23 High-concentration oxygen gas production equipment by pressure fluctuation adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291296A JPH0621006B2 (en) 1985-12-23 1985-12-23 High-concentration oxygen gas production equipment by pressure fluctuation adsorption method

Publications (2)

Publication Number Publication Date
JPS62148304A JPS62148304A (en) 1987-07-02
JPH0621006B2 true JPH0621006B2 (en) 1994-03-23

Family

ID=17767048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291296A Expired - Lifetime JPH0621006B2 (en) 1985-12-23 1985-12-23 High-concentration oxygen gas production equipment by pressure fluctuation adsorption method

Country Status (1)

Country Link
JP (1) JPH0621006B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3842930A1 (en) * 1988-12-21 1990-06-28 Bayer Ag METHOD OF ADSORPTIVATING OXYGEN ENRICHMENT OF AIR WITH MIXTURES FROM CA-ZEOLITE A MOLECULAR SCREENS BY VACUUM SWING ADSORPTION
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
DE19518407A1 (en) * 1995-05-19 1996-11-21 Bayer Ag Process for the adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
DE19528188C1 (en) 1995-08-01 1996-12-05 Bayer Ag Oxygen generation by pressure swing adsorption
DE19529094A1 (en) * 1995-08-08 1997-02-13 Bayer Ag Process for the adsorption of nitrogen from gas mixtures by means of pressure swing adsorption with zeolites
FR2753108B1 (en) * 1996-09-06 1998-10-16 Air Liquide PROCESS FOR THE SEPARATION OF GASEOUS MIXTURES CONTAINING OXYGEN AND NITROGEN
US6027548A (en) * 1996-12-12 2000-02-22 Praxair Technology, Inc. PSA apparatus and process using adsorbent mixtures
US5769928A (en) * 1996-12-12 1998-06-23 Praxair Technology, Inc. PSA gas purifier and purification process
US5979440A (en) * 1997-06-16 1999-11-09 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US6074459A (en) * 1998-01-05 2000-06-13 Uop Llc Ultra pure gases: removal of halocarbons, fluorocarbons, and sulfur compounds from gas streams
US6544318B2 (en) * 2001-02-13 2003-04-08 Air Products And Chemicals, Inc. High purity oxygen production by pressure swing adsorption
JP2009257736A (en) * 2008-03-18 2009-11-05 Jfe Steel Corp Blast furnace gas separating method

Also Published As

Publication number Publication date
JPS62148304A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
US4614525A (en) Pressure swing process for the adsorptive separation of gaseous mixtures
EP1080771B1 (en) Gas separation process using composite adsorbent particles
US4986835A (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
US5674311A (en) Adsorption process and system using multilayer adsorbent beds
KR100417434B1 (en) Multilayer adsorbent beds for psa gas separation
EP1214964A2 (en) Oxygen production by adsorption
US7122073B1 (en) Low void adsorption systems and uses thereof
US4484933A (en) Process for drying gas streams
JP3416391B2 (en) Pretreatment method and apparatus for air liquefaction separation apparatus
US20030172808A1 (en) Method for purifying hydrogen-based gas mixtures using a calcium x- zeolite
EP0612554A1 (en) Purification method and apparatus
JPH0724735B2 (en) Over-adsorption recovery system in pressure swing adsorption
JPH10323527A (en) Gas purity device and method
JP2001046826A (en) Method for separating gas component from gaseous mixture
JPH0621006B2 (en) High-concentration oxygen gas production equipment by pressure fluctuation adsorption method
JP3902416B2 (en) Gas separation method
EP0760248B1 (en) Nitrogen-selective zeolitic adsorbent for use in air separation process
JPS6241055B2 (en)
JPH10152305A (en) Oxygen gas production apparatus and production of oxygen gas
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
CA1197476A (en) Gas separation process
AU594436B2 (en) Process for preparation of molded zeolite body, adsorbing separating agent and oxygen-separating method
JP4001992B2 (en) Oxygen concentration method and apparatus
JP2000279740A (en) Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent