JPH0690988A - Apparatus for production of carbonated spring - Google Patents

Apparatus for production of carbonated spring

Info

Publication number
JPH0690988A
JPH0690988A JP24516492A JP24516492A JPH0690988A JP H0690988 A JPH0690988 A JP H0690988A JP 24516492 A JP24516492 A JP 24516492A JP 24516492 A JP24516492 A JP 24516492A JP H0690988 A JPH0690988 A JP H0690988A
Authority
JP
Japan
Prior art keywords
combustion gas
water vapor
dehumidifying
gas
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24516492A
Other languages
Japanese (ja)
Inventor
Hideaki Fukui
秀明 福井
Harumasa Furuya
治正 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP24516492A priority Critical patent/JPH0690988A/en
Publication of JPH0690988A publication Critical patent/JPH0690988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

PURPOSE:To provide the apparatus which can exhibit its intrinsic performance throughout all seasons while averting the deterioration of a steam adsorbent by measuring the steam quantity of combustion gases and the dehumidifying capacity of the adsorbent and controlling the introduction of the combustion gases in accordance with the results of the measurement. CONSTITUTION:The combustion gases generated by a hot water feeder are admitted from a three-way valve 37 by the operation of a pump 7 into a heat exchanger 4 where the combustion gases are cooled and predehumidified. The temp. of the combustion gases is detected by a gas temp. sensor 8 and the steam quantity held by the combustion gases is known. Active carmina for steam adsorption is housed in a steam adsorption column and the column is internally cooled by a cooler 47. In addition, the column is internally heated by a heater 10. A temp. sensor 11 detecting the in- column temp. is provided and the dehumidifying capacity of the steam adsorbent is computed by the in-column temp. A dehumidifying capacity measuring means makes computation by using the result of the measurement of the steam quantity and the result of the measurement of the dehumidifying capacity, thereby calculating the total amt. of the combustion gases which can be dehumidified. The introduction of the combustion gases is controlled in accordance with the result of such calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、除湿手段で除湿した
炭酸ガスを含んだ燃焼ガス中の前記炭酸ガスを吸着剤を
利用して濃縮する濃縮手段を備えていて、この手段で作
られた濃縮炭酸ガスにより浴槽では炭酸泉が得られるよ
うになっている炭酸泉製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a concentrating means for concentrating the carbon dioxide gas in the combustion gas containing carbon dioxide gas dehumidified by the dehumidifying means by using an adsorbent, and is produced by this means. The present invention relates to a carbonated spring manufacturing apparatus in which a carbonated spring can be obtained in a bath with concentrated carbon dioxide.

【0002】[0002]

【従来の技術】炭酸泉を作る方法に、炭酸ガス源として
炭酸ガスボンベやタンク、あるいは、炭酸塩と酸との配
合物(水中で炭酸塩と酸が反応し、炭酸ガスが発生す
る)を用いる方法がある。炭酸塩と酸の配合物を用いる
場合には、常にその配合物を購入し準備しておかなけれ
ばならず、さらには一々浴槽中に投入する必要があり、
手間のかかるものであると言える。これに比べ、炭酸ガ
スボンベは比較的長時間炭酸ガスを供給できる炭酸ガス
源と言える。しかし、これとても、高圧ボンベ故の取扱
の煩雑さ、あるいは、炭酸ガスボンベの入手方法が必ず
しも簡便ではないという問題点を持つものである。従っ
て、従来の炭酸泉製造装置における炭酸ガス源として、
容易に短時間の内に入手可能で、かつ、常設できるもの
が無かった、と言う問題点があった。
2. Description of the Related Art A method of producing a carbonated spring uses a carbon dioxide gas cylinder or tank as a carbon dioxide gas source or a mixture of a carbonate and an acid (carbonate and an acid react in water to generate carbon dioxide). There is. When using a combination of a carbonate and an acid, the composition must always be purchased and prepared, and it is necessary to add it to the bathtub one by one.
It can be said that it is time-consuming. In comparison, the carbon dioxide gas cylinder can be said to be a carbon dioxide gas source capable of supplying carbon dioxide gas for a relatively long time. However, this has a problem that the handling due to the high pressure cylinder is complicated, or the method of obtaining the carbon dioxide gas cylinder is not always simple. Therefore, as a carbon dioxide gas source in a conventional carbonated spring manufacturing device,
There was a problem that there was nothing that could be easily obtained within a short time and could be permanently installed.

【0003】そこで、以上のような欠点に鑑みて、例え
ば、都市ガスやプロパンガスなどの炭酸ガスを含んだ燃
焼ガス中の前記炭酸ガスを吸着剤を利用して濃縮する濃
縮手段と、濃縮された炭酸ガスを浴液中に送り込む送気
手段とを備え、濃縮された炭酸ガスにより浴槽では炭酸
泉が得られるようになっている炭酸泉製造用の装置が考
えられた。この装置は、常設可能であって炭酸ガスの連
続供給が可能となるため、非常に有望視される。給湯器
などの燃焼器で発生する炭化水素を含有する燃料(都市
ガスなど)の燃焼に伴って発生する燃焼ガスが使えるか
らである。
In view of the above drawbacks, for example, a concentrating means for concentrating the carbon dioxide gas in a combustion gas containing carbon dioxide gas such as city gas or propane gas by using an adsorbent, and a concentrating means. An apparatus for producing a carbonated spring, which is provided with an air supply means for sending carbon dioxide gas into the bath liquid and is capable of obtaining a carbonated spring in the bath by the concentrated carbon dioxide gas, has been considered. This device is very promising because it can be installed permanently and can continuously supply carbon dioxide gas. This is because the combustion gas generated along with the combustion of the fuel containing hydrocarbon (such as city gas) generated in the combustor such as the water heater can be used.

【0004】ガスの燃焼に必要な酸素源としては一般的
には空気を用いる。実際、この発明の実施例においても
空気を用いる。燃焼反応式は以下の式の通りである。 CnHm +(n+m/4+k)O2+(4n+m+4k)N2 → nCO2+m/2H2O+kO2+(4n+m+4k)N2 ・・・ 〔但し、空気中のO2 、N2 のモル比を概数でN2 /O
2 =4とした。また、燃焼余剰空気はkO2 と4kN2
とからなる。n、mは自然数、kは正の実数である〕 次に発生した燃焼ガス(式右辺)中の炭酸ガスを濃縮
した上、浴用の湯水すなわち浴液中に送入せしめ、浴液
に炭酸ガスを溶解させて炭酸泉を人工的に現出させると
いうわけである。
Air is generally used as the oxygen source required for combustion of gas. In fact, air is also used in this embodiment of the invention. The combustion reaction formula is as follows. CnHm + (n + m / 4 + k) O 2 + (4n + m + 4k) N 2 → nCO 2 + m / 2H 2 O + kO 2 + (4n + m + 4k) N 2・ ・ ・ [However, air The molar ratio of O 2 and N 2 is approximately N 2 / O
2 = 4. The combustion excess air kO 2 and 4 kN 2
Consists of. n and m are natural numbers and k is a positive real number.] The carbon dioxide gas in the combustion gas (the right side of the formula) that is generated next is concentrated, and then it is sent into hot water for bathing, that is, bath liquid. That is, the carbonated spring is artificially revealed by melting the.

【0005】都市ガスやプロパンガスの燃焼ガスをその
まま浴液中に送入しても、浴液の炭酸ガス濃度は簡単に
60ppm以上にはならない。そのため、上記燃焼ガス
から、吸着剤などを利用して炭酸ガスを濃縮するのであ
る。一方、燃焼ガス中の水蒸気は炭酸ガスの吸着剤を劣
化させるため、燃焼ガス中の水蒸気を吸着剤を利用して
除去する除湿手段が、濃縮手段の前段に設けられてい
て、除湿した燃焼ガスが濃縮手段に導入されるようにな
っている。
Even if the combustion gas of city gas or propane gas is fed into the bath liquid as it is, the concentration of carbon dioxide gas in the bath liquid does not easily exceed 60 ppm. Therefore, carbon dioxide gas is concentrated from the combustion gas using an adsorbent or the like. On the other hand, since water vapor in the combustion gas deteriorates the adsorbent of carbon dioxide gas, a dehumidifying means for removing the water vapor in the combustion gas using the adsorbent is provided before the concentrating means, and the dehumidified combustion gas is used. Is introduced into the concentration means.

【0006】つまり、従来の炭酸泉製造装置では、炭化
水素を含む燃料の燃焼により生じた燃焼ガスを、吸着剤
を用いて除湿してから、別の吸着剤で炭酸ガスを吸着分
離したあと、炭酸ガスを脱離させて浴液に供給している
のである。
That is, in the conventional carbonated spring production apparatus, the combustion gas generated by the combustion of the fuel containing hydrocarbon is dehumidified by using the adsorbent, and then the carbon dioxide gas is adsorbed and separated by another adsorbent, and then the carbon dioxide is removed. The gas is desorbed and supplied to the bath liquid.

【0007】[0007]

【発明が解決しようとする課題】ただ、従来の炭酸泉製
造装置では、本来の性能が四季を通じて十分に発揮され
ていないという問題がある。これは、夏場以外の季節は
燃焼ガスの導入時間が必要以上に制限されているからで
ある。燃焼ガスは浴槽を沸かすための湯沸かし器や給湯
器の排ガスを普通使っている。この湯沸かし器等では水
道水の温度の高い夏場は湯沸かし時間(つまりは燃焼ガ
ス供給期間)が最も短く、炭酸泉製造装置の燃焼ガスの
導入時間は、四季を通して、夏場の短い湯沸かし時間
(給湯時間)に設定されている。
However, the conventional carbonated spring manufacturing apparatus has a problem in that the original performance is not sufficiently exhibited throughout the four seasons. This is because the introduction time of combustion gas is restricted more than necessary in seasons other than summer. As the combustion gas, exhaust gas from a water heater or a water heater for boiling a bath is usually used. This water heater has the shortest water boiling time (that is, the combustion gas supply period) in the summer when the temperature of the tap water is high, and the combustion gas introduction time of the carbonated spring manufacturing equipment is the short water heating time (hot water supply time) in summer throughout the four seasons. It is set.

【0008】ところが、逆に、冬場は水道水の温度が低
く湯沸かし時間(給湯時間)は長くなる。炭酸泉製造装
置の燃焼ガスの導入時間を冬場は長くすることが可能な
のである。けれども、上のように、燃焼ガスの導入時間
は、四季を通して夏場の短い湯沸かし時間(給湯時間)
に固定されていて、冬場は燃焼ガスの導入が可能な期間
の半分程度しか利用されていない。本来の性能が四季を
通じて十分に発揮されていないのである。
On the contrary, in the winter, the temperature of tap water is low and the boiling time (hot water supply time) becomes long. It is possible to extend the introduction time of the combustion gas of the carbonated spring manufacturing equipment in winter. However, as mentioned above, the introduction time of combustion gas is the short boiling time in the summer (hot water supply time) throughout the four seasons.
It is fixed in the area, and in winter, only about half the period during which combustion gas can be introduced is used. The original performance is not fully exerted throughout the four seasons.

【0009】ただ、燃焼ガスの導入時間の延長は安易に
行うことは出来ない。上記の除湿手段の除湿能力に限界
があるからである。湯沸かし器や給湯器の排ガスは冷却
用熱交換器で冷却・予備除湿(冷却に伴う凝縮を利用し
た除湿)を行い、除湿手段に導入する。夏場は、空気の
水分含有量が元々多く、また、水道水などで行う冷却の
能力が落ち、燃焼ガス中の水蒸気量が多い。この水蒸気
量の多い夏場に合わせた量で吸着剤が吸着塔に収容され
ている。冬場は、空気が乾燥しており、水道水の温度も
低く冷却も十分なことから、水蒸気量が少なく、燃焼ガ
ス導入を延長しても問題はないはずである。ただ、吸着
剤の水蒸気の吸着量は一定しないので、安易に燃焼ガス
の導入時間を延ばした場合、除湿能力を越え、多量の水
蒸気が濃縮手段に入り、炭酸ガスの吸着剤が水蒸気を吸
着し炭酸ガス吸着能力が劣化してしまうという事態が起
こる。
However, it is not easy to extend the introduction time of the combustion gas. This is because the dehumidifying capacity of the above dehumidifying means is limited. Exhaust gas from a water heater or water heater is cooled and pre-dehumidified (dehumidification utilizing condensation accompanying cooling) by a heat exchanger for cooling, and then introduced into a dehumidifying means. In the summer, the air originally has a large water content, and the ability of cooling with tap water or the like is reduced, so that the amount of water vapor in the combustion gas is large. The adsorbent is stored in the adsorption tower in an amount suitable for the summer when the amount of water vapor is large. In winter, the air is dry, the temperature of tap water is low, and the cooling is sufficient. Therefore, the amount of water vapor is small, and there should be no problem even if the introduction of combustion gas is extended. However, since the amount of water vapor adsorbed by the adsorbent is not constant, if the combustion gas introduction time is easily extended, the dehumidification capacity will be exceeded, a large amount of water vapor will enter the concentration means, and the carbon dioxide gas adsorbent will adsorb water vapor. A situation occurs in which the carbon dioxide gas adsorption capacity deteriorates.

【0010】この発明は、上記事情に鑑み、炭酸ガスの
吸着剤の劣化を回避しながら、本来の性能が四季を通じ
て十分に発揮される炭酸泉製造装置を提供することを課
題とする。
In view of the above circumstances, it is an object of the present invention to provide a carbonated spring producing apparatus that can sufficiently exhibit its original performance throughout the four seasons while avoiding the deterioration of the carbon dioxide adsorbent.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる炭酸泉製造装置では、炭酸ガスを
含んだ燃焼ガス中の水蒸気を吸着剤を利用して除去する
除湿手段と、この除湿手段により除湿された燃焼ガス中
の炭酸ガスを吸着剤を利用して濃縮する濃縮手段と、濃
縮された炭酸ガスを浴液中に送り込む送気手段とを備
え、濃縮された炭酸ガスにより浴槽では炭酸泉が得られ
るようになっている構成において、前記水蒸気の吸着剤
の除湿能力を計測する除湿能力計測手段を備え、この除
湿能力計測手段の測定結果に基づいて前記除湿手段への
燃焼ガス導入が制御されるようになっている。 以下、
この発明をより具体的に説明する。
In order to solve the above-mentioned problems, in a carbonated spring manufacturing apparatus according to the present invention, a dehumidifying means for removing water vapor in a combustion gas containing carbon dioxide gas by using an adsorbent, and this dehumidifying means. The concentration means for concentrating carbon dioxide gas in the combustion gas dehumidified by the means using an adsorbent, and the air feeding means for feeding the concentrated carbon dioxide gas into the bath liquid are provided in the bath with the concentrated carbon dioxide gas. In a configuration in which a carbonated spring is obtained, a dehumidifying capacity measuring means for measuring the dehumidifying capacity of the adsorbent of the water vapor is provided, and combustion gas is introduced into the dehumidifying means based on the measurement result of the dehumidifying capacity measuring means. It is controlled. Less than,
The present invention will be described more specifically.

【0012】この発明の炭酸泉製造装置では、普通、除
湿手段には水蒸気の吸着剤を収容した水蒸気吸着塔が設
けられていて、この水蒸気吸着塔には塔内温度を検出す
る温度センサが設けられており、除湿能力計測手段が前
記温度センサによる塔内温度を用いて演算を行うことに
より除湿能力の測定結果が得られる。具体的には、例え
ば、次のようなことになる。水蒸気の吸着剤(活性アル
ミナ)の温度と水蒸気吸着量は、図4の曲線Aで示され
る関数であらわされ、ほぼ逆比例の関係にある。曲線A
で示される関数を数式化し記憶しておき、検出された塔
内温度(実質的に吸着剤温度)を代入することで演算が
なされる。記憶・演算はマイクロコンピータの利用等に
より容易に実現できる。
In the carbonated spring manufacturing apparatus of the present invention, the dehumidifying means is usually provided with a water vapor adsorption tower containing a water vapor adsorbent, and this water vapor adsorption tower is provided with a temperature sensor for detecting the temperature inside the tower. Therefore, the dehumidification capacity measurement means obtains the measurement result of the dehumidification capacity by performing calculation using the temperature inside the tower by the temperature sensor. Specifically, for example, the following will occur. The temperature of the water vapor adsorbent (activated alumina) and the water vapor adsorption amount are represented by the function shown by the curve A in FIG. 4, and have a substantially inversely proportional relationship. Curve A
The calculation is performed by substituting the detected temperature in the column (substantially the adsorbent temperature) into a mathematical formula for storing the function represented by. Storage and calculation can be easily realized by using a micro computer.

【0013】この発明の炭酸泉製造装置において、除湿
手段に導入される燃焼ガスの水蒸気量を測定する水蒸気
量センサが除湿手段の手前に設けられていて、除湿能力
計測手段が、前記水蒸気量の測定結果と除湿能力測定結
果を用いて演算を行い除湿可能な燃焼ガス総量を算出
し、この算出結果に基づいて燃焼ガス導入が制御される
形態は非常に有用である。燃焼ガスの水蒸気量を測定す
る水蒸気量センサとしては、通常の温度センサで十分で
ある。燃焼ガスは露点状態なので温度を測ることで水蒸
気量が分かるからである。
In the carbonated spring manufacturing apparatus of the present invention, a water vapor amount sensor for measuring the water vapor amount of the combustion gas introduced into the dehumidifying means is provided in front of the dehumidifying means, and the dehumidifying ability measuring means measures the water vapor amount. It is very useful that the calculation is performed using the result and the dehumidification capacity measurement result to calculate the total dehumidifying combustion gas amount, and the combustion gas introduction is controlled based on the calculation result. An ordinary temperature sensor is sufficient as a water vapor amount sensor for measuring the amount of water vapor of combustion gas. Because the combustion gas is in the dew point state, the amount of water vapor can be known by measuring the temperature.

【0014】この発明の炭酸泉製造装置における燃焼ガ
ス導入の制御の具体的形態としては、燃焼ガスの導入期
間のコントロール、あるいは、燃焼ガスの単位時間当た
りの導入量のコントロール(例えば、燃焼ガスの送気ポ
ンプの駆動台数や駆動電圧を変えることで容易に実現で
きる)、さらには、燃焼ガスの導入期間と燃焼ガスの単
位時間当たりの導入量の両方のコントロールなどがあ
る。
As a concrete form of the control of the combustion gas introduction in the carbonated spring producing apparatus of the present invention, the control of the introduction period of the combustion gas or the control of the introduction amount of the combustion gas per unit time (for example, the delivery of the combustion gas This can be easily achieved by changing the number of driven air pumps or the drive voltage), and further, there is control of both the introduction period of combustion gas and the introduction amount of combustion gas per unit time.

【0015】この発明の炭酸泉製造装置の除湿手段が水
蒸気の吸着剤の冷却を行う冷却手段を有する形態も非常
に有用である。水蒸気の吸着剤の除湿能力は、図4にみ
たように、吸着剤温度に依存しており、実験や計算で温
度と除湿能力たる全吸着量(Wg)の関係を求めてお
く。一方、熱交換器で冷却された燃焼ガスのガス温度で
除湿手段に導入される燃焼ガスの絶対湿度(Sg/
3 )が分かる。燃焼ガスのガス温度が露点であるから
である。ガス温度と絶対湿度の関係を予め装置内に記憶
しておくようにするとよい。両者の比(吸着量/絶対湿
度)から、除湿可能な燃焼ガス総量(T/m3 )が直ち
に知れる。これに基づいて、給湯器や湯沸かし器の方の
燃焼時間の範囲内で燃焼ガス総量に見合う量を導入する
ように、燃焼ガスの導入時間・単位時間当たりの導入量
を決定し、燃焼ガスを送り込む。
It is also very useful that the dehumidifying means of the carbonated spring producing apparatus of the present invention has a cooling means for cooling the adsorbent of water vapor. As shown in FIG. 4, the dehumidifying capacity of the water vapor adsorbent depends on the adsorbent temperature, and the relationship between the temperature and the total adsorbed amount (Wg), which is the dehumidifying capacity, is obtained through experiments and calculations. On the other hand, at the gas temperature of the combustion gas cooled by the heat exchanger, the absolute humidity (Sg /
m 3 ) is understood. This is because the gas temperature of the combustion gas is the dew point. The relationship between the gas temperature and the absolute humidity may be stored in the device in advance. From the ratio of both (adsorption amount / absolute humidity), the total amount of dehumidifiable combustion gas (T / m 3 ) can be immediately known. Based on this, the introduction time of the combustion gas and the introduction amount per unit time are determined and the combustion gas is fed so that the amount corresponding to the total amount of combustion gas is introduced within the combustion time range of the water heater or water heater. .

【0016】水蒸気の吸着剤の除湿能力だけに基づい
て、燃焼ガスの導入時間・単位時間当たりの導入量を決
定するようにしてもよいが、燃焼ガス中の水蒸気量の変
動を見込む分、処理可能な量を少なく目に見積もる必要
があるという不利がある。熱交換器で冷却された燃焼ガ
スのガス温度が25℃の場合、露点は25℃だから絶対
湿度は23.6g/m3 であり、ガス温度が14℃の場
合、露点は14℃だから絶対湿度は12.2g/m3
ある。低温時には高温時の約2倍の燃焼ガスの処理が可
能である。燃焼ガス中の炭酸ガス濃度が同じならば、2
倍の炭酸ガスが浴液中に送り込めることになる。勿論、
夏場より吸着剤の温度が低い冬場はさらに多量の燃焼ガ
スの温度が処理可能である。
The introduction time of the combustion gas and the introduction amount per unit time may be determined based only on the dehumidifying ability of the water vapor adsorbent. It has the disadvantage of having to underestimate the amount possible. When the gas temperature of the combustion gas cooled in the heat exchanger is 25 ° C, the dew point is 25 ° C, so the absolute humidity is 23.6 g / m 3 , and when the gas temperature is 14 ° C, the dew point is 14 ° C, so the absolute humidity is Is 12.2 g / m 3 . When the temperature is low, it is possible to treat the combustion gas twice as much as when the temperature is high. 2 if the carbon dioxide concentration in the combustion gas is the same
Double carbon dioxide will be sent into the bath. Of course,
In winter, when the adsorbent temperature is lower than in summer, a larger amount of combustion gas temperature can be treated.

【0017】[0017]

【作用】この発明の炭酸泉製造装置では、燃焼ガス中の
水蒸気を吸着剤を利用して除去する除湿手段の水蒸気の
吸着剤の除湿能力を計測する除湿能力計測手段を備え、
この除湿能力計測手段の測定結果に基づいて前記除湿手
段への燃焼ガス導入を制御しており、燃焼ガス導入を固
定してしまわずに、水蒸気の吸着剤の除湿能力を監視し
ながら、除湿能力を越えない範囲で季節に合わせた適切
な燃焼ガスの導入がなされる。
In the carbonated spring producing apparatus of the present invention, the dehumidifying capacity measuring means for measuring the dehumidifying capacity of the adsorbent of water vapor of the dehumidifying means for removing the water vapor in the combustion gas by using the adsorbent,
The combustion gas introduction to the dehumidification means is controlled on the basis of the measurement result of the dehumidification ability measurement means, and the dehumidification ability is monitored while monitoring the dehumidification ability of the adsorbent of water vapor without fixing the combustion gas introduction. Appropriate combustion gas will be introduced in accordance with the season within the range not exceeding.

【0018】水蒸気の吸着剤の除湿能力は、水蒸気吸着
塔の塔内温度、すなわち、吸着剤の温度と良い相関関係
にあるため、塔内温度を用いて演算を行い得た除湿能力
の測定結果は信頼性が高い。水蒸気量センサにより除湿
手段に導入される燃焼ガスの水蒸気量が分かっていて、
除湿可能な燃焼ガス総量をも加味して燃焼ガス導入の制
御がなされるようであると、より的確に除湿能力に合っ
た燃焼ガスの導入制御が可能となる。
Since the dehumidifying ability of the water vapor adsorbent has a good correlation with the temperature inside the water vapor adsorption tower, that is, the temperature of the adsorbent, the dehumidifying ability measurement result obtained by calculation using the temperature inside the tower Is reliable. The amount of water vapor of the combustion gas introduced into the dehumidifying means is known by the water vapor amount sensor,
If it seems that the introduction of combustion gas is controlled in consideration of the total amount of dehumidified combustion gas, it is possible to more accurately control the introduction of combustion gas that matches the dehumidification capacity.

【0019】燃焼ガスの導入期間のコントロールは、例
えば、冬場、貯水を沸かす湯沸かし器のように燃焼時間
が長い場合、長い燃焼時間に合わせて燃焼ガスの導入期
間を長くとり、適切な炭酸泉が、長い時間、現出するこ
とを可能とする。燃焼ガスの単位時間当たりの導入量の
コントロールは、例えば、出湯量が季節を問わず一定で
燃焼時間の変わらない給湯器(燃焼時間の変わる給湯器
もあるが)、燃焼時間の短い夏場など、燃焼時間中、目
いっぱい燃焼ガスの導入を行い、濃縮された炭酸ガスを
多く得て、炭酸ガス濃度の十分な炭酸泉の現出を可能と
する。
The control of the introduction period of the combustion gas is performed, for example, in the winter, when the combustion time is long like a water heater for boiling water, the introduction period of the combustion gas is set longer in accordance with the longer combustion time, and a suitable carbonated spring is long. Allow time to emerge. The amount of combustion gas introduced per unit time can be controlled by, for example, a water heater in which the amount of hot water discharged is constant regardless of the season and the combustion time does not change (although there is a water heater with a different combustion time), in the summer when the combustion time is short, etc. During the burning time, the combustion gas is introduced to the full, and a large amount of concentrated carbon dioxide gas is obtained to enable the appearance of a carbonated spring with a sufficient carbon dioxide concentration.

【0020】水蒸気の吸着剤は温度が低い方が水蒸気を
よく吸着するため、水蒸気の吸着剤の冷却は除湿能力を
向上させる。
Since the water vapor adsorbent adsorbs water vapor better when the temperature is lower, cooling the water vapor adsorbent improves the dehumidifying ability.

【0021】[0021]

【実施例】以下に、この発明を、その実施例をあらわす
図面を参照しながら詳しく説明する。図1〜3は、実施
例の装置を用いた炭酸泉製造システムをあらわすブロッ
ク図である。これらの図では、各図の間の接続状態を容
易に理解できるようにするため一部重複してあらわして
ある。この装置では、炭化水素を含有する燃料が都市ガ
スである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing the embodiments thereof. 1 to 3 are block diagrams showing a carbonated spring manufacturing system using the apparatus of the embodiment. In these drawings, some of the drawings are duplicated so that the connection state between the drawings can be easily understood. In this device, the fuel containing hydrocarbons is city gas.

【0022】このシステムでは、図にみるように、都市
ガス1を燃料とする給湯器2で生じる燃焼ガス3を、活
性アルミナを収容した水蒸気吸着塔9を通して除湿して
から、濃縮手段の炭酸ガス吸着塔14で炭酸ガスを吸着
分離した後、次に、吸着した炭酸ガスを脱離させて濃縮
炭酸ガスを得て、これを有害ガス除去塔16を通して有
害ガス成分を分解ないし吸着除去してから浴槽20の浴
液(湯水21)中に供給することで炭酸泉が得られるよ
うになっている。
In this system, as shown in the figure, the combustion gas 3 generated in the water heater 2 using the city gas 1 as fuel is dehumidified through the steam adsorption tower 9 containing activated alumina, and then the carbon dioxide gas of the concentrating means is removed. After the carbon dioxide gas is adsorbed and separated in the adsorption tower 14, next, the adsorbed carbon dioxide gas is desorbed to obtain concentrated carbon dioxide gas, which is passed through the harmful gas removal tower 16 to decompose or adsorb the harmful gas components and A carbonated spring can be obtained by supplying it into the bath liquid (hot water 21) of the bathtub 20.

【0023】図1,2にみるように、給湯器2の排気口
と水蒸気吸着塔9の入口の間には、三方バルブ37、冷
却用の熱交換器4、流量可変型のポンプ7、バルブ39
が順に設置されており、それらの間は、接続管22,2
3,24,25,26などで接続されている。そして、
接続管24の途中にはガス温度センサ8が設置されてい
る。三方バルブ37の残りの口は接続管30で炭酸ガス
吸着塔14の出口につながっている。接続管24は途中
で分岐しており、結露水を溜めておくため、下部にバル
ブ38のある結露水貯め6が設けられている。熱交換器
4は、燃焼ガス3は発生直後には非常に高温であるた
め、これを冷却水(普通、水道水)5を冷媒にして冷却
を行う。さらに、図1および図3にみるように、水蒸気
吸着塔9の入口は、接続管50から分岐された接続管3
5を介してポンプ18に接続されている。
As shown in FIGS. 1 and 2, a three-way valve 37, a heat exchanger 4 for cooling, a variable flow pump 7, and a valve are provided between the exhaust port of the water heater 2 and the inlet of the water vapor adsorption tower 9. 39
Are installed in order, and the connecting pipes 22, 2 are installed between them.
3, 24, 25, 26, etc. are connected. And
A gas temperature sensor 8 is installed in the middle of the connecting pipe 24. The remaining port of the three-way valve 37 is connected to the outlet of the carbon dioxide adsorption tower 14 by a connecting pipe 30. The connecting pipe 24 is branched on the way, and in order to store the condensed water, a condensed water reservoir 6 having a valve 38 is provided in the lower part. Since the combustion gas 3 has a very high temperature immediately after being generated, the heat exchanger 4 cools the combustion gas 3 by using the cooling water (usually tap water) 5 as a refrigerant. Further, as shown in FIGS. 1 and 3, the inlet of the water vapor adsorption tower 9 has a connecting pipe 3 branched from the connecting pipe 50.
It is connected to the pump 18 via 5.

【0024】水蒸気吸着塔9は、水蒸気吸着用の活性ア
ルミナが塔内に収容されているとともに冷却器47で塔
内が冷却され、また、加熱器10で塔内が加熱される。
そして、塔内温度を検出する温度センサ11も設けられ
ており、除湿能力計測の際、この温度センサ11による
塔内温度を用いて演算が行われることは前述の通りであ
る。この水蒸気吸着塔9の出口と炭酸ガス吸着塔14の
入口の間には、図1にみるように、バルブ(開閉弁)4
1が設置されており、それらの間は、接続管27,29
で接続されている。なお、接続管27の途中には結露水
13を溜めておくため、下部にバルブ40のある結露水
貯め12が接続されている。
In the water vapor adsorption tower 9, activated alumina for adsorbing water vapor is contained in the tower, the inside of the tower is cooled by the cooler 47, and the inside of the tower is heated by the heater 10.
A temperature sensor 11 for detecting the temperature inside the tower is also provided, and as described above, the temperature inside the tower by the temperature sensor 11 is used for the calculation when measuring the dehumidifying ability. As shown in FIG. 1, a valve (open / close valve) 4 is provided between the outlet of the water vapor adsorption tower 9 and the inlet of the carbon dioxide adsorption tower 14.
1 is installed, and connecting pipes 27, 29 are provided between them.
Connected by. In order to store the condensed water 13 in the middle of the connecting pipe 27, a condensed water reservoir 12 having a valve 40 at the bottom is connected.

【0025】炭酸ガス吸着塔14には吸着炭酸ガスを脱
離させるための加熱器15が設置されているとともにゼ
オライト(炭酸ガス吸着剤)が収容されている。この炭
酸ガス吸着塔14の出口は、接続管30と三方バルブ4
2を介して系外に繋がっているとともに接続管30を介
して三方バルブ37に繋がっている。炭酸ガス吸着塔1
4の出口と浴槽20の間には、図3にみるように、三方
バルブ42、三方バルブ43、有害ガス除去塔16、三
方バルブ44、ポンプ19が順に設置されており、その
間は、接続管30,31,32,33,34,36など
で接続されている。そして、三方バルブ42,43の残
りの口は系外に通じており、三方バルブ44の残りの口
は接続管50を介してポンプ18に接続されている。
The carbon dioxide adsorption tower 14 is provided with a heater 15 for desorbing adsorbed carbon dioxide, and contains zeolite (carbon dioxide adsorbent). The outlet of the carbon dioxide adsorption tower 14 has a connecting pipe 30 and a three-way valve 4
It is connected to the outside of the system via 2 and to the three-way valve 37 via the connecting pipe 30. Carbon dioxide adsorption tower 1
As shown in FIG. 3, a three-way valve 42, a three-way valve 43, a harmful gas removing tower 16, a three-way valve 44, and a pump 19 are installed in this order between the outlet of No. 4 and the bath 20, and a connecting pipe is provided between them. Connections are made at 30, 31, 32, 33, 34, 36 and the like. The remaining ports of the three-way valves 42 and 43 communicate with the outside of the system, and the remaining ports of the three-way valve 44 are connected to the pump 18 via a connecting pipe 50.

【0026】有害ガス除去塔16には白金を担持したγ
−Al2 3 (吸着剤)が充填されているとともに、有
害ガス除去塔16の塔内を加熱するための加熱器17が
設けられている。続いて、実施例にかかる炭酸泉製造装
置の稼働時における燃焼ガス中の炭酸ガスの吸着過程を
説明する。
The harmful gas removing tower 16 has a γ supporting platinum.
-Al 2 O 3 (adsorbent) is filled and a heater 17 for heating the inside of the harmful gas removing tower 16 is provided. Next, the adsorption process of carbon dioxide gas in the combustion gas during operation of the carbon dioxide spring manufacturing apparatus according to the embodiment will be described.

【0027】給湯器2で発生した燃焼ガス3はポンプ7
の稼働で三方バルブ37から熱交換器4に入り冷やされ
冷却・予備除湿される。熱交換器4では冷却水5との熱
交換により、燃焼ガス3は冷却水である水道水温度を露
点とする程度まで・冷却除湿される。この時、バルブ3
8は閉じていて、結露で生じた結露水は結露水貯め6に
蓄えられ、吸着過程の終了後にバルブ38が開いて系外
に排出される。ガス温度センサ8で冷却・予備除湿され
た燃焼ガスの温度を検出し、燃焼ガスの水蒸気量を知る
ようにすることも前述の通りである。
Combustion gas 3 generated in the water heater 2 is pump 7
Is operated, the heat exchanger 4 enters the heat exchanger 4 through the three-way valve 37 and is cooled and cooled / preliminarily dehumidified. In the heat exchanger 4, the combustion gas 3 is cooled and dehumidified by exchanging heat with the cooling water 5 to such an extent that the temperature of tap water, which is cooling water, becomes a dew point. At this time, valve 3
8 is closed, the dew condensation water generated by dew condensation is stored in the dew condensation water reservoir 6, and after the adsorption process is completed, the valve 38 is opened and discharged to the outside of the system. As described above, the gas temperature sensor 8 detects the temperature of the combustion gas that has been cooled and preliminarily dehumidified so that the amount of water vapor in the combustion gas can be known.

【0028】冷却・予備除湿された燃焼ガス3は、ポン
プ7の稼働により、接続管24,25を通り水蒸気吸着
塔9に入る。勿論、この時にはバルブ39は開いてい
る。燃焼ガス3は除湿されて水蒸気吸着塔9の出口から
出てゆく。なお、冷却器47で水蒸気吸着剤を冷却する
と除湿能力は高まることも前述の通りである。水蒸気吸
着塔9の出口から出た除湿済の燃焼ガス3は、バルブ4
1を通り、炭酸ガス吸着塔14に導入され、炭酸ガスは
炭酸ガス吸着剤で吸着分離され、その残りの非吸着ガス
46が、炭酸ガス吸着塔14の出口から三方バルブ42
を経て系外に排出される。所定の期間、炭酸ガス吸着過
程が続く。
The combustion gas 3 that has been cooled and preliminarily dehumidified enters the water vapor adsorption tower 9 through the connecting pipes 24 and 25 by the operation of the pump 7. Of course, the valve 39 is open at this time. The combustion gas 3 is dehumidified and leaves the outlet of the water vapor adsorption tower 9. As described above, cooling the water vapor adsorbent with the cooler 47 enhances the dehumidifying ability. The dehumidified combustion gas 3 emitted from the outlet of the water vapor adsorption tower 9 is supplied to the valve 4
1 is introduced into the carbon dioxide adsorption tower 14, the carbon dioxide is adsorbed and separated by the carbon dioxide adsorbent, and the remaining non-adsorbed gas 46 is discharged from the outlet of the carbon dioxide adsorption tower 14 by the three-way valve 42.
Is discharged to the outside of the system. The carbon dioxide adsorption process continues for a predetermined period.

【0029】なお、水蒸気吸着塔9への燃焼ガスの導入
に関し具体的に説明する。夏場の吸着開始時の温度が3
0℃の場合、図4にみるように、吸着可能量は約5.5
wt%である。水蒸気吸着剤総量が9kgだと495gが
吸着可能量となる。また、熱交換器4通過後の燃焼ガス
の温度が30℃であれば、湿度は露点30℃(絶対湿度
31.5g/m3 )であるから、除湿処理可能な燃焼ガ
ス総量は(495g)/(31.5g/m3 )≒15.
7m3 である。
The introduction of the combustion gas into the water vapor adsorption tower 9 will be specifically described. The temperature at the start of adsorption in summer is 3
At 0 ° C, as shown in Fig. 4, the adsorbable amount is about 5.5.
wt%. If the total amount of water vapor adsorbent is 9 kg, then 495 g is the adsorbable amount. Further, if the temperature of the combustion gas after passing through the heat exchanger 4 is 30 ° C., the humidity is a dew point of 30 ° C. (absolute humidity 31.5 g / m 3 ), so the total amount of combustion gas that can be dehumidified is (495 g). /(31.5 g / m 3 ) ≈15.
It is 7 m 3 .

【0030】また、冷却器47により水蒸気吸着剤の温
度を20℃に冷却する場合、図4にみるように、吸着可
能量は約7.5wt%である。したがって、除湿処理可能
な燃焼ガス総量は7.5/5.5≒1.4倍に増加す
る。つまり、夏場の水道温度が高くて燃焼時間が短くな
った場合でも、炭酸ガスの吸着効率が100%であると
すると、吸着剤の無冷却の場合に比べ、1.4倍の炭酸
ガス量の増加が可能となることになる。
When the temperature of the water vapor adsorbent is cooled to 20 ° C. by the cooler 47, as shown in FIG. 4, the adsorbable amount is about 7.5 wt%. Therefore, the total amount of combustion gas that can be dehumidified increases 7.5 / 5.5≈1.4 times. In other words, even if the water temperature in the summer is high and the combustion time is short, assuming that the adsorption efficiency of carbon dioxide is 100%, the amount of carbon dioxide is 1.4 times that of the case without adsorbent cooling. It will be possible to increase.

【0031】冬場の吸着開始時の温度が15℃の場合、
図4にみるように、吸着可能量は約9.0wt%である。
水蒸気吸着剤総量が9kgだと810gが吸着可能量と
なる。また、熱交換器4通過後の燃焼ガスの温度が15
℃であれば、湿度は露点15℃(絶対湿度13.0g/
3 )であるから、除湿処理可能な燃焼ガス総量は(8
10g)/(13.0g/m3 )≒62.5m3 であ
る。冬場の除湿処理可能な燃焼ガス総量は62.5m3
/15.7m3 ≒4と夏場の4倍となる。冷却器47を
用いた場合と比べても、冬場の除湿処理可能な燃焼ガス
総量は62.5m 3 /(15.7×1.4)m3 ≒2.
8と夏場の2.8倍となる。冬場は夏場よりも2.8〜
4倍の炭酸ガスを炭酸泉に送り込むことが可能となる。
When the temperature at the start of adsorption in winter is 15 ° C.,
As shown in FIG. 4, the adsorbable amount is about 9.0 wt%.
If the total amount of water vapor adsorbent is 9 kg, 810 g is the adsorbable amount.
Become. Further, the temperature of the combustion gas after passing through the heat exchanger 4 is 15
If it is ℃, the humidity is 15 ℃ (absolute humidity 13.0g /
m3), The total amount of combustion gas that can be dehumidified is (8
10 g) / (13.0 g / m3) ≒ 62.5m3And
It The total amount of combustion gas that can be dehumidified in winter is 62.5m.3
/15.7m3≒ 4, which is four times that in summer. Cooler 47
Combustion gas that can be dehumidified in winter even when used
The total amount is 62.5m 3/(15.7×1.4)m3≒ 2.
8, which is 2.8 times that in summer. 2.8 ~ in winter than in summer
It is possible to send four times as much carbon dioxide to the carbonated spring.

【0032】給湯器2の燃焼時間が長い場合は、燃焼ガ
スの導入時間を長くしたり、ポンプ7の送気量を増加さ
せたり、あるいは、燃焼ガスの導入時間の延長とポンプ
7の送気量を増加の両方で、丁度、上記の除湿処理可能
な燃焼ガス総量に見合う量を処理するようにする。続い
て、炭酸ガスの脱離過程および炭酸泉の製造過程に関し
て説明する。
When the combustion time of the water heater 2 is long, the introduction time of the combustion gas is lengthened, the air supply amount of the pump 7 is increased, or the introduction time of the combustion gas is extended and the air supply of the pump 7 is increased. Both the increase in the amount should be carried out just in an amount commensurate with the total dehumidifying processable combustion gas. Next, the desorption process of carbon dioxide gas and the manufacturing process of carbonated spring will be described.

【0033】炭酸ガスの脱離過程では、三方バルブ4
2,43,44は、接続管30と接続管31,接続管3
1と接続管32,接続管33と接続管34が連通する切
替え状態となっている。加熱器15を駆動し、炭酸ガス
吸着塔14の塔内温度を上昇させることにより、燃焼ガ
ス中の炭酸ガスおよび有害ガス(一酸化炭素や窒素酸化
物などで後の有害ガス除去塔16の特定成分である)が
脱離する。一方、ポンプ18の作動で外気は水蒸気吸着
塔9を経て除湿されて炭酸ガス吸着塔14に入り炭酸ガ
ス吸着塔14の脱離ガスを三方バルブ42,43を通し
て有害ガス除去塔16に送り込む。
In the desorption process of carbon dioxide gas, the three-way valve 4
2, 43, and 44 are the connecting pipe 30, the connecting pipe 31, and the connecting pipe 3.
1 and the connection pipe 32, and the connection pipe 33 and the connection pipe 34 are in a switching state in which they communicate with each other. By driving the heater 15 and increasing the temperature inside the carbon dioxide adsorption tower 14, the carbon dioxide gas and the harmful gas in the combustion gas (specification of the later harmful gas removing tower 16 with carbon monoxide, nitrogen oxides, etc.) Is a component) is released. On the other hand, the outside air is dehumidified by the operation of the pump 18 through the water vapor adsorption tower 9, enters the carbon dioxide adsorption tower 14, and sends the desorbed gas of the carbon dioxide adsorption tower 14 to the harmful gas removal tower 16 through the three-way valves 42 and 43.

【0034】一方、有害ガス除去塔16は加熱器17の
稼働で、吸着剤が最も活性化する温度に予熱されてい
て、有害成分が吸着ないし分解されて除去・無害化され
る。濃縮された炭酸ガスは有害ガス除去塔16で有害ガ
スが除かれた後、ポンプ19に送られる。その後、濃縮
された炭酸ガスは、ポンプ19の稼働により適正流量に
調整され、浴槽20内に送り込まれる。これにより、有
害ガスを殆ど含有しない濃縮炭酸ガスが湯水21へ溶け
込み、安全で生理的に効果のある炭酸泉を入浴者に提供
できる。
On the other hand, the harmful gas removing tower 16 is preheated to the temperature at which the adsorbent is most activated by the operation of the heater 17, and the harmful components are adsorbed or decomposed to be removed / detoxified. The concentrated carbon dioxide gas is sent to the pump 19 after the harmful gas is removed by the harmful gas removing tower 16. Then, the concentrated carbon dioxide gas is adjusted to an appropriate flow rate by the operation of the pump 19 and sent into the bath 20. As a result, the concentrated carbon dioxide gas containing almost no harmful gas is dissolved in the hot water 21 to provide a safe and physiologically effective carbonated spring to the bather.

【0035】なお、水蒸気吸着塔9の再生は、以下の通
りである。給湯器2は稼働停止状態にしておき、バルブ
39,41および三方バルブ44を閉じ、加熱器10の
電源を入れ水蒸気吸着塔9の塔内を加熱し、一定期間、
予熱する。この予熱中に生ずる脱離水分は、結露水貯め
12に蓄えられ、開いたバルブ40より,排出される。
その後、三方バルブ37の操作とバルブ39の開口を行
い、ポンプ7を稼働させるのに伴って、接続管22,2
3−熱交換器4−ポンプ7−湿度センサ8−水蒸気吸着
塔9−バルブ40−系外という経路で通気され、脱離し
た水蒸気や有害ガスは排出される空気と一緒に系外に出
でゆく。
The regeneration of the water vapor adsorption tower 9 is as follows. The water heater 2 is stopped in operation, the valves 39 and 41 and the three-way valve 44 are closed, the heater 10 is turned on to heat the inside of the water vapor adsorption tower 9,
Preheat. The desorbed water generated during the preheating is stored in the dew condensation water storage 12 and discharged through the open valve 40.
After that, the three-way valve 37 is operated and the valve 39 is opened, and as the pump 7 is operated, the connecting pipes 22, 2 are connected.
3-Heat exchanger 4-Pump 7-Humidity sensor 8-Steam adsorption tower 9-Valve 40-Vapor vented through the path outside the system, desorbed water vapor and harmful gas are discharged outside the system together with the discharged air. go.

【0036】続いて、有害ガス除去塔16の吸着剤に吸
着された有害物質を脱離させる有害ガス除去塔の再生過
程を説明する。炭酸ガス吸着塔14の脱離プロセスが終
了した時点以降で、加熱器17を稼働させ脱離が最も促
進する温度に加熱するとともに、三方バルブ43,44
は接続管32と接続管51,接続管50と接続管33が
連通する切替え状態とし、バルブ39,40,41を閉
じ、外気をポンプ18で接続管50,33を通して送り
込み、接続管51から有害物質の脱離ガスと共に排出す
る。
Next, the regeneration process of the harmful gas removing tower for desorbing the harmful substances adsorbed by the adsorbent of the harmful gas removing tower 16 will be described. After the desorption process of the carbon dioxide adsorption tower 14 is completed, the heater 17 is operated to heat it to a temperature at which desorption is most promoted, and the three-way valves 43 and 44 are also used.
Is in a switching state in which the connection pipe 32 and the connection pipe 51 communicate with each other, and the connection pipe 50 and the connection pipe 33 communicate with each other, the valves 39, 40 and 41 are closed, and the outside air is sent by the pump 18 through the connection pipes 50 and 33, and the connection pipe 51 is harmful. Eject with the desorbed gas of the substance.

【0037】実施例のガス温度センサ8の代わりに、湿
度センサを用い燃焼ガス中の水蒸気量を測定するように
してもよい。なお、実施例の場合、上記の各バルブ、加
熱器、ポンプ等の稼働制御、あるいは、除湿能力や燃焼
ガスの水蒸気量の測定・演算、燃焼ガスの導入時間・ポ
ンプの送気量の決定、マイクロプロセッサ等を用いたコ
ントローラ(図示省略)により自動的に行われ無人運転
できるようになっているが、これに限らず、部分的に人
手による操作が入るようであってもよい。
Instead of the gas temperature sensor 8 of the embodiment, a humidity sensor may be used to measure the amount of water vapor in the combustion gas. In the case of the embodiment, operation control of each of the above valves, heaters, pumps, or the like, or measurement / calculation of dehumidification capacity and steam amount of combustion gas, introduction time of combustion gas, determination of air supply amount of pump, Although unattended operation is performed automatically by a controller (not shown) that uses a microprocessor or the like, the present invention is not limited to this, and it may be possible that a manual operation is partially performed.

【0038】上の実施例では、炭酸ガスが浴槽中の浴液
に送り込まれていたが、浴槽内からパイプで浴液が引き
出されていて、その途中で炭酸ガスが送り込まれたあと
再び浴槽内に戻されるようであってもよい。
In the above embodiment, carbon dioxide gas was sent into the bath liquid in the bathtub, but the bath liquid was drawn out from the bathtub by a pipe, and carbon dioxide gas was sent in the middle of the bathwater and then again in the bathtub. May be returned to.

【0039】[0039]

【発明の効果】以上に述べたように、この発明の炭酸泉
製造装置では、燃焼ガス導入を固定してしまわずに、水
蒸気の吸着剤の除湿能力を監視しながら、除湿能力を越
えない範囲で季節に合わせた適切な燃焼ガスの導入がな
されるため、炭酸ガスの吸着剤の劣化を回避しつつ本来
の性能が四季を通じて十分に発揮されるようになる。
As described above, in the carbonated spring producing apparatus of the present invention, the dehumidifying capacity of the adsorbent for water vapor is monitored without fixing the introduction of the combustion gas, and the dehumidifying capacity is not exceeded. Since proper combustion gas is introduced according to the season, the original performance can be fully exhibited throughout the four seasons while avoiding the deterioration of the carbon dioxide adsorbent.

【0040】水蒸気の吸着剤の除湿能力を塔内温度に基
づいて得る場合は、除湿能力の測定結果の信頼性が高
い。燃焼ガスの水蒸気量を測り、除湿可能な燃焼ガス総
量をも加味して導入の制御がなされるようであると、よ
り的確に除湿能力に合った燃焼ガスの導入制御がなされ
るようになる。
When the dehumidifying ability of the water vapor adsorbent is obtained based on the temperature inside the tower, the measurement result of the dehumidifying ability is highly reliable. If the introduction of the combustion gas seems to be controlled by measuring the amount of water vapor of the combustion gas and also considering the total amount of the dehumidified combustion gas, the introduction of the combustion gas that is more suitable for the dehumidification ability will be performed.

【0041】燃焼ガスの導入期間のコントロールは、例
えば、冬場、燃焼ガスの導入期間を長くとり、適切な炭
酸泉が、長い時間、現出することを可能とする。燃焼ガ
スの単位時間当たりの導入量のコントロールは、例え
ば、短い燃焼時間でも、燃焼時間中、目いっぱい燃焼ガ
スの導入を行い、炭酸ガス濃度の十分な炭酸泉が現出す
ることを可能とする。
The introduction period of the combustion gas is controlled, for example, in the winter, the introduction period of the combustion gas is set long, and a suitable carbonated spring can be exposed for a long time. Controlling the introduction amount of the combustion gas per unit time makes it possible to introduce the combustion gas to the full extent during the combustion time even when the combustion time is short, and to reveal a carbonated spring having a sufficient carbon dioxide concentration.

【0042】冷却により水蒸気の吸着剤が冷却されるよ
うであると、除湿手段の除湿能力が向上する。
If the water vapor adsorbent seems to be cooled by cooling, the dehumidifying capacity of the dehumidifying means is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の装置を用いた炭酸泉製造システムにお
ける除湿手段および濃縮手段まわりの構成をあらわすブ
ロック図である。
FIG. 1 is a block diagram showing a configuration around a dehumidifying means and a concentrating means in a carbonated spring manufacturing system using an apparatus of an embodiment.

【図2】実施例の装置を用いた炭酸泉製造システムにお
ける燃焼ガス取り込みまわりの構成をあらわすブロック
図である。
FIG. 2 is a block diagram showing a configuration around combustion gas intake in a carbonated spring manufacturing system using the apparatus of the embodiment.

【図3】実施例の装置を用いた炭酸泉製造システムにお
ける浴槽まわりの構成をあらわすブロック図である。
FIG. 3 is a block diagram showing a configuration around a bathtub in a carbonated spring manufacturing system using the apparatus of the embodiment.

【図4】水蒸気の吸着剤初期温度と吸着量の関係をあら
わすグラフである。
FIG. 4 is a graph showing a relationship between an adsorbent initial temperature of water vapor and an adsorption amount.

【符号の説明】[Explanation of symbols]

1 都市ガス 2 給湯器 3 燃焼ガス 8 ガス温度センサ 9 水蒸気吸着塔 10 加熱器 11 温度センサ 20 浴槽 47 冷却器 1 City gas 2 Water heater 3 Combustion gas 8 Gas temperature sensor 9 Water vapor adsorption tower 10 Heater 11 Temperature sensor 20 Bath 47 Cooler

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月11日[Submission date] January 11, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】この発明の炭酸泉製造装置において、除湿
手段に導入される燃焼ガスの水蒸気量を測定する水蒸気
量センサが除湿手段の手前に設けられていて、除湿能力
計測手段が、前記水蒸気量の測定結果と除湿能力測定結
果を用いて演算を行い除湿可能な燃焼ガス総量を算出
し、この算出結果に基づいて燃焼ガス導入が制御される
形態は非常に有用である。熱交換後の燃焼ガスの水蒸気
量を測定する水蒸気量センサとしては、通常の温度セン
サで十分である。燃焼ガスは露点状態なので湿度を測る
ことで水蒸気量が分かるからである。
In the carbonated spring manufacturing apparatus of the present invention, a water vapor amount sensor for measuring the water vapor amount of the combustion gas introduced into the dehumidifying means is provided in front of the dehumidifying means, and the dehumidifying ability measuring means measures the water vapor amount. It is very useful that the calculation is performed using the result and the dehumidification capacity measurement result to calculate the total dehumidifying combustion gas amount, and the combustion gas introduction is controlled based on the calculation result. A normal temperature sensor is sufficient as a water vapor amount sensor for measuring the amount of water vapor of the combustion gas after heat exchange . Because the combustion gas is in the dew point state, the amount of water vapor can be known by measuring the humidity.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】この発明の炭酸泉製造装置の除湿手段が水
蒸気の吸着剤の冷却を行う冷却手段を有する形態も非常
に有用である。水蒸気の吸着剤の除湿能力は、図4にみ
たように、吸着剤温度に依存しており、実験や計算で温
度と除湿能力たるゼオライトのCO吸着を阻害しない
ための排気露点−30℃を破過とする吸着量(Wg)の
関係を求めておく。一方、熱交換器で冷却された燃焼ガ
スのガス温度で除湿手段に導入される燃焼ガスの絶対湿
度(Sg/m)が分かる。燃焼ガスのガス温度が露点
であるからである。ガス温度と絶対湿度の関係を予め装
置内に記憶しておくようにするとよい。両者の比(吸着
量/絶対湿度)から、除湿可能な燃焼ガス総量(
)が直ちに知れる。これに基づいて、給湯器や湯沸
かし器の方の燃焼時間の範囲内で燃焼ガス総量に見合う
量を導入するように、燃焼ガスの導入時間・単位時間当
たりの導入量を決定し、燃焼ガスを送り込む。なお、上
記のT,W,SはT=W/Sなる関係にある。
It is also very useful that the dehumidifying means of the carbonated spring producing apparatus of the present invention has a cooling means for cooling the adsorbent of water vapor. As shown in FIG. 4, the dehumidifying ability of the water vapor adsorbent is dependent on the adsorbent temperature, and does not inhibit the temperature and the CO 2 adsorption of zeolite, which is the dehumidifying ability, in experiments and calculations.
The relationship of the adsorption amount (Wg) with the exhaust dew point of -30 ° C as the breakthrough is determined. On the other hand, the absolute temperature (Sg / m 3 ) of the combustion gas introduced into the dehumidifying means can be found at the gas temperature of the combustion gas cooled by the heat exchanger. This is because the gas temperature of the combustion gas is the dew point. The relationship between the gas temperature and the absolute humidity may be stored in the device in advance. From the ratio of both (adsorption amount / absolute humidity), the total amount of combustion gas that can be dehumidified ( T
m 3 ) is immediately known. Based on this, the introduction time of the combustion gas and the introduction amount per unit time are determined and the combustion gas is fed so that the amount corresponding to the total amount of combustion gas is introduced within the combustion time range of the water heater or water heater. . In addition, above
Note that T, W, and S have a relationship of T = W / S.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】】 0039[Name of item to be corrected] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】[0039]

【発明の効果】以上に述べたように、この発明の炭酸泉
製造装置では、燃焼ガス導入を固定してしまわずに、水
蒸気の吸着剤の除湿能力を監視しながら、除湿能力を越
えない範囲で季節に合わせた適切な燃焼ガスの導入がな
されるため、炭酸ガスの吸着剤の劣化を回避しつつ本来
の性能が四季を通じて十分に発揮されるようになる。
えば、冬場の寒い日に十分な炭酸ガスを浴槽に送り、浴
中の炭酸濃度の高い炭酸泉に入浴することが出来る。浴
中の炭酸濃度が高い場合、血行がよくなり、湯冷めしに
くくなり、非常に有効である。
As described above, in the carbonated spring producing apparatus of the present invention, the dehumidifying capacity of the adsorbent for water vapor is monitored without fixing the introduction of the combustion gas, and the dehumidifying capacity is not exceeded. Since proper combustion gas is introduced according to the season, the original performance can be fully exhibited throughout the four seasons while avoiding the deterioration of the carbon dioxide adsorbent. An example
For example, send a sufficient amount of carbon dioxide to the bath on a cold winter day,
You can take a bath in a carbonated spring with a high carbonic acid concentration. bath
If the concentration of carbonic acid is high, blood circulation will improve and
It is very effective and can be weakened.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガスを含んだ燃焼ガス中の水蒸気を
吸着剤を利用して除去する除湿手段と、この除湿手段に
より除湿された燃焼ガス中の炭酸ガスを吸着剤を利用し
て濃縮する濃縮手段と、濃縮された炭酸ガスを浴液中に
送り込む送気手段とを備え、濃縮された炭酸ガスにより
浴槽では炭酸泉が得られるようになっている炭酸泉製造
装置において、前記水蒸気の吸着剤の除湿能力を計測す
る除湿能力計測手段を備え、この除湿能力計測手段の測
定結果に基づいて前記除湿手段への燃焼ガス導入の制御
がなされるようになっていることを特徴とする炭酸泉製
造装置。
1. A dehumidifying unit for removing water vapor in a combustion gas containing carbon dioxide by using an adsorbent, and a carbon dioxide gas in the combustion gas dehumidified by the dehumidifying unit by using an adsorbent. In a carbonated spring manufacturing apparatus, which is provided with a concentration means and an air supply means for feeding the concentrated carbon dioxide gas into the bath liquid, and a carbonated spring is obtained in the bath by the concentrated carbon dioxide gas, An apparatus for producing carbonated spring, comprising dehumidification capacity measuring means for measuring dehumidification capacity, and controlling the introduction of combustion gas to the dehumidification means based on the measurement result of the dehumidification capacity measuring means.
【請求項2】 除湿手段には水蒸気の吸着剤を収容した
水蒸気吸着塔が設けられていて、この水蒸気吸着塔には
塔内温度を検出する温度センサが設けられており、除湿
能力計測手段が前記温度センサによる塔内温度を用いて
演算を行うことにより除湿能力の測定結果が得られる請
求項1記載の炭酸泉製造装置。
2. The dehumidifying means is provided with a water vapor adsorption tower containing a water vapor adsorbent, and this water vapor adsorption tower is provided with a temperature sensor for detecting the temperature inside the tower, and the dehumidifying capacity measuring means is provided. The carbonated spring manufacturing apparatus according to claim 1, wherein a measurement result of the dehumidifying ability is obtained by performing calculation using the temperature inside the tower by the temperature sensor.
【請求項3】 除湿手段に導入される燃焼ガスの水蒸気
量を測定する水蒸気量センサが除湿手段の手前に設けら
れていて、除湿能力計測手段が、前記水蒸気量の測定結
果と除湿能力測定結果を用いて演算を行い除湿可能な燃
焼ガス総量を算出し、この算出結果に基づいて燃焼ガス
導入の制御がなされる請求項1または2記載の炭酸泉製
造装置。
3. A water vapor amount sensor for measuring the water vapor amount of the combustion gas introduced into the dehumidifying means is provided in front of the dehumidifying means, and the dehumidifying ability measuring means has the water vapor amount measuring result and the dehumidifying ability measuring result. The carbonated spring manufacturing apparatus according to claim 1 or 2, wherein a total amount of dehumidified combustion gas is calculated by using the above formula, and the introduction of the combustion gas is controlled based on the calculation result.
【請求項4】 燃焼ガス導入の制御が、燃焼ガスの導入
期間のコントロールである請求項1から3までのいずれ
かに記載の炭酸泉製造装置。
4. The carbonated spring producing apparatus according to claim 1, wherein the control of the combustion gas introduction is control of the combustion gas introduction period.
【請求項5】 燃焼ガス導入の制御が、燃焼ガスの単位
時間当たりの導入量のコントロールである請求項1から
4までのいずれかに記載の炭酸泉製造装置。
5. The carbonated spring manufacturing apparatus according to claim 1, wherein the control of the combustion gas introduction is control of the introduction amount of the combustion gas per unit time.
【請求項6】 除湿手段が水蒸気の吸着剤の冷却を行う
冷却手段を有する請求項1から5までのいずれかに記載
の炭酸泉製造装置。
6. The carbonated spring manufacturing apparatus according to claim 1, wherein the dehumidifying means has a cooling means for cooling the water vapor adsorbent.
JP24516492A 1992-09-14 1992-09-14 Apparatus for production of carbonated spring Pending JPH0690988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24516492A JPH0690988A (en) 1992-09-14 1992-09-14 Apparatus for production of carbonated spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24516492A JPH0690988A (en) 1992-09-14 1992-09-14 Apparatus for production of carbonated spring

Publications (1)

Publication Number Publication Date
JPH0690988A true JPH0690988A (en) 1994-04-05

Family

ID=17129569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24516492A Pending JPH0690988A (en) 1992-09-14 1992-09-14 Apparatus for production of carbonated spring

Country Status (1)

Country Link
JP (1) JPH0690988A (en)

Similar Documents

Publication Publication Date Title
ES2267677T5 (en) Method for operating a thermal oscillation adsorption system and corresponding apparatus
JPH0691127A (en) Adsorption separator
JPS61254220A (en) Apparatus for removing co2
JPH0690988A (en) Apparatus for production of carbonated spring
JPS63252528A (en) Air purification method
JPS62132523A (en) Method and device for adsorbing and removing gaseous halogenohydrocarbon
JPH0576579A (en) Carbonated spring producing device
JPH05337161A (en) Carbonated spring manufacturing apparatus
JP2001104738A (en) Oxygen concentrator for medical treatment
JP2014168741A (en) Application method of volatile organic compound processing unit
JPH029414A (en) Apparatus for treating combustion gas
JPH05337160A (en) Exhaust heat utilizing system of carbonated spring manufacturing apparatus
JPH04161221A (en) Method and apparatus adsorbing and removing nox
JPH0690987A (en) Apparatus for production of carbonated spring
JPH05337159A (en) Carbonated spring manufacturing apparatus
SU1025395A1 (en) Method of controlling gaseous medium composition in agricultural product storages
JP2000237315A (en) Medical pressure fluctuation adsorption type oxygen thickener
CA1322727C (en) Apparatus for drying gas
JPH05317631A (en) Method for adsorbing and separating gaseous nitrogen oxide
JPS62100244A (en) Apparatus for controlling atmosphere in food storage house
JPH0690989A (en) Apparatus for production of carbonated spring
JP2000239004A (en) Pressure swing adsorption type oxygen enricher
RU2083265C1 (en) Method of automatically controlling adsorption purification process
JPH05200223A (en) Method for adsorbing and removing specific gas component
JPS6314636A (en) Perishables storage apparatus