JPS5839285B2 - Calibration method of ultrasonic dimension measuring device - Google Patents

Calibration method of ultrasonic dimension measuring device

Info

Publication number
JPS5839285B2
JPS5839285B2 JP3779078A JP3779078A JPS5839285B2 JP S5839285 B2 JPS5839285 B2 JP S5839285B2 JP 3779078 A JP3779078 A JP 3779078A JP 3779078 A JP3779078 A JP 3779078A JP S5839285 B2 JPS5839285 B2 JP S5839285B2
Authority
JP
Japan
Prior art keywords
gauge
tube
measuring device
ultrasonic
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3779078A
Other languages
Japanese (ja)
Other versions
JPS54130059A (en
Inventor
隆男 小西
雅宏 本地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3779078A priority Critical patent/JPS5839285B2/en
Publication of JPS54130059A publication Critical patent/JPS54130059A/en
Publication of JPS5839285B2 publication Critical patent/JPS5839285B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 この発明は超音波寸法測定装置の較正方法に関する。[Detailed description of the invention] The present invention relates to a method for calibrating an ultrasonic dimension measuring device.

近時、各種管の全長にわたる内外径および肉厚の自動測
定は、超音波寸法測定装置を用いることによって便利に
行われるようになってきた。
In recent years, automatic measurement of the inner and outer diameters and wall thicknesses of various pipes over their entire length has become convenient by using ultrasonic dimension measuring devices.

超音波寸法測定装置は、たとえば次のように構成されて
いる。
The ultrasonic dimension measuring device is configured as follows, for example.

すなわち、第1図および第2図に示すように、水の入っ
た槽20の前後壁21a。
That is, as shown in FIGS. 1 and 2, the front and rear walls 21a of the water tank 20.

21bには被測定管(以下、単に「管」という)1送り
込み、送り出し用の入口22aと出口22bとが設けら
れ、これら出入口22a t 22bは管1の移動を妨
げないようにして水の漏出を防止し得る適宜の封止機構
23a 、23bによって閉封されている。
21b is provided with an inlet 22a and an outlet 22b for sending in and out the pipe to be measured (hereinafter simply referred to as "pipe") 1, and these inlets and outlets 22a, 22b are designed to prevent water from leaking without interfering with the movement of the pipe 1. It is sealed by appropriate sealing mechanisms 23a and 23b that can prevent this.

管1は槽20の前後に設けられたスパイラル送りローラ
24・・・によって軸心廻り(こ回転しつつ軸心方向に
送られるようになっている。
The tube 1 is fed in the axial direction while being rotated around the axis by spiral feeding rollers 24 provided before and after the tank 20.

槽20は水温測定用温度検出子25や水循環ノズル26
等、槽内の水温を均一かつ一定σこ保つための器具を備
えるほか、管1の移動路両側(こ測定用探触子27a、
27b、その上方両側にスラグ28aと水温保償用探触
子28bとを備えている。
The tank 20 has a temperature sensor 25 for measuring water temperature and a water circulation nozzle 26.
In addition to equipment to maintain a uniform and constant water temperature in the tank, there are also equipment on both sides of the passage of the tube 1 (measuring probes 27a,
27b, and a slug 28a and a water temperature guarantee probe 28b are provided on both sides above the slug 27b.

そして、測定用探触子27a t 27bの発する超音
波が管1の表面に垂直(こ人別すると、表面エコーS1
.S2と底面エコー13tt 5 B125 B13・
・およびB21 ? B2□、B23・・・が生じる。
Then, the ultrasonic waves emitted by the measurement probes 27a and 27b are perpendicular to the surface of the tube 1.
.. S2 and bottom echo 13tt 5 B125 B13・
・And B21? B2□, B23... are generated.

表面エコーS1.S2は入射波が管1の表面で反射され
て生じるものであり、底面エコーBll 、B12 j
B13・・・およびB21 、B22 j B23・
・・は、管1の内向(こ入った入射波が管1の内周面で
反射されて生じるものである。
Surface echo S1. S2 is generated when the incident wave is reflected on the surface of the tube 1, and the bottom echo Bll, B12 j
B13...and B21, B22 j B23・
. . . is generated when an inward incident wave of the tube 1 is reflected by the inner circumferential surface of the tube 1.

測定用探触子27aの側の発振パルスO1と表面エコー
S1との間の時間間隔によっで探触子27aと管1との
間の距離W1が求まり、第1の底面エコーBllと第2
の底面エコーB1□との間の時間間隔tこよって管1の
この側の肉厚T1が求まる。
The distance W1 between the probe 27a and the tube 1 is determined by the time interval between the oscillation pulse O1 on the measurement probe 27a side and the surface echo S1, and the distance W1 between the probe 27a and the tube 1 is
The wall thickness T1 on this side of the tube 1 is determined by the time interval t between the bottom echo B1□ and the bottom echo B1□.

測定用探触子27bの側からも、同様にしで、探触子2
7bと管1との間の距離W2と管1のこの側の肉厚T2
が求まる。
Similarly, from the measurement probe 27b side, probe 2
Distance W2 between 7b and tube 1 and wall thickness T2 on this side of tube 1
is found.

探触子間隔に相当する定数をCとすると、管1の外径O
D、肉厚WT、内径IDはそれぞれ、OD二c−(W1
+W2) WT=T。
If the constant corresponding to the probe spacing is C, then the outer diameter of the tube 1 is O
D, wall thickness WT, and inner diameter ID are OD2c-(W1
+W2) WT=T.

I D=OD−(T1+’r2) としで求められる。ID=OD-(T1+'r2) It is required.

本装置は上記原理に基づいて寸法測定をするので水温変
化に極めて鋭敏である。
Since this device measures dimensions based on the above principle, it is extremely sensitive to changes in water temperature.

そのため、水温が水槽内全体にわたって均一に保たれる
ように、水循環ノズル26(こよって水を循環させると
ともに、水温が変化しでも定数Cが一定になるように水
温保償用探触子28bIこよって、自動的lこ補正する
ようにしでいる。
Therefore, in order to keep the water temperature uniform throughout the tank, the water circulation nozzle 26 (thus circulates the water), and the water temperature guarantee probe 28bI is installed so that the constant C remains constant even if the water temperature changes. Therefore, an automatic correction is made.

ところで、原子炉用ジルカロイ炉料被覆管のように極め
て厳しい寸法精度が要求されるような管の寸法測定を行
うため(こは、測定装置較正用限界ゲージの寸法精度も
高くなければならない。
By the way, in order to measure the dimensions of tubes that require extremely strict dimensional accuracy, such as Zircaloy cladding tubes for nuclear reactors, the dimensional accuracy of the limit gauge for calibrating the measuring device must also be high.

しかし、この発明者らの研究したところによれば、測定
精度を高めるためには単に限界ゲージの寸法精度を高め
るということだけでなく、ゲージ部の材料の選定および
加工条件の設定Iこも十分に配慮することが極めて重要
であり、そこで、このような観点から種々検討してここ
にこの発明を完成した。
However, according to research conducted by the inventors, in order to improve measurement accuracy, it is not only necessary to simply increase the dimensional accuracy of the limit gauge, but also to sufficiently select the material of the gauge part and set the processing conditions. It is extremely important to take this into account, and we have therefore completed this invention after conducting various studies from this perspective.

すなわち、この発明は、超音波による寸法測定に際し、
少なくともゲージ部は菅笠被測定物と組成を同じくする
材料を用い、上記測定物の加工条件のうち少なくとも圧
延時の加工度、Q値と熱処理条件とを同じくするようl
こしで加工した限界ゲージによって較正を行うことを特
徴とする超音波寸法測定装置の較正方法である。
That is, the present invention provides the following features when measuring dimensions using ultrasonic waves:
At least the gauge part should be made of a material with the same composition as the Sugagasa object to be measured, and among the processing conditions for the object to be measured, at least the working degree during rolling, the Q value, and the heat treatment conditions should be the same.
This is a method for calibrating an ultrasonic dimension measuring device, characterized in that calibration is performed using a limit gauge processed by a strainer.

次に、これを詳しく説明する。Next, this will be explained in detail.

第3図および第4図はこの発明の実施ニ用いる限界ゲー
ジを示すものであるが、この限界ゲージ10は、接続部
にはジヨイント11・・・を介在させるようにして、2
個の短寸(20〜40mm)円管状標準試験片12a、
12bとこれらの試験片12a、12bを挾む2本の長
寸円管状長さ補足部材13−a、13bとが1本の長尺
管状(こ連続配置され、これら試験片12a、12b、
長さ補足部材13at13bおよびジヨイント11・・
・と長さ補足部材13a。
3 and 4 show a limit gauge used in the practice of the present invention, and this limit gauge 10 has two joints 11 interposed at the connecting portion.
short (20 to 40 mm) circular tubular standard test pieces 12a,
12b and two elongated circular tubular length supplementary members 13-a, 13b sandwiching these test pieces 12a, 12b into one elongated tubular shape (these are arranged continuously, and these test pieces 12a, 12b,
Length supplementary member 13at13b and joint 11...
- and length supplementary member 13a.

13bの各端部に嵌着された座金14a、14bとをそ
れぞれ貫通するボルト15の両端に螺着されたナラN6
a、16bの締め付け(こまって、上記各部材11.1
2a 、12b 、13a、13b。
An oak N6 screwed onto both ends of a bolt 15 passing through washers 14a and 14b fitted on each end of the bolt 13b.
a, 16b (in particular, each of the above members 11.1)
2a, 12b, 13a, 13b.

14a、14bが解体可能に固定されでなるものである
14a and 14b are fixed in a disassembly manner.

この実施例は内径用限界ゲージを示すものであり、試験
片12aは下限寸法ゲージ部となり、試験片12bは上
限寸法ゲージ部となる。
This example shows a limit gauge for inner diameter, with the test piece 12a serving as the lower limit size gauge part and the test piece 12b serving as the upper limit size gauge part.

これらの試験片12a 、12bは被測定物である管1
と同一組成の材料を用いでつくられでおり、かつ、その
加工条件は少なくとも圧延時の加工度、Q値の設定およ
び熱処理条件の設定の3点では被測定物たる管1のそれ
らと一致するように図られている。
These test pieces 12a and 12b are the pipe 1 to be measured.
It is made using a material with the same composition as the pipe 1, and its processing conditions match those of the pipe 1 to be measured in at least three respects: degree of processing during rolling, setting of Q value, and setting of heat treatment conditions. It is designed as follows.

その他の加工条件Iこついても差異の生じないようにす
ることは好ましいことなので、できるだけ一致するよう
に図られている。
Since it is preferable to avoid differences even under other processing conditions, attempts are made to match them as much as possible.

原子炉用ジルカロイ炉料被覆管の寸法測定を行う場合の
較正用限界ゲージを例(ことって、これをより具体的に
説明すると、まず、管1と同−組成の材料を用い、圧延
条件中の加工度(4)およびQ値、すなわち を同じくするよう(こしでこれを圧延加工することによ
って、目標肉厚に極めて近い肉厚を有する圧延材を得、
その肉厚が全長にわたって均一(こなるようにこれを機
械加工する。
An example of a limit gauge for calibration when measuring the dimensions of a Zircaloy reactor cladding tube for a nuclear reactor (to explain this more specifically, first, using a material with the same composition as tube 1, and under rolling conditions) By rolling this with a strainer so that the working degree (4) and Q value of
This is machined so that its thickness is uniform over its entire length.

機械加工するだけのとりしろかない場合は、この機械加
工工程を省略してもよいし、場合により研摩加工等によ
ってもよい。
If there is no space for machining, this machining step may be omitted, or polishing may be performed as the case requires.

そして、次lここの試験片用素管の結晶粒度が管1のそ
れと同一のものとなるように、この試験片用素管を管1
と同一の条件で熱処理する。
Next, place this tube for test piece into tube 1 so that the crystal grain size of the tube for test piece here is the same as that of tube 1.
Heat treated under the same conditions as .

このようにして得た試験片用熱処理材については、この
段階で、X線(こよる正反則極点図法によってその集合
組織を調べるとともにその結晶粒度を測定し、(000
2)極点図に差がないこと、すなわちその集合組織が管
1のそれと同一であること、および結晶粒度に差がない
ことすなわちその金属組織が管1のそれと同一であるこ
とを確認する。
At this stage, the heat-treated material for the test piece obtained in this way was examined for its texture by X-ray (positive polarization method) and its crystal grain size was measured.
2) Confirm that there is no difference in the pole figures, that is, that the texture is the same as that of tube 1, and that there is no difference in grain size, that is, that the metal structure is the same as that of tube 1.

次に、上記試験片用熱処理材の内面のみを長さ方向全長
にわたって均一に酸洗するため、その両端にビニールホ
ースをつなぎ、内部に硝弗酸を流してその内面を0.0
05mm程度の微少量だけ化学研摩する。
Next, in order to uniformly pickle only the inner surface of the heat-treated material for the test piece over the entire length, a vinyl hose was connected to both ends of the heat-treated material, and nitric-hydrofluoric acid was flowed inside to pickle the inner surface with a 0.0.
Chemically polish only a small amount of about 0.05 mm.

そして、次(こ試験片用熱処理材の両端をゴム栓で閉塞
しでビーカ中の硝弗酸fこ浸漬し、布でその外表面をこ
することによって同じ<0.005關程度の微少量だけ
化学研摩する。
Next (close both ends of this heat-treated test piece with rubber stoppers, immerse it in nitric-fluoric acid solution in a beaker, and rub the outer surface with a cloth to remove a very small amount of about <0.005 degrees). Only chemical polishing.

このようにして化学研摩が終ると、得られた試験片を西
ドイツ、カール・ツアイス・イエナ社の万能測長機など
の寸法測定機で精密測定した後、上述のような限界ゲー
ジ10に組立でる。
When the chemical polishing is completed in this way, the obtained test piece is precisely measured using a dimension measuring machine such as a universal length measuring machine manufactured by Carl Zeiss Jena of West Germany, and then assembled into the limit gauge 10 as described above. .

これに対し、第5図は従来の限界ゲージの一例を示すも
のであって、この限界ゲージ2をつくる場合は、ゲージ
部2a、2bの目標肉厚よりも十分Eこ厚肉の素管をま
ず圧延加工し、次(こ、その両端部の周面を、機械加工
によって、第5図に鎖線で囲む肉厚だけ削り取ることに
よって、ゲージ部2a t 2bに仕上げていた。
On the other hand, FIG. 5 shows an example of a conventional limit gauge, and when making this limit gauge 2, a raw pipe with a wall thickness sufficiently E than the target wall thickness of the gauge parts 2a and 2b is used. First, it was rolled, and then the circumferential surfaces of both ends were machined to remove the wall thickness surrounded by the chain lines in FIG. 5, thereby forming the gauge portion 2a t 2b.

上述のように、この発明の実権ニ用いる限界ゲージ10
のゲージ部すなわち試験片12at12bは管1と同一
の加工度、Q値となるようlこ圧延加工して得るもので
あるのに対し、従来の限界ゲージ2は厚肉(こ圧延加工
しで得たものであるからそのQ値は管1のそれと異なっ
ている。
As mentioned above, the limit gauge 10 used in the practice of this invention
The gauge part of the test piece 12at12b is obtained by rolling so that it has the same working degree and Q value as the pipe 1, whereas the conventional limit gauge 2 has a thick wall (which is obtained by rolling). Therefore, its Q value is different from that of tube 1.

そのため、従来の限界ゲージ2のゲージ部2a、2bの
金属組織は管1の金属組織と異なったものlこなってい
る。
Therefore, the metal structure of the gauge parts 2a and 2b of the conventional limit gauge 2 is different from the metal structure of the tube 1.

そうするとゲージ部2a 、2b内を伝わる超音波の音
速と管1内を伝わる超音波の音速とが等しくならないた
め、寸法指示値が異なってくる。
In this case, the sound speed of the ultrasonic waves traveling inside the gauge parts 2a and 2b and the sound speed of the ultrasound waves traveling inside the tube 1 will not be equal, so that the dimension indication values will differ.

材料がジルカロイである場合、その集合組織の差違は(
0002)面X線強度の差違となって現われるのである
が、この(0002)面X線強度と、同一被検体に対す
るマイクロメータおよび超音波寸法測定装置の各寸法指
示値の差違すなわち寸法指示差値との関係は第6図のよ
う(こ図示され、(0002)面X線強度がOから10
まで変ると、寸法指示差値が14μも異なってることが
分かる。
If the material is Zircaloy, the difference in texture is (
This appears as a difference in the (0002) plane X-ray intensity, and the difference between this (0002) plane X-ray intensity and each dimension indication value of the micrometer and ultrasonic dimension measuring device for the same object, that is, the dimension indication difference value. The relationship between
It can be seen that the dimension difference value differs by 14μ.

このことから、限界ゲージのゲージ部は圧延時の加工度
、Q値が被測定物の加工度、Q値と同一となるように加
工される必要のあることが容易に理解される。
From this, it is easily understood that the gauge part of the limit gauge needs to be processed so that the working degree and Q value during rolling are the same as the working degree and Q value of the object to be measured.

他力、第7図は同じくジルカロイについて熱処理条件と
内径指示差値との関係を図示したものであり、Iは熱処
理を行っていない圧延まま材(こ関するデータ、■は4
500Cで熱処理して得た応力除去材fこ関するデータ
、■は580℃で熱処理しで得た再結晶材(こ関するデ
ータである。
Figure 7 also illustrates the relationship between heat treatment conditions and inner diameter indicated difference values for Zircaloy, where I is the as-rolled material that has not been heat treated (related data, and ■ is 4
Data related to the stress relief material f obtained by heat treatment at 500C, and (■) data related to the recrystallized material obtained by heat treatment at 580C.

この図に見られるように、熱処理条件が変ると、結晶粒
度が変化し材料内の音速が変わるため、内径指示差値は
圧延まま材と応力除去材とで約2μ、圧延まま材と再結
晶材(580°C)とで約4μも異なっている。
As seen in this figure, when the heat treatment conditions change, the crystal grain size changes and the sound velocity inside the material changes, so the inner diameter indicated difference value is approximately 2μ between the as-rolled material and the stress-relieved material, and the difference between the as-rolled material and the recrystallized material. There is a difference of about 4μ between the two materials (580°C).

このことから、限界ゲージのゲージ部は被測定物と同じ
条件で熱処理される必要のあることが容易に理解される
From this, it is easily understood that the gauge part of the limit gauge needs to be heat treated under the same conditions as the object to be measured.

この発明は、超音波測定を行うに際し、以上に述べたよ
うな、少なくともゲージ部となる部分は被測定物と同一
組成の材料を用い、その加工条件のうち少なくとも圧延
時の加工度、Q値と熱処理条件とは被測定物のそれらと
同一となるようにしで加工されでいる限界ゲージ(こよ
って較正を行うものであるから、較正精度が著しく向上
し、従来(こない秀れた測定結果を得ることを可能とす
るものである。
When performing ultrasonic measurement, this invention uses a material having the same composition as the object to be measured for at least the part that becomes the gauge part as described above, and among the processing conditions, at least the processing degree during rolling and the Q value. The limit gauge is processed so that the heat treatment conditions are the same as those of the object to be measured (this is how the calibration is performed, so the calibration accuracy is significantly improved, and compared to the previous method (which has produced excellent measurement results). It is possible to obtain.

近時、原子炉用ジルカロイ燃料被覆管の需要が増しでき
た。
Recently, demand for Zircaloy fuel cladding for nuclear reactors has increased.

そして、その仕上げ寸法精度は極めて高度のものが要求
されている。
Furthermore, an extremely high level of finishing dimensional accuracy is required.

しかし、この発明方法を実権すれば、これtこ十分に応
えることができる。
However, if the method of this invention is put into practice, this can be fully met.

なお、この発明は上記ジルカロイ冷間圧延材のほかチタ
ン、ステンレス鋼等の冷間圧延材にも適用しうるもので
ある。
The present invention can also be applied to cold-rolled materials such as titanium and stainless steel in addition to the above-mentioned cold-rolled Zircaloy materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は管寸法測定中の超音波寸法測定装置とこれから
得られるパルス波形とを示す正面断面図、第2図は同上
装置の側断面図、第3図はこの発明の実権に用いる限界
ゲージの一部切断側断面図、第4図は同限界ゲージの側
面図、第5図は従来の限界ゲージの一部切断側断面図、
第6図はジルカロイ(こおける(0002)面X線強度
と寸法指示差値との関係を示す図表、第7図は同じくジ
ルカロイ(こおける熱処理条件と内径指示差値との関係
を示す図表である。 10・・・・・・限界ゲージ、12at12b・・・・
・・ゲージ部となる標準試験片。
Fig. 1 is a front sectional view showing an ultrasonic dimension measuring device during pipe dimension measurement and the pulse waveform obtained from it, Fig. 2 is a side sectional view of the same device, and Fig. 3 is a limit gauge used in the actual implementation of this invention. FIG. 4 is a side view of the same limit gauge, FIG. 5 is a partially cut-away side sectional view of the conventional limit gauge,
Figure 6 is a chart showing the relationship between the (0002) plane X-ray intensity and the dimension difference value for Zircaloy. Figure 7 is a chart showing the relationship between the heat treatment conditions and the inner diameter difference value for Zircaloy. Yes. 10... limit gauge, 12at12b...
...Standard test piece that becomes the gauge part.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波による寸法測定に際し、少なくともゲージ部
は被測定物と組成を同じくする材料を用い、上記被測定
物の加工条件のうち少なくとも圧延時の加工度、Q値と
熱処理条件とを同じくするようにして加工した限界ゲー
ジによって較正を行うことを特徴とする超音波寸法測定
装置の較正方法。
1. When measuring dimensions by ultrasonic waves, at least the gauge part should be made of a material with the same composition as the object to be measured, and among the processing conditions for the object to be measured, at least the degree of working during rolling, the Q value, and the heat treatment conditions should be the same. A method for calibrating an ultrasonic dimension measuring device, characterized in that calibration is performed using a limit gauge processed using
JP3779078A 1978-03-30 1978-03-30 Calibration method of ultrasonic dimension measuring device Expired JPS5839285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3779078A JPS5839285B2 (en) 1978-03-30 1978-03-30 Calibration method of ultrasonic dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3779078A JPS5839285B2 (en) 1978-03-30 1978-03-30 Calibration method of ultrasonic dimension measuring device

Publications (2)

Publication Number Publication Date
JPS54130059A JPS54130059A (en) 1979-10-09
JPS5839285B2 true JPS5839285B2 (en) 1983-08-29

Family

ID=12507277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3779078A Expired JPS5839285B2 (en) 1978-03-30 1978-03-30 Calibration method of ultrasonic dimension measuring device

Country Status (1)

Country Link
JP (1) JPS5839285B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822906A (en) * 1981-08-03 1983-02-10 Kawasaki Steel Corp Steel plate width measuring device
JP2617914B2 (en) * 1986-03-04 1997-06-11 神鋼特殊鋼管株式会社 Method for measuring liner thickness of double pipe and biaxial follower for ultrasonic probe
CN107702668A (en) * 2017-11-16 2018-02-16 哈尔滨工程大学 A kind of ultrasound thin oil film demarcation testboard

Also Published As

Publication number Publication date
JPS54130059A (en) 1979-10-09

Similar Documents

Publication Publication Date Title
JPH0253746B2 (en)
US4290308A (en) Method of monitoring defects in tubular products
US3320797A (en) Ultrasonic internal flaw detecting apparatus for hot metal
JPS5839285B2 (en) Calibration method of ultrasonic dimension measuring device
EP1818674B1 (en) Method and apparatus for ultrasonic inspection of steel pipes
JPH029684B2 (en)
JPS6350661B2 (en)
JPH04142456A (en) Ultrasonic flaw detection for metal tube
JPH07218459A (en) Method for detecting inside corrosion of pipe
JP6776913B2 (en) Internal surface inspection method of pipe
JPS5936204B2 (en) Limit gauge for ultrasonic dimension measurement
JPS58171663A (en) Ultrasonic flaw detection of metallic pipe
US3218845A (en) Ultrasonic inspection method for inaccessible pipe and tubing
JPS5952983B2 (en) Ultrasonic angle flaw detection device
Cheong et al. Analysis of the circumferential guided wave for axial crack detection in a feeder pipe
Pettit et al. Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures
JPH0336921Y2 (en)
JP4736716B2 (en) Hot wall thickness measurement method for steel pipes
JPS6020683B2 (en) Calibration method of ultrasonic dimension measuring device
JPS60228912A (en) Monitoring method for corrosion of piping, container and the like
Jansen et al. Ultrasonic inspection of electrosleeved steam generator tubing
DE2756391C2 (en) Arrangement for switching off disruptive temperature influences during the non-destructive testing of workpieces in the ultrasonic immersion process
JPS5994063A (en) Ultrasonic flaw detection of steel specials
SU1224715A1 (en) Method of ultrasonic inspection of composite metal pipes
Perdijon An ultrasonic method for the internal inspection of tubing