JP4736716B2 - Hot wall thickness measurement method for steel pipes - Google Patents

Hot wall thickness measurement method for steel pipes Download PDF

Info

Publication number
JP4736716B2
JP4736716B2 JP2005314254A JP2005314254A JP4736716B2 JP 4736716 B2 JP4736716 B2 JP 4736716B2 JP 2005314254 A JP2005314254 A JP 2005314254A JP 2005314254 A JP2005314254 A JP 2005314254A JP 4736716 B2 JP4736716 B2 JP 4736716B2
Authority
JP
Japan
Prior art keywords
steel pipe
echo
echoes
thickness
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005314254A
Other languages
Japanese (ja)
Other versions
JP2007121131A (en
Inventor
智充 木村
宏太郎 藤澤
秀行 湯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005314254A priority Critical patent/JP4736716B2/en
Publication of JP2007121131A publication Critical patent/JP2007121131A/en
Application granted granted Critical
Publication of JP4736716B2 publication Critical patent/JP4736716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼管の熱間肉厚測定方法に係わり、特に、継目無鋼管の製造ラインで、マンドレル・バーがまだ挿入された状態にある鋼管の肉厚を測定するのに有効な技術である。   The present invention relates to a method for measuring the hot thickness of a steel pipe, and in particular, is an effective technique for measuring the thickness of a steel pipe in which a mandrel bar is still inserted in a seamless steel pipe production line. .

鋼管の外径及び肉厚の自動測定に対する要求は、品質管理上及び検査工程の迅速化の点からも近年ますます増大している。   The demand for automatic measurement of the outer diameter and wall thickness of steel pipes has been increasing in recent years in terms of quality control and speeding up of the inspection process.

ところで、鋼管の肉厚を測定する方法は、従来、ノギスやマイクロメータ等の測定器具を使用し、作業者が直接測定するか、あるいは超音波厚さ計で手動又は自動的に測定していた。しかしながら、ノギス等の器具を利用する方法では、鋼管の両端部だけしか測定できないという問題がある。また、超音波厚さ計では、鋼管の全長にわたっての測定が可能であるが、超音波の管への入射に接触媒質を介してプローブを鋼管表面に接触させなければならず、精整工程等での冷間測定はできても、圧延工程等の熱間での測定が困難であった。   By the way, the method of measuring the thickness of a steel pipe has been conventionally measured directly by an operator using a measuring instrument such as a caliper or a micrometer, or manually or automatically by an ultrasonic thickness meter. . However, the method using a caliper or the like has a problem that only the both ends of the steel pipe can be measured. In addition, the ultrasonic thickness gauge can measure the entire length of the steel pipe, but the probe must be brought into contact with the surface of the steel pipe via a contact medium for the incidence of the ultrasonic wave on the pipe. Although it was possible to perform a cold measurement at, it was difficult to perform a hot measurement such as in a rolling process.

そのため、X線、γ線のような放射線及びテレビカメラを用い,熱間、冷間を問わず、非接触で且つ連続的に、鋼管の全長にわたり肉厚を自動測定する技術が開発された(例えば、特許文献1参照)。つまり、鋼管に照射した放射線が、鋼管の内面に接して透過した時に、その減衰量が最大となり、外面に接した時に最小となる特性を利用し、減衰量の最大点と最小点を検知し、その間の放射線源、被測定鋼管、検出器の移動距離、時間又はブラウン管の映像上における距離を測定するものである。   For this reason, a technology has been developed that uses X-ray and γ-ray radiation and a TV camera to automatically measure the wall thickness over the entire length of the steel pipe, regardless of whether it is hot or cold, continuously and without contact ( For example, see Patent Document 1). In other words, when the radiation irradiated to the steel pipe is transmitted through the inner surface of the steel pipe, the attenuation is maximized, and the characteristic that is minimized when it is in contact with the outer surface is used to detect the maximum and minimum attenuation. The distance between the radiation source, the steel pipe to be measured, the moving distance of the detector, the time, or the image on the cathode ray tube is measured.

確かに、この技術によれば、熱間、冷間を問わず、非接触で且つ連続的に、鋼管の全長にわたり肉厚を自動測定が可能となった。しかしながら、放射線は透過性であるため、マンネスマン・マンドレルミル方式の継目無鋼管の製造工程(ラインともいう)のように、圧延時にマンドレル・バーを鋼管内に挿入した状態での測定には適用が難しい。つまり、マンドレル・バーの挿入で鋼管内面の境界が判別し難いからである。従って、マンドレル・ミルの入側とか出側での測定ができないという問題があった。   Certainly, according to this technique, it is possible to automatically measure the wall thickness over the entire length of the steel pipe in a non-contact and continuous manner regardless of whether it is hot or cold. However, since radiation is transparent, it can be applied to measurements with a mandrel bar inserted into the steel pipe during rolling, as in the manufacturing process (also called a line) of Mannesmann mandrel mill type seamless steel pipe. difficult. That is, it is difficult to determine the boundary of the inner surface of the steel pipe by inserting the mandrel bar. Therefore, there is a problem that measurement on the entry side and the exit side of the mandrel mill cannot be performed.

このような非接触方式の測定技術としては、上記放射線に代えて、レーザを用いる技術もある。つまり、鋼管へのレーザの照射により鋼管内で発生する超音波の多重反射エコーを信号処理することで、肉厚を測定する技術である。例えば、本出願人の出願で、最近公開されたものとして、鋼管の肉厚を熱間でレーザ超音波肉厚計を用い測定するに際し、鋼管の温度補正を適切に行って、測定誤差を少なくした測定技術がある(特許文献2参照)。この技術によれば、熱間でマンドレル・バーを挿入した状態でも鋼管の肉厚を測定ができる。   As such a non-contact measurement technique, there is a technique using a laser instead of the radiation. In other words, this is a technique for measuring the wall thickness by signal-processing multiple reflected echoes of ultrasonic waves generated in the steel pipe by laser irradiation to the steel pipe. For example, as recently published in the applicant's application, when measuring the thickness of a steel pipe hot using a laser ultrasonic thickness gauge, the temperature of the steel pipe is appropriately corrected to reduce the measurement error. Measurement technique (see Patent Document 2). According to this technique, the thickness of the steel pipe can be measured even when the mandrel bar is inserted hot.

ところで、このレーザを用いた肉厚測定の原理は、下記の通りである。   By the way, the principle of thickness measurement using this laser is as follows.

まず、図3(a)及び(b)に示すように、超音波発生用レーザ1を鋼管(図示せず)の外表面2に照射する。その結果、鋼管外表面2のアブレーションの反作用として肉厚方向に超音波3が発生する。その超音波3は、肉厚方向に伝播し、内表面で反射し、反射波5が再び外表面2に達すると、外表面2が微小に隆起する。この外表面2の隆起部6に、別途、エコー検出用レーザ7を照射すると共に、外表面2の隆起によるエコー検出用レーザ7の波形の変化を、光干渉装置8で検出する。この検出で、超音波発生用レーザ照射時刻(超音波発生時刻)と内表面からの反射波による外表面の隆起検出時刻(エコー検出時刻)との時間差が、超音波の進行時間となる。そして、超音波伝播速度は、鋼管の鋼種(組成)と温度とから定まる物性値なので、この速度、前記超音波の進行時間、及び幾何学補正項(図3(b)に示す鋼管肉厚内のエコーの反射角等を用いる)によって、鋼管の肉厚が次式で計算できる。なお、超音波は、肉厚方向のあらゆる角度(360°)に発生するので、エコーは、図2及び図3(b)に示すように、鋼管の外表面2と内表面4との間を1往復した時点で検出される1往復エコー9(第1エコーともいう)、2往復した第2エコー10、3往復した第3エコー11・・第nエコー等のようになる。   First, as shown in FIGS. 3A and 3B, an ultrasonic wave generating laser 1 is applied to the outer surface 2 of a steel pipe (not shown). As a result, ultrasonic waves 3 are generated in the thickness direction as a reaction of ablation of the steel pipe outer surface 2. The ultrasonic wave 3 propagates in the thickness direction, is reflected on the inner surface, and when the reflected wave 5 reaches the outer surface 2 again, the outer surface 2 is slightly raised. The raised portion 6 of the outer surface 2 is separately irradiated with an echo detection laser 7, and a change in the waveform of the echo detection laser 7 due to the elevation of the outer surface 2 is detected by the optical interference device 8. In this detection, the time difference between the laser irradiation time for ultrasonic wave generation (ultrasonic wave generation time) and the rise detection time (echo detection time) of the outer surface due to the reflected wave from the inner surface becomes the ultrasonic wave advance time. The ultrasonic wave propagation speed is a physical property value determined by the steel type (composition) and temperature of the steel pipe. Therefore, this speed, the ultrasonic wave traveling time, and the geometric correction term (in the steel pipe wall thickness shown in FIG. 3B). The thickness of the steel pipe can be calculated by the following equation. In addition, since an ultrasonic wave generate | occur | produces at every angle (360 degrees) of a thickness direction, as shown in FIG.2 and FIG.3 (b), an echo is between the outer surface 2 and the inner surface 4 of a steel pipe. One reciprocating echo 9 (also referred to as a first echo) detected at the time of one reciprocation, second reciprocating second echo 10, three reciprocating third echo 11.

WT=(1/2n)×TOFn×V×f(n)
ここで、WT:鋼管の肉厚、TOFn:第nエコーの進行時間、V:鋼管中の超音波伝播速度、f(n):第nエコーの幾何学補正項
しかしながら、上記式のTOFnを決める超音波発生時刻とエコー検出時刻とを正確に把握することは困難である。検出される波形は複雑であるし、鋼管の隆起程度による測定値への影響が避けられないからである。そのため、実際には、TOFn=TOFm+δT
のように、測定値TOFmに対してオフセット(補正)項δTを設けて、実際の肉厚(ノギス等で測定した)と照らしてチューニングするのが通常である。これでは、測定に作業者の手間がかるばかりでなく、高精度で、且つ迅速な測定ができないという問題があり、オフセット項を設けないで測定することが多い。
WT = (1 / 2n) × TOFn × V × f (n)
Here, WT: the thickness of the steel pipe, TOFn: the traveling time of the nth echo, V: the ultrasonic wave propagation velocity in the steel pipe, f (n): the geometric correction term of the nth echo However, the TOFn of the above equation is determined. It is difficult to accurately grasp the ultrasonic generation time and the echo detection time. This is because the detected waveform is complicated and the influence on the measurement value due to the degree of the steel pipe bulging is unavoidable. Therefore, in practice, TOFn = TOFm + δT
As described above, it is usual to provide an offset (correction) term δT for the measured value TOFm and tune it against the actual thickness (measured with calipers or the like). In this case, not only does the labor of the measurement take time, but there is a problem that the measurement cannot be performed with high accuracy and speed, and the measurement is often performed without providing an offset term.

また、鋼管の肉厚を実際にオンラインで測定する場合、鋼管を一定速度で走行させながら、一本あたり長さ方向に沿い約400箇所での測定が行われるが、鋼管中の超音波の減衰が著しく、常に第2エコー以降が多数得られるとは限らない。
特開昭54−114263号公報 特開2005−134321号公報
In addition, when actually measuring the thickness of a steel pipe online, while measuring the steel pipe at a constant speed, measurements are made at about 400 points along the length of each pipe. The attenuation of ultrasonic waves in the steel pipe However, it is not always possible to obtain many after the second echo.
JP 54-114263 A JP 2005-134321 A

本発明は、かかる事情に鑑み、レーザの照射で発生した超音波の反射エコーのうち、数箇所で得た3往復エコー及び4往復エコーを用い、高精度に肉厚を測定する鋼管の肉厚測定方法を提供することを目的としている。   In view of such circumstances, the present invention uses the three reciprocal echoes and four reciprocal echoes obtained at several locations among the reflected echoes of ultrasonic waves generated by laser irradiation, and the thickness of the steel pipe for measuring the thickness with high accuracy. The purpose is to provide a measurement method.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、熱間でオンラインを走行する鋼管の外面にレーザを照射し、発生した超音波が鋼管内面と外面との間の肉厚内で反射、往復する多数のエコーを光干渉装置で検出し、前記肉厚内で進行するエコーの進行時間及び反射角を定め、それらの値と超音波の伝播速度とから肉厚を計算するに際して、まず、検出されたエコーのうちから、3往復エコー及び4往復エコーを抽出し、それぞれの前記進行時間にそれぞれ下記(1)式、下記(2)式を満足するオフセット値δT3、δT4を設定し、3往復エコーの進行時間のオフセット値δT3と4往復エコーの進行時間のオフセット値δT4とが等しいと定めて、下記(4)及び下記(5)の式を連立させて、該(4)及び(5)式から肉厚値WTを求め、次いで、この肉厚値WTを1往復エコーの進行時間の測定値TOFm1から肉厚を与える下記(6)の式に代入して、1往復エコーの進行時間のオフセット値δTlを逆算して定め、定めた1往復エコーの進行時間のオフセット値δT1を利用して、下記(6)式から全ての測定箇所の肉厚WTを計算することを特徴とする鋼管の熱間肉厚測定方法である。

TOF actual 3=TOF measured 3十δT3 ・・・(1)
TOF actual 4=TOF measured 4十δT4・・(2)
WT=(1/6)×(TOFm3十δT3)×V×f(3)・・(4)
WT=(1/8)×(TOFm4+δT4)×V×f(4)・・(5)
WT=(1/2)×(TOFm1+δT1)×V×f(1)・・(6)
但し、TOF actual 3は真の第3エコーの進行時間
TOF measured 3は測定した第3エコーの進行時間
TOF actual 4は真の第4エコーの進行時間
TOF measured 4は測定した第4エコーの進行時間
Vは鋼管中の超音波伝播速度、
TOFm3は3往復エコーの進行時間の測定値
f(3)は第3エコーの幾何学補正項
TOFm4は4往復エコーの進行時間の測定値
f(4)は第4エコーの幾何学補正項
TOFm1は1往復エコーの進行時間の測定値
f(1)は第1エコーの幾何学補正項
That is, the present invention irradiates a laser on the outer surface of a steel pipe that travels on-line with heat, and generates a large number of echoes in which the generated ultrasonic waves are reflected and reciprocated within the thickness between the inner surface and the outer surface of the steel pipe In order to calculate the thickness from the values and the propagation speed of the ultrasonic wave, first of the detected echoes, 3 is detected. extract the reciprocating echo and 4 reciprocating echoes following each in each of the advance time (1), the offset value δT3 satisfying the following expression (2), set the .DELTA.t4, offset value of 3 round-trip echo traveling time δT3 And the offset value δT4 of the traveling time of the four reciprocating echoes are equal, and the following equations (4) and (5) are used simultaneously to obtain the wall thickness value WT from the equations (4) and (5). , then, the wall thickness value WT 1 are substituted into the following equation to give thickness from the measured value TOFm1 round-trip echo time to progression (6), determined by calculating back an offset value δTl of one round-trip echo time to progression, one round-trip echo traveling time which defines This is a hot wall thickness measurement method for a steel pipe, characterized in that the wall thickness WT of all measurement points is calculated from the following equation (6) using the offset value δT1 .
Record
TOF actual 3 = TOF measured 30 + δT3 (1)
TOF actual 4 = TOF measured 4 + δT4 (2)
WT = (1/6) × (TOFm3 + δT3) × V × f (3) (4)
WT = (1/8) × (TOFm4 + δT4) × V × f (4) (5)
WT = (1/2) × (TOFm1 + δT1) × V × f (1) (6)
Where TOF actual 3 is the true third echo travel time
TOF measured 3 is the measured travel time of the third echo
TOF actual 4 is the true fourth echo time
TOF measured 4 is the measured time of the 4th echo
V is the ultrasonic propagation velocity in the steel pipe,
TOFm3 is a measurement of the travel time of 3 reciprocating echoes.
f (3) is the geometric correction term of the third echo
TOFm4 is a measurement of the travel time of 4 reciprocating echoes.
f (4) is the geometric correction term of the fourth echo
TOFm1 is a measurement of the travel time of one round-trip echo
f (1) is the geometric correction term of the first echo

この場合、前記3往復及び4往復エコーが複数あれば、前記進行時間のオフセット値をそれらの平均値とするのが好ましい。また、前記鋼管の温度が1200℃以下であったり、あるいは前記鋼管が、プラグ又はマンドレル・バーを挿入した状態にあることが好ましい。さらに、前記鋼管の肉厚が3〜35mmであれば、一層好ましい。   In this case, if there are a plurality of the three reciprocating echoes and the four reciprocating echoes, it is preferable that the offset value of the traveling time is an average value thereof. Moreover, it is preferable that the temperature of the said steel pipe is 1200 degrees C or less, or the said steel pipe exists in the state which inserted the plug or the mandrel bar. Furthermore, it is more preferable if the thickness of the steel pipe is 3 to 35 mm.

本発明によれば、1200℃以下という熱間でオンラインを走行中であっても、鋼管にレーザ照射し、発生した超音波の多数の反射エコーから、3往復エコー及び4往復エコーを抽出して、高精度で鋼管の肉厚を測定することができるようになる。   According to the present invention, even when traveling online at a temperature of 1200 ° C. or less, a steel pipe is irradiated with laser, and 3 reciprocal echoes and 4 reciprocal echoes are extracted from a large number of reflected echoes of the generated ultrasonic waves. It becomes possible to measure the wall thickness of the steel pipe with high accuracy.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

まず、発明者は、レーザによる従来の鋼管肉厚測定方法を見直し、鋼管の肉厚を実際にオンラインで測定する場合、鋼管中の超音波の減衰が著しく、常に2往復エコー以降(3往復エコー、4往復エコー、・・)が多数得られるとは限らないことを確認した。ところが、鋼管を一定速度で走行させながら、一本あたり長さ方向に沿い約400箇所という多数箇所での測定が行われるので、2往復エコー(以下、第2エコーという)以降がまったく皆無ということはなく、第3エコー、第4エコーならば少ない場合で数箇所の測定位置でデータ入手が可能であることも判明した。   First, the inventor reviewed the conventional method for measuring the thickness of a steel pipe using a laser, and when actually measuring the thickness of a steel pipe on-line, the attenuation of ultrasonic waves in the steel pipe was significant, and always after 2 reciprocal echoes (3 reciprocal echoes). It was confirmed that a large number of 4 reciprocal echoes,. However, since the measurement is performed at a large number of about 400 points along the length direction while running the steel pipe at a constant speed, there is absolutely no more than two reciprocal echoes (hereinafter referred to as second echoes). It has also been found that the data can be obtained at several measurement positions in the case of the third echo and the fourth echo with few cases.

ところで、エコー波形及びその検出時刻に関する前記オフセット値δTは、超音波の反射する角度(θ)に依存すると考えられる(図3(b)参照)。すなわち、反射角度の差が大きい第1エコーと第2エコーとの該オフセットの値は大きく異なるが、第3エコー、第4エコーと後方のエコーになるほど、該角度の差は小さくなり、オフセット値は一定値に収斂し、ほぼ同じ値になっていくと考えられる。   By the way, it is considered that the offset value δT related to the echo waveform and its detection time depends on the angle (θ) at which the ultrasonic waves are reflected (see FIG. 3B). That is, the offset values of the first echo and the second echo having a large difference in reflection angle are greatly different, but the difference between the angles becomes smaller as the third echo, the fourth echo, and the rear echo become smaller. Is expected to converge to a constant value and become almost the same value.

そこで、発明者は、第3エコー及び第4エコーのオフセット値がほぼ等しくなることを利用すれば、前記したようなオフセット値の問題が解決できると考え、以下で述べるように、従来の肉厚測定方法に改良を加え、本発明を完成させたのである。   Therefore, the inventor considers that the problem of the offset value as described above can be solved by utilizing the fact that the offset values of the third echo and the fourth echo are substantially equal, and as described below, The present invention was completed by improving the measurement method.

従来の測定方法は、図3(a)及び(b)に示したように、熱間でオンラインを一定速度(例えば、60〜360m/min)で走行する鋼管(図示せず)の外表面2に、超音波発生用レーザ1を照射し、プラズマ圧力で発生した超音波3が鋼管内表面4と外表面2との間の肉厚内で反射、往復する多数のエコー(測定位置は、鋼管1本あたり数百箇所になる)を、別途検出用レーザー7の照射して光干渉装置8で検出するものである。その検出結果は、図2のような電気信号として得られる。従って、前記肉厚内で進行するエコーの進行時間及び反射角が定められ、それらの値と超音波の伝播速度とから前出の下記式を用いて、肉厚を計算することが可能となる。   As shown in FIGS. 3 (a) and 3 (b), the conventional measuring method includes an outer surface 2 of a steel pipe (not shown) that travels online at a constant speed (for example, 60 to 360 m / min). In addition, a number of echoes (measurement position is a steel pipe) which is irradiated with an ultrasonic wave generating laser 1 and ultrasonic waves 3 generated by plasma pressure are reflected and reciprocated within the wall thickness between the inner surface 4 and the outer surface 2 of the steel pipe. In this case, several hundred spots are detected by the optical interference device 8 by separately irradiating the laser 7 for detection. The detection result is obtained as an electric signal as shown in FIG. Therefore, the propagation time and reflection angle of the echoes traveling within the wall thickness are determined, and the wall thickness can be calculated from the values and the ultrasonic wave propagation velocity using the following formula. .

WT=(1/2n)×TOFn×V×f(n)
ここで、WT:鋼管の肉厚、TOFn:第nエコーの進行時間、V:鋼管中の超音波伝播速度、f(n):第nエコーの幾何学補正項
まず、本発明では、このようにして検出されたエコーのうちから、3往復エコー及び4往復エコーを抽出し、それぞれの前記進行時間にオフセット値を設定する。
WT = (1 / 2n) × TOFn × V × f (n)
Here, WT: the thickness of the steel pipe, TOFn: the traveling time of the nth echo, V: the ultrasonic wave propagation velocity in the steel pipe, f (n): the geometric correction term of the nth echo First, in the present invention, Then, 3 reciprocal echoes and 4 reciprocal echoes are extracted from the detected echoes, and an offset value is set for each of the travel times.

つまり、TOFactual3=TOFmeasured3+δT3 (1)
TOFactual4=TOFmeasured4+δT4 (2)
ここで、TOFactual3: 真の(実際の)第3エコーの進行時間
TOFmeasured3: 測定した第3エコーの進行時間
δT3: 設定した第3エコーのオフセット値
TOFactual4: 真の(実際の)第4エコーの進行時間
TOFmeasured4: 測定した第4エコーの進行時間
δT4: 設定した第4エコーのオフセット値
なお、前記3往復及び4往復エコーが複数抽出できる場合には、オフセット値をそれらの平均値とするのが好ましい。その方が真値に近いからである。
That is, TOF actual 3 = TOF measured 3 + δT3 (1)
TOF actual 4 = TOF measured 4 + δT4 (2)
Here, TOF actual 3: true (actual) third echo travel time TOF measured 3: measured third echo travel time δT3: set third echo offset value TOF actual 4: true (actual) ) Fourth echo travel time TOF measured 4: Measured fourth echo travel time δT4: Set offset value of the fourth echo If a plurality of the three reciprocation and four reciprocation echoes can be extracted, the offset values are used. It is preferable to set it as the average value. This is because it is closer to the true value.

そして、それらのオフセット値が3往復エコー及び4往復エコーで等しいと定める。   Then, it is determined that those offset values are the same for 3 reciprocating echoes and 4 reciprocating echoes.

δT3=δT4 (3)
従って、第3エコー及び第4エコーに対する肉厚を求める式は、それぞれ下記(4)及び(5)であるので、(3)の条件下で(4)及び(5)を連立させると、真の肉厚値WTが求まる。
δT3 = δT4 (3)
Therefore, since the equations for calculating the thickness for the third echo and the fourth echo are the following (4) and (5), respectively, if (4) and (5) are combined under the condition (3), The wall thickness value WT is obtained.

WT=(1/6)×(TOFm3+δT3)×V×f(3) (4)
WT=(1/8)×(TOFm4+δT4)×V×f(4) (5)
ここで、数字3、4はそれぞれ第3、第4エコーの値を、mは測定値であること示す。
WT = (1/6) × (TOFm3 + δT3) × V × f (3) (4)
WT = (1/8) × (TOFm4 + δT4) × V × f (4) (5)
Here, numerals 3 and 4 indicate the values of the third and fourth echoes, respectively, and m indicates a measured value.

次いで、上記のようにして求めた肉厚値WTを1往復エコーの肉厚を与える下記の式(6)に代入すると、1往復エコーのオフセット値が逆算して定められる。   Next, when the thickness value WT obtained as described above is substituted into the following equation (6) that gives the thickness of one reciprocating echo, the offset value of one reciprocating echo is determined by back calculation.

WT=(1/2)×(TOFm1+δT1)×V×f(1) (6)
なお、数字1は第1エコーの値を、mは測定値であることを示す。
WT = (1/2) × (TOFm1 + δT1) × V × f (1) (6)
The number 1 indicates the value of the first echo, and m indicates the measured value.

そこで、この1往復エコーのオフセット値δT1を利用すれば、他の全ての測定箇所の肉厚を計算することが可能となる。   Therefore, if the offset value δT1 of this one-way echo is used, it is possible to calculate the thickness of all other measurement points.

なお、本発明による測定対象となる鋼管は、継目無鋼管、電縫鋼管、圧接鋼管等のいずれでも良いが、特に、プラグ、マンドレル・バー等を内部に挿入し、圧延する場合に有効である。レーザによる超音波の鋼管内面と外面間の反射を利用するので、放射線の場合のような境界が不鮮明になるという問題が生じないからである。また、測定する肉厚の範囲は、3〜35mmであることが望ましい。3mm未満では、薄すぎて測定が難しく、35mm超えでは、超音波の減衰が著しいため不都合だからである。さらに、測定時における鋼管の温度は、1200℃以下であることが好ましい。1200℃超えでは、高すぎて超音波の減衰が著しいからである。下限を設けなかったのは常温でも測定可能だからである。   The steel pipe to be measured according to the present invention may be any of a seamless steel pipe, an ERW steel pipe, a pressure welded steel pipe, etc., and is particularly effective when a plug, a mandrel bar or the like is inserted and rolled. . This is because the reflection of the ultrasonic wave between the inner surface and the outer surface of the steel tube by the laser is utilized, so that the problem of unclear boundaries as in the case of radiation does not occur. Further, the thickness range to be measured is desirably 3 to 35 mm. If it is less than 3 mm, it is too thin and difficult to measure, and if it exceeds 35 mm, the attenuation of the ultrasonic wave is remarkable, which is inconvenient. Furthermore, it is preferable that the temperature of the steel pipe at the time of measurement is 1200 degrees C or less. This is because if it exceeds 1200 ° C., it is too high and the attenuation of ultrasonic waves is remarkable. The reason why the lower limit was not set is that measurement is possible even at room temperature.

鋼種が一般炭素鋼の小径継目無鋼管(圧延目標値:外径172mm、肉厚5mm、長さ12600mm)をマンドレル・ミルで延伸圧延し、その出側で、マンドレル・バーを引き抜く前に、肉厚を測定した。測定時の鋼管温度は、1050℃であった。その際、本発明に係るオフセット値を設けた場合及びオフセット値を設けない従来の方法による場合の2通りでの測定を行った。また、本発明の信頼性を確認するため、本発明で測定された鋼管については、作業者が測定冶具(ゲージ)を用いての直接測定も行った。なお、ゲージでの測定は、ライン外に抜き出した鋼管を輪切りにして行った。   A small diameter seamless steel pipe (rolling target value: outer diameter 172 mm, wall thickness 5 mm, length 12600 mm) is drawn and rolled with a mandrel mill on the outlet side, before the mandrel bar is pulled out. The thickness was measured. The steel pipe temperature at the time of measurement was 1050 ° C. At that time, the measurement was performed in two ways: when the offset value according to the present invention was provided, and by the conventional method where no offset value was provided. Moreover, in order to confirm the reliability of this invention, about the steel pipe measured by this invention, the operator also performed the direct measurement using a measurement jig (gauge). In addition, the measurement with a gauge was performed by cutting the steel pipe extracted out of the line into a ring.

その結果を図1に一括して示す。図1より、本発明に係る測定値は、鋼管の長手方向全体にわたり、ゲージによる測定値とほぼ一致し、正確な肉厚測定が行われたことが明らかである。つまり、オフセット値を設けない従来の測定方法に比べ、本発明によれば、大幅に鋼管肉厚の測定精度が改善される。   The results are collectively shown in FIG. From FIG. 1, it is clear that the measured value according to the present invention almost coincides with the measured value by the gauge over the entire longitudinal direction of the steel pipe, and the accurate thickness measurement was performed. That is, compared with the conventional measuring method which does not provide an offset value, according to this invention, the measurement precision of steel pipe wall thickness is improved significantly.

小径継目無鋼管のマンドレル・ミル出側での肉厚測定例を示す図である。It is a figure which shows the example of a wall thickness measurement in the mandrel mill exit side of a small diameter seamless steel pipe. レーザで発生した超音波の反射エコーの電気信号の時間変化を示す図である。It is a figure which shows the time change of the electrical signal of the reflective echo of the ultrasonic wave generate | occur | produced with the laser. レーザ照射による鋼管肉厚の測定原理を説明する模式図であり、(a)は超音波の発生と反射エコーの検出を、(b)は、鋼管内で反射エコーが進行する状況である。It is a schematic diagram explaining the measurement principle of the steel pipe wall thickness by laser irradiation, (a) is a situation where a reflective echo advances within a steel pipe, (a) is generation | occurrence | production of an ultrasonic wave, and detection of a reflective echo.

符号の説明Explanation of symbols

1 超音波発生用レーザ
2 外表面
3 超音波
4 内表面
5 反射波
6 隆起部
7 エコー検出用レーザ
8 光干渉装置
9 第1エコー
10 第2エコー
11 第3エコー
DESCRIPTION OF SYMBOLS 1 Laser for ultrasonic generation 2 Outer surface 3 Ultrasonic wave 4 Inner surface 5 Reflected wave 6 Raised part 7 Laser for echo detection 8 Optical interference device 9 First echo 10 Second echo 11 Third echo

Claims (5)

熱間でオンラインを走行する鋼管の外面にレーザを照射し、発生した超音波が鋼管内面と外面との間の肉厚内で反射、往復する多数のエコーを光干渉装置で検出し、前記肉厚内で進行するエコーの進行時間及び反射角を定め、それらの値と超音波の伝播速度とから肉厚を計算するに際して、
まず、検出されたエコーのうちから、3往復エコー及び4往復エコーを抽出し、それぞれの前記進行時間にそれぞれ下記(1)式、下記(2)式を満足するオフセット値δT3、δT4を設定し、3往復エコーの進行時間のオフセット値δT3と4往復エコーの進行時間のオフセット値δT4とが等しいと定めて、下記(4)及び下記(5)の式を連立させて、該(4)及び(5)式から肉厚値WTを求め、次いで、この肉厚値WTを1往復エコーの進行時間の測定値TOFm1から肉厚を与える下記(6)の式に代入して、1往復エコーの進行時間のオフセット値δTlを逆算して定め、定めた1往復エコーの進行時間のオフセット値δT1を利用して、下記(6)式から全ての測定箇所の肉厚WTを計算することを特徴とする鋼管の熱間肉厚測定方法。

TOF actual 3=TOF measured 3十δT3 ・・・(1)
TOF actual 4=TOF measured 4十δT4・・(2)
WT=(1/6)×(TOFm3十δT3)×V×f(3)・・(4)
WT=(1/8)×(TOFm4+δT4)×V×f(4)・・(5)
WT=(1/2)×(TOFm1+δT1)×V×f(1)・・(6)
但し、TOF actual 3は真の第3エコーの進行時間
TOF measured 3は測定した第3エコーの進行時間
TOF actual 4は真の第4エコーの進行時間
TOF measured 4は測定した第4エコーの進行時間
Vは鋼管中の超音波伝播速度、
TOFm3は3往復エコーの進行時間の測定値
f(3)は第3エコーの幾何学補正項
TOFm4は4往復エコーの進行時間の測定値
f(4)は第4エコーの幾何学補正項
TOFm1は1往復エコーの進行時間の測定値
f(1)は第1エコーの幾何学補正項
A laser beam is applied to the outer surface of the steel pipe that runs online in the heat, and the generated ultrasonic waves detect and reciprocate a large number of echoes that are reflected and reciprocated within the wall thickness between the inner surface and the outer surface of the steel pipe. In determining the propagation time and reflection angle of echoes traveling within the thickness, and calculating the wall thickness from those values and the propagation speed of the ultrasonic wave,
First, 3 reciprocal echoes and 4 reciprocal echoes are extracted from the detected echoes, and offset values δT3 and δT4 satisfying the following equations (1) and (2) are set for the respective traveling times. By determining that the offset value δT3 of the traveling time of the three reciprocating echoes is equal to the offset value δT4 of the traveling time of the four reciprocating echoes, the following equations (4) and (5) are combined, The wall thickness value WT is obtained from the equation (5) , and then this wall thickness value WT is substituted into the following equation (6) that gives the wall thickness from the measured value TOFm1 of the traveling time of one round-trip echo. It is characterized in that the offset value δTl of the traveling time is calculated by back calculation, and the thickness WT of all the measurement points is calculated from the following equation (6) using the determined traveling time offset value δT1 of one reciprocating echo. Hot thickness of steel pipe Measuring method.
Record
TOF actual 3 = TOF measured 30 + δT3 (1)
TOF actual 4 = TOF measured 4 + δT4 (2)
WT = (1/6) × (TOFm3 + δT3) × V × f (3) (4)
WT = (1/8) × (TOFm4 + δT4) × V × f (4) (5)
WT = (1/2) × (TOFm1 + δT1) × V × f (1) (6)
Where TOF actual 3 is the true third echo travel time
TOF measured 3 is the measured travel time of the third echo
TOF actual 4 is the true fourth echo time
TOF measured 4 is the measured time of the 4th echo
V is the ultrasonic propagation velocity in the steel pipe,
TOFm3 is a measurement of the travel time of 3 reciprocating echoes.
f (3) is the geometric correction term of the third echo
TOFm4 is a measurement of the travel time of 4 reciprocating echoes.
f (4) is the geometric correction term of the fourth echo
TOFm1 is a measurement of the travel time of one round-trip echo
f (1) is the geometric correction term of the first echo
前記3往復及び4往復エコーが複数あれば、前記進行時間のオフセット値をそれらの平均値とすることを特徴とする請求項1記載の鋼管の熱間肉厚測定方法。   The method for measuring a hot thickness of a steel pipe according to claim 1, wherein if there are a plurality of the three reciprocating echoes and the four reciprocating echoes, the offset value of the traveling time is an average value thereof. 前記鋼管の温度が1200℃以下であることを特徴とする請求項1又は2記載の鋼管の熱間肉厚測定方法。   The method for measuring a hot thickness of a steel pipe according to claim 1 or 2, wherein the temperature of the steel pipe is 1200 ° C or lower. 前記鋼管が、プラグ又はマンドレル・バーを挿入した状態にあることを特徴とする請求項1〜3のいずれかに記載の鋼管の熱間肉厚測定方法。   The said steel pipe exists in the state which inserted the plug or the mandrel bar, The hot thickness measurement method of the steel pipe in any one of Claims 1-3 characterized by the above-mentioned. 前記鋼管の肉厚が3〜35mmであることを特徴とする請求項1〜3のいずれかに記載の鋼管の熱間肉厚測定方法。   The thickness of the said steel pipe is 3-35 mm, The hot thickness measurement method of the steel pipe in any one of Claims 1-3 characterized by the above-mentioned.
JP2005314254A 2005-10-28 2005-10-28 Hot wall thickness measurement method for steel pipes Expired - Fee Related JP4736716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314254A JP4736716B2 (en) 2005-10-28 2005-10-28 Hot wall thickness measurement method for steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314254A JP4736716B2 (en) 2005-10-28 2005-10-28 Hot wall thickness measurement method for steel pipes

Publications (2)

Publication Number Publication Date
JP2007121131A JP2007121131A (en) 2007-05-17
JP4736716B2 true JP4736716B2 (en) 2011-07-27

Family

ID=38145135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314254A Expired - Fee Related JP4736716B2 (en) 2005-10-28 2005-10-28 Hot wall thickness measurement method for steel pipes

Country Status (1)

Country Link
JP (1) JP4736716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157610B2 (en) * 2008-04-17 2013-03-06 Jfeスチール株式会社 Method for measuring the thickness of thin steel pipes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213936A (en) * 2000-11-16 2002-07-31 Kawasaki Steel Corp Method and device for non-contact measurement of thickness of material
JP3821035B2 (en) * 2002-03-26 2006-09-13 Jfeスチール株式会社 Material thickness measurement method
JP2005134321A (en) * 2003-10-31 2005-05-26 Jfe Steel Kk Method and instrument for measuring wall thickness of steel pipe under hot condition

Also Published As

Publication number Publication date
JP2007121131A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
CN102323216B (en) Welding inspection method and apparatus thereof
JP5913295B2 (en) Method for assisting production management of steel pipe and device for assisting dimensional inspection of steel pipe during production
CN101796373B (en) Method for the complete detection of the geometry of test objects by means of ultrasound
WO2013114639A1 (en) Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
JP2009222408A (en) Ultrasonic flaw detection method, ultrasonic flaw detecting device, and production method for seam-welded pipe
US8151612B2 (en) Elongation rolling control method
Lévesque et al. Thickness and grain size monitoring in seamless tube-making process using laser ultrasonics
JP4412180B2 (en) Laser ultrasonic inspection method and laser ultrasonic inspection device
JP4736716B2 (en) Hot wall thickness measurement method for steel pipes
RU2373007C2 (en) Extension rolling control method
JP2006292482A (en) Rock bolt and method for measuring axial force of the same
JP5920401B2 (en) Ultrasonic flaw detection apparatus and method for electric sewing tube and quality assurance method
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2001141437A (en) Method and device for measuring tube thickness deviation and method and device for specifying cause of occurrence of tube thickness deviation
JP2594835B2 (en) A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part
JP2001311615A (en) Method and apparatus for non-contact ultrasonic thickness measuring
JP4834458B2 (en) Ultrasonic axial force measurement lock bolt and lock bolt axial force measurement method
JPH05240621A (en) Instrument for measuring outer diameter and wall thickness of pipe
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
JP7410606B1 (en) Non-destructive testing method and non-destructive testing equipment
JP2019219344A (en) Ultrasonic inspection method for pipe weld zone
CN103217485B (en) A kind of measurement test block of angle probe ultrasonic field sound pressure distribution
CN108139195B (en) Device for thermally measuring the dimensions of a metal profile during rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees