JP6776913B2 - Internal surface inspection method of pipe - Google Patents

Internal surface inspection method of pipe Download PDF

Info

Publication number
JP6776913B2
JP6776913B2 JP2017012724A JP2017012724A JP6776913B2 JP 6776913 B2 JP6776913 B2 JP 6776913B2 JP 2017012724 A JP2017012724 A JP 2017012724A JP 2017012724 A JP2017012724 A JP 2017012724A JP 6776913 B2 JP6776913 B2 JP 6776913B2
Authority
JP
Japan
Prior art keywords
tube
echo signal
pipe
intensity
bottom echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012724A
Other languages
Japanese (ja)
Other versions
JP2018119899A (en
Inventor
石男 春田
石男 春田
和人 久保田
和人 久保田
皓平 松田
皓平 松田
哲 暮石
哲 暮石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017012724A priority Critical patent/JP6776913B2/en
Publication of JP2018119899A publication Critical patent/JP2018119899A/en
Application granted granted Critical
Publication of JP6776913B2 publication Critical patent/JP6776913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波を用いた管の内面検査方法に関する。特に、本発明は、管の過酸洗等によって生じる管の内面の微小な凹凸を検出可能な管の内面検査方法に関する。 The present invention relates to a method for inspecting the inner surface of a tube using ultrasonic waves. In particular, the present invention relates to a method for inspecting the inner surface of a pipe capable of detecting minute irregularities on the inner surface of the pipe caused by peracid washing of the pipe.

従来より、管の製造工程において、管の内外面に生成された酸化スケールを除去する等の目的で、管を硫酸等の酸洗液に浸漬する酸洗処理が施される場合がある。
酸洗処理後には、管から酸洗液が除去されるものの、管の内面に酸洗液が残存すること等に起因して過酸洗が生じ、この結果、管の内面に微小な凹凸(以下、適宜、これを「内面微小凹凸」と称する)が生じる場合がある。
Conventionally, in the manufacturing process of a pipe, a pickling treatment may be performed in which the pipe is immersed in a pickling solution such as sulfuric acid for the purpose of removing the oxidation scale generated on the inner and outer surfaces of the pipe.
After the pickling treatment, the pickling solution is removed from the tube, but over-pickling occurs due to the remaining pickling solution on the inner surface of the tube, and as a result, the inner surface of the tube has minute irregularities ( Hereinafter, this may be referred to as “inner surface microconcavities and convexities”) as appropriate.

上記の内面微小凹凸は、例えば、ITVカメラなどの撮像手段を管内に挿入し、撮像画をオペレータが目視観察することでも検出可能である。
しかしながら、管の製造工程において、全ての管に対して撮像手段を挿脱する動作を行うには、非常に手間を要するため、実質的に全数の検査は困難である。
したがって、酸洗処理が施された全ての管について内面検査を行うことができ、内面微小凹凸を検出可能な方法が望まれている。
The above-mentioned minute unevenness on the inner surface can also be detected by inserting an imaging means such as an ITV camera into the tube and visually observing the captured image by the operator.
However, in the tube manufacturing process, it takes a lot of time and effort to insert and remove the imaging means for all the tubes, so that it is difficult to inspect substantially all of the tubes.
Therefore, there is a demand for a method capable of inspecting the inner surface of all the tubes that have been pickled and detecting minute irregularities on the inner surface.

管の内面検査方法としては、例えば、特許文献1〜4のような方法が提案されているものの、いずれも上記内面微小凹凸を検出する上で効果的な方法ではない。 As a method for inspecting the inner surface of a pipe, for example, methods such as Patent Documents 1 to 4 have been proposed, but none of them is an effective method for detecting the above-mentioned minute unevenness on the inner surface.

特開昭59−147259号公報JP-A-59-147259 特開平6−347242号公報Japanese Unexamined Patent Publication No. 6-347242 特開平7−218459号公報Japanese Unexamined Patent Publication No. 7-218459 特開2005−30880号公報Japanese Unexamined Patent Publication No. 2005-30880

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、管の過酸洗等によって生じる管の内面の微小な凹凸を検出可能な管の内面検査方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and provides a method for inspecting the inner surface of a pipe capable of detecting minute irregularities on the inner surface of the pipe caused by peracid washing of the pipe or the like. The task is to do.

前記課題を解決するため、本発明者らは鋭意検討した結果、以下の(A)〜(C)に記載の知見を得て、本発明を完成した。
(A)管の外面から管の内面を垂直探傷したときの底面エコー信号の強度が内面微小凹凸によって減衰する。
(B)上記内面微小凹凸による底面エコー信号の強度の減衰は微弱であるため、管の偏芯や偏肉による底面エコー信号の強度の変化によって、内面微小凹凸による底面エコー信号の強度の減衰が検出し難くなる。管の偏芯や偏肉の影響を低減するには、管の周方向についての底面エコー信号の強度分布に後述の所定の演算処理を施して得られる底面エコー信号の演算強度分布を評価することが効果的である。
(C)底面エコー信号の演算強度分布に統計処理(平均値や標準偏差やこれらの積を算出する処理)を施して得られた統計値の大小によって内面微小凹凸を検出可能(健全な内面と識別可能)である。
As a result of diligent studies in order to solve the above problems, the present inventors have obtained the findings described in the following (A) to (C) and completed the present invention.
(A) The strength of the bottom echo signal when the inner surface of the pipe is vertically flawed from the outer surface of the pipe is attenuated by the minute unevenness on the inner surface.
(B) Since the intensity of the bottom surface echo signal is slightly attenuated due to the minute unevenness on the inner surface, the intensity of the bottom surface echo signal is attenuated due to the minute unevenness on the inner surface due to the change in the intensity of the bottom surface echo signal due to the eccentricity or uneven thickness of the tube. It becomes difficult to detect. In order to reduce the influence of eccentricity and uneven thickness of the pipe, evaluate the calculated strength distribution of the bottom echo signal obtained by applying the predetermined arithmetic processing described later to the intensity distribution of the bottom echo signal in the circumferential direction of the pipe. Is effective.
(C) Small unevenness on the inner surface can be detected by the magnitude of the statistical value obtained by performing statistical processing (processing to calculate the mean value, standard deviation, and the product of these) on the calculated intensity distribution of the bottom echo signal (healthy inner surface). Identifiable).

すなわち、本発明は、以下の第1〜第5ステップを含むことを特徴とする管の内面検査方法を提供する。
(1)第1ステップ:管の外面に対向して超音波探触子を配置する。
(2)第2ステップ:前記超音波探触子を前記管の周方向に相対的に移動させると共に、前記超音波探触子から前記管の内面に対して略垂直に超音波を送信し、前記管の内面から反射した底面エコーを前記超音波探触子で受信して、前記管の周方向についての底面エコー信号の強度分布を取得する。
(3)第3ステップ:前記第2ステップで取得した底面エコー信号の強度分布に所定の演算処理を施して、底面エコー信号の演算強度分布を取得する。
(4)第4ステップ:前記第3ステップで取得した底面エコー信号の演算強度分布に統計処理を施し、該統計処理によって得られた統計値の大小に基づき、前記管の内面の凹凸を検出する。
前記演算処理は、前記底面エコー信号の強度分布を構成する複数の点の各強度に対して、注目点から所定の点数の範囲内での強度の最大値を最小値で除算し、該除算した結果を当該注目点の演算強度とする処理である。
That is, the present invention provides a method for inspecting the inner surface of a pipe, which comprises the following first to fifth steps.
(1) First step: An ultrasonic probe is placed facing the outer surface of the tube.
(2) Second step: The ultrasonic probe is moved relatively in the circumferential direction of the tube, and ultrasonic waves are transmitted from the ultrasonic probe substantially perpendicular to the inner surface of the tube. The bottom surface echo reflected from the inner surface of the tube is received by the ultrasonic probe to acquire the intensity distribution of the bottom surface echo signal in the circumferential direction of the tube.
(3) Third step: The intensity distribution of the bottom echo signal acquired in the second step is subjected to a predetermined arithmetic process to acquire the calculated intensity distribution of the bottom echo signal.
(4) Fourth step: Statistical processing is performed on the calculated intensity distribution of the bottom echo signal acquired in the third step, and unevenness on the inner surface of the pipe is detected based on the magnitude of the statistical value obtained by the statistical processing. ..
In the arithmetic processing, the maximum value of the intensity within a predetermined point range from the point of interest is divided by the minimum value for each intensity of the plurality of points constituting the intensity distribution of the bottom echo signal, and the division is performed. This is a process in which the result is used as the calculation intensity of the point of interest.

本発明によれば、第1ステップ〜第3ステップを実行することにより、底面エコー信号の演算強度分布を取得することが可能である。換言すれば、複数点の底面エコー信号の演算強度を取得することが可能である。後述のように、底面エコー信号の演算強度は、底面エコー信号自体の強度に比べて、管の偏芯や偏肉の影響が低減されたものとなる。そして、第4ステップにおいて、底面エコー信号の演算強度分布に統計処理を施し(複数点の底面エコー信号の演算強度に統計処理を施し)、得られた統計値の大小に基づき、管の内面の凹凸を検出することが可能である。
本発明によれば、機械的動作としては、管の外面に対向して超音波探触子を配置し(第1ステップ)、管の周方向に相対的に超音波探触子を移動させる(第2ステップ)だけで良い(管の内面全体を検査するには、管の周方向に加えて管の軸方向にも相対的に超音波探触子を移動させるだけで良い)ため、撮像手段を挿脱する場合に比べて手間が掛からず、全ての管について内面検査を自動的に行うことが可能である。
According to the present invention, it is possible to acquire the calculated intensity distribution of the bottom echo signal by executing the first step to the third step. In other words, it is possible to acquire the calculation intensity of the bottom echo signals at a plurality of points. As will be described later, the calculated intensity of the bottom echo signal is such that the influence of the eccentricity and the uneven thickness of the tube is reduced as compared with the intensity of the bottom echo signal itself. Then, in the fourth step, statistical processing is performed on the calculated intensity distribution of the bottom echo signal (statistical processing is performed on the calculated intensity of the bottom echo signal at a plurality of points), and based on the magnitude of the obtained statistical values, the inner surface of the pipe is subjected to statistical processing. It is possible to detect unevenness.
According to the present invention, as a mechanical operation, the ultrasonic probe is arranged so as to face the outer surface of the tube (first step), and the ultrasonic probe is moved relatively in the circumferential direction of the tube (1st step). (2nd step) is all that is required (to inspect the entire inner surface of the tube, it is only necessary to move the ultrasonic probe relatively in the axial direction of the tube in addition to the circumferential direction of the tube). It is possible to automatically inspect the inside of all pipes with less effort than in the case of inserting and removing.

本発明は、例えば、前記管の内面の凹凸が前記管の過酸洗によって生じるものである場合に好適に用いることができる。 The present invention can be suitably used, for example, when the unevenness of the inner surface of the pipe is caused by per-pickling of the pipe.

本発明によれば、管の内面の微小な凹凸を検出可能であり、全ての管について内面検査を自動的に行うことが可能である。本発明の検出対象である微小な凹凸としては、例えば、酸洗処理が施される管の過酸洗によって生じる微小な凹凸の他、熱間加工時の潤滑不足によって生じたスリ疵、冷間加工時の工具表面の微小な凹凸に起因するスリ疵等を挙げることができる。 According to the present invention, it is possible to detect minute irregularities on the inner surface of the pipe, and it is possible to automatically inspect the inner surface of all the pipes. The minute irregularities to be detected in the present invention include, for example, minute irregularities caused by over-pickling of pipes subjected to pickling treatment, scratches caused by insufficient lubrication during hot working, and cold. Scratches and the like caused by minute irregularities on the tool surface during machining can be mentioned.

本発明の一実施形態に係る管の内面検査方法を実施するための内面検査装置の概略構成を説明する説明図である。It is explanatory drawing explaining the schematic structure of the inner surface inspection apparatus for carrying out the inner surface inspection method of the pipe which concerns on one Embodiment of this invention. 本実施形態に係る内面検査方法で用いている演算処理の有効性を説明するための説明図(管の偏芯、偏肉が小さい場合)である。It is explanatory drawing (when the eccentricity and uneven thickness of a pipe are small) for demonstrating the effectiveness of the arithmetic processing used in the inner surface inspection method which concerns on this embodiment. 本実施形態に係る内面検査方法で用いている演算処理の有効性を説明するための説明図(管の偏芯、偏肉が大きい場合)である。It is explanatory drawing (when the eccentricity and uneven thickness of a pipe are large) for demonstrating the effectiveness of the arithmetic processing used in the inner surface inspection method which concerns on this embodiment. 本実施形態に係る内面検査方法と、参考例に係る内面検査方法とを比較した試験結果の一例(管の偏芯、偏肉が小さい場合)を示す。An example of the test result (when the eccentricity and the uneven thickness of the pipe are small) comparing the inner surface inspection method according to the present embodiment and the inner surface inspection method according to the reference example is shown. 本実施形態に係る内面検査方法と、参考例に係る内面検査方法とを比較した試験結果の一例(管の偏芯、偏肉が大きい場合)を示す。An example of the test result (when the eccentricity and the uneven thickness of the pipe are large) comparing the inner surface inspection method according to the present embodiment and the inner surface inspection method according to the reference example is shown.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について、検出対象が管の過酸洗によって生じる管の内面の微小な凹凸である場合を例に挙げて説明する。まず、本発明の一実施形態に係る管の内面検査方法を実施するための内面検査装置の概略構成について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings, taking as an example a case where the detection target is minute irregularities on the inner surface of the pipe caused by peroxywashing the pipe. First, a schematic configuration of an internal surface inspection device for carrying out the internal surface inspection method for a pipe according to an embodiment of the present invention will be described.

<本実施形態の内面検査装置の概略構成>
図1は、本発明の一実施形態に係る管の内面検査方法を実施するための内面検査装置の概略構成を説明する説明図である。図1(a)は管の軸方向から見た正面図を、図1(b)は平面図を示す。
図1に示すように、本実施形態の内面検査装置は、超音波探触子1と、超音波探触子1に接続された信号処理手段2とを備えている。また、後述のように、超音波探触子1を管Pの周方向に相対的に移動させながら軸方向にも相対的に移動させるための機構部(図示せず)も備えている。
<Rough configuration of the internal inspection device of this embodiment>
FIG. 1 is an explanatory diagram illustrating a schematic configuration of an internal surface inspection device for carrying out an internal surface inspection method for a pipe according to an embodiment of the present invention. FIG. 1 (a) shows a front view seen from the axial direction of the pipe, and FIG. 1 (b) shows a plan view.
As shown in FIG. 1, the internal surface inspection device of the present embodiment includes an ultrasonic probe 1 and a signal processing means 2 connected to the ultrasonic probe 1. Further, as will be described later, a mechanism unit (not shown) for moving the ultrasonic probe 1 relatively in the circumferential direction of the tube P and also in the axial direction is also provided.

本実施形態の超音波探触子1としては、内面微小凹凸(管Pの過酸洗によって生じる管Pの内面の微小な凹凸)の検出精度を高めるべく、例えば、単一の振動子を具備し、探傷周波数数10MHzで、焦点距離2インチのラインフォーカス型の超音波探触子が好適に用いられる。 The ultrasonic probe 1 of the present embodiment includes, for example, a single transducer in order to improve the detection accuracy of the inner surface minute unevenness (the minute unevenness on the inner surface of the tube P caused by the per-pickling of the tube P). However, a line-focus type ultrasonic probe having a flaw detection frequency of 10 MHz and a focal length of 2 inches is preferably used.

制御・信号処理手段2は、超音波探触子1から超音波を送信させるためのパルス信号を供給するパルサーや、エコーを受信した超音波探触子1から出力されるエコー信号を増幅するレシーバなど、超音波の送受信を制御する機能を果たす部分と、後述のように超音波探触子1から出力される底面エコー信号に基づき、管Pの周方向についての底面エコー信号の強度分布や演算強度分布を作成したり、底面エコー信号の演算強度分布に統計処理を施すなど、各種の信号処理を実行する機能を果たす部分とを備えている。なお、本実施形態では、機構部によって超音波探触子1を管Pの周方向に相対的に移動させながら軸方向にも相対的に移動させるため、制御・信号処理手段2によって作成される底面エコー信号の強度分布は、実際には管Pの軸方向に対して螺旋状の管Pの底面部位から得られる底面エコー信号に基づき作成されることになる。本発明における「管Pの周方向についての底面エコー信号の強度分布」には、上記のような管Pの軸方向に対して螺旋状の方向についての底面エコー信号の強度分布も含まれる。 The control / signal processing means 2 includes a pulser that supplies a pulse signal for transmitting ultrasonic waves from the ultrasonic probe 1 and a receiver that amplifies the echo signal output from the ultrasonic probe 1 that has received the echo. The intensity distribution and calculation of the bottom echo signal in the circumferential direction of the tube P based on the part that controls the transmission and reception of ultrasonic waves, such as, and the bottom echo signal output from the ultrasonic probe 1 as described later. It has a part that performs various signal processing functions such as creating an intensity distribution and performing statistical processing on the calculated intensity distribution of the bottom echo signal. In the present embodiment, since the ultrasonic probe 1 is relatively moved in the circumferential direction of the tube P by the mechanical unit and is also relatively moved in the axial direction, it is created by the control / signal processing means 2. The intensity distribution of the bottom surface echo signal is actually created based on the bottom surface echo signal obtained from the bottom surface portion of the spiral tube P with respect to the axial direction of the tube P. The "intensity distribution of the bottom echo signal in the circumferential direction of the tube P" in the present invention also includes the intensity distribution of the bottom echo signal in the spiral direction with respect to the axial direction of the tube P as described above.

機構部としては、管Pの方を周方向に回転させながら軸方向に搬送する機構を例示できる。ただし、これに限るものではなく、超音波探触子1の方を管Pの周方向及び軸方向の双方に移動させる機構を採用することも可能である。また、管Pの周方向に超音波探触子1を回転させる機構と、管Pを軸方向に搬送する機構とを備えた機構部や、管Pを周方向に回転させる機構と、超音波探触子1を管Pの軸方向に移動させる機構とを備えた機構部であってもよい。 As the mechanism unit, a mechanism that conveys the pipe P in the axial direction while rotating it in the circumferential direction can be exemplified. However, the present invention is not limited to this, and it is also possible to adopt a mechanism for moving the ultrasonic probe 1 in both the circumferential direction and the axial direction of the tube P. Further, a mechanism unit having a mechanism for rotating the ultrasonic probe 1 in the circumferential direction of the tube P and a mechanism for transporting the tube P in the axial direction, a mechanism for rotating the tube P in the circumferential direction, and an ultrasonic wave. It may be a mechanical unit including a mechanism for moving the probe 1 in the axial direction of the tube P.

<本実施形態に係る内面検査方法>
以下、上記の概略構成を有する内面検査装置を用いた本実施形態に係る内面検査方法について説明する。
本実施形態に係る内面検査方法では、まず、図1に示すように、管Pの外面に対向して超音波探触子1を配置する(本発明の第1ステップに相当)。
<Internal inspection method according to this embodiment>
Hereinafter, the internal surface inspection method according to the present embodiment using the internal surface inspection device having the above-mentioned schematic configuration will be described.
In the inner surface inspection method according to the present embodiment, first, as shown in FIG. 1, the ultrasonic probe 1 is arranged so as to face the outer surface of the tube P (corresponding to the first step of the present invention).

次に、機構部によって超音波探触子1を管Pの周方向に沿って相対的に移動させる(本実施形態では、これと同時に超音波探触子1を管Pの軸方向にも相対移動させる)と共に、超音波探触子1から管Pの内面に対して略垂直に超音波を送信し、管Pの内面から反射した底面エコーBを超音波探触子1で受信して超音波探触子1が底面エコー信号を出力し、制御・信号処理手段2が管Pの周方向についての底面エコー信号の強度分布を作成する(本発明の第2ステップに相当)。
具体的には、制御・信号処理手段2は、管Pの周方向について所定のピッチ毎に、超音波探触子1で受信したエコーのうち、底面エコーB(本実施形態では、表面エコーSを受信してから最初に受信した第1底面エコー)に相当する底面エコー信号の強度を検出することで、管Pの周方向についての底面エコー信号の強度分布を作成する。本実施形態では、管Pの1周当たり約400点の底面エコー信号の強度を検出(例えば、管Pの内径が27.4mmの場合、約0.22mmピッチ毎に検出することになる)して強度分布を作成している。
Next, the mechanism unit relatively moves the ultrasonic probe 1 along the circumferential direction of the tube P (in the present embodiment, at the same time, the ultrasonic probe 1 is also relative to the axial direction of the tube P. (Move), the ultrasonic probe 1 transmits ultrasonic waves substantially perpendicular to the inner surface of the tube P, and the bottom surface echo B reflected from the inner surface of the tube P is received by the ultrasonic probe 1 and is super. The ultrasonic probe 1 outputs a bottom echo signal, and the control / signal processing means 2 creates an intensity distribution of the bottom echo signal in the circumferential direction of the tube P (corresponding to the second step of the present invention).
Specifically, the control / signal processing means 2 receives a bottom echo B (in this embodiment, a surface echo S) among the echoes received by the ultrasonic probe 1 at predetermined pitches in the circumferential direction of the tube P. By detecting the intensity of the bottom echo signal corresponding to the first received bottom echo signal after receiving the above, the intensity distribution of the bottom echo signal in the circumferential direction of the tube P is created. In the present embodiment, the intensity of the bottom echo signal at about 400 points per circumference of the pipe P is detected (for example, when the inner diameter of the pipe P is 27.4 mm, it is detected at a pitch of about 0.22 mm). The intensity distribution is created.

次に、制御・信号処理手段2は、作成した底面エコー信号の強度分布に所定の演算処理を施して、底面エコー信号の演算強度分布を作成する(本発明の第3ステップに相当)。
具体的には、制御・信号処理手段2は、底面エコー信号の強度分布を構成する複数の点の各強度に対して、注目点から所定の点数の範囲内での強度の最大値を最小値で除算し、該除算した結果を当該注目点の演算強度とする演算を、注目点を順次ずらして実行することにより、底面エコー信号の演算強度分布を作成している。本実施形態では、底面エコー信号の強度分布を構成する約400点の各強度に対して、注目点から10点の範囲内(約0.22mmピッチ毎に底面エコー信号を検出する場合、2.2mmの範囲内)での強度の最大値を最小値で除算して底面エコー信号の演算強度分布を作成している。
Next, the control / signal processing means 2 performs a predetermined arithmetic process on the created bottom echo signal intensity distribution to create an arithmetic intensity distribution of the bottom echo signal (corresponding to the third step of the present invention).
Specifically, the control / signal processing means 2 sets the maximum value of the intensity within a predetermined number of points from the point of interest to the minimum value for each intensity of the plurality of points constituting the intensity distribution of the bottom echo signal. The calculation intensity distribution of the bottom echo signal is created by performing an operation in which the points of interest are calculated by dividing by and using the result of the division as the calculation intensity of the point of interest. In the present embodiment, when the bottom echo signal is detected within a range of 10 points from the point of interest (when the bottom echo signal is detected at intervals of about 0.22 mm) for each intensity of about 400 points constituting the intensity distribution of the bottom echo signal. The calculated intensity distribution of the bottom echo signal is created by dividing the maximum value of the intensity in the range of 2 mm) by the minimum value.

上記の演算処理における注目点からの点数は、検出したい内面微小凹凸を検出できるように適宜設定すればよい。検出したい内面微小凹凸のサイズに相当する点数に比べて注目点からの点数が小さすぎると、内面微小凹凸を検出し難くなる。このため、注目点からの点数の下限は、検出したい内面微小凹凸のサイズに相当する点数よりも大きな値に設定すればよい。内面微小凹凸をより確実に検出するためには、注目点からの点数の下限は、検出したい内面微小凹凸のサイズに相当する点数の1.5倍以上に設定すればよい。一方、注目点からの点数が大きすぎると、管Pの偏芯や偏肉の影響を低減し難くなる。このため、注目点からの点数の上限は、例えば、管Pの1/4周に相当する点数よりも小さな値に設定すればよい。好ましくは、注目点からの点数の下限は、検出したい内面微小凹凸のサイズに相当する点数の3倍未満に設定すればよい。なお、内面微小凹凸のサイズとは、超音波探触子1を管Pの周方向に相対的に移動させる方向の長さをいう。
上記の設定方法によれば、例えば、サイズが1.0mmの内面微小凹凸に対して、管Pの内径が27.4mmで1周当たり約400点の底面エコー信号の強度を検出しようとする場合、注目点からの点数の下限は5点に設定すればよく、好ましくは注目点からの点数の下限は7点に設定すればよい。また、注目点からの点数の下限とは独立して、注目点からの点数の上限は100点に設定すればよく、好ましくは14点に設定すればよい。
The points from the points of interest in the above arithmetic processing may be appropriately set so that the minute inner surface irregularities to be detected can be detected. If the score from the point of interest is too small compared to the score corresponding to the size of the inner surface minute unevenness to be detected, it becomes difficult to detect the inner surface minute unevenness. Therefore, the lower limit of the score from the point of interest may be set to a value larger than the score corresponding to the size of the inner surface minute unevenness to be detected. In order to detect the inner surface minute unevenness more reliably, the lower limit of the score from the point of interest may be set to 1.5 times or more the score corresponding to the size of the inner surface minute unevenness to be detected. On the other hand, if the score from the point of interest is too large, it becomes difficult to reduce the influence of the eccentricity and the uneven thickness of the pipe P. Therefore, the upper limit of the score from the point of interest may be set to a value smaller than the score corresponding to 1/4 circumference of the pipe P, for example. Preferably, the lower limit of the score from the point of interest may be set to less than three times the score corresponding to the size of the inner surface minute unevenness to be detected. The size of the minute unevenness on the inner surface means the length in the direction in which the ultrasonic probe 1 is relatively moved in the circumferential direction of the tube P.
According to the above setting method, for example, in the case where the inner diameter of the tube P is 27.4 mm and the intensity of the bottom surface echo signal of about 400 points per circumference is to be detected for the inner surface minute unevenness having a size of 1.0 mm. The lower limit of the score from the point of interest may be set to 5 points, and preferably the lower limit of the score from the point of interest may be set to 7 points. Further, the upper limit of the points from the point of interest may be set to 100 points, preferably 14 points, independently of the lower limit of the points from the points of interest.

以下、上記演算処理の有効性について説明する。
図2及び図3は、本実施形態に係る内面検査方法で用いている演算処理の有効性を説明するための説明図である。具体的には、図2は、管の偏芯、偏肉が小さい場合の説明図である。図3は、管の偏芯、偏肉が大きい場合の説明図である。各図の(a)は、管P及び底面エコーBの状態を模式的に示す図である。各図の(a)に示すF1は、管Pの周方向位置P1から管Pの外面に対して垂直に送信された超音波が入射する位置に存在する内面微小凹凸を示す。また、各図の(a)に示すF2は、管Pの周方向位置P2から管Pの外面に対して垂直に送信された超音波が入射する位置に存在する内面微小凹凸を示す。内面微小凹凸F1と内面微小凹凸F2の寸法は同一である。各図の(b)は、底面エコー信号の強度分布を模式的に示す図である。各図の(c)は、底面エコー信号の微分強度分布を模式的に説明する図である。各図の(d)は、底面エコー信号の演算強度分布を模式的に説明する図である。
Hereinafter, the effectiveness of the above arithmetic processing will be described.
2 and 3 are explanatory views for explaining the effectiveness of the arithmetic processing used in the internal inspection method according to the present embodiment. Specifically, FIG. 2 is an explanatory diagram when the eccentricity and the uneven thickness of the pipe are small. FIG. 3 is an explanatory diagram when the eccentricity and the uneven thickness of the pipe are large. FIG. 3A of each figure is a diagram schematically showing the states of the tube P and the bottom echo B. F1 shown in (a) of each figure indicates an inner surface minute unevenness existing at a position where ultrasonic waves transmitted perpendicularly to the outer surface of the tube P are incident from the circumferential position P1 of the tube P. Further, F2 shown in (a) of each figure indicates an inner surface minute unevenness existing at a position where ultrasonic waves transmitted perpendicularly to the outer surface of the tube P are incident from the circumferential position P2 of the tube P. The dimensions of the inner surface microconcavo-convex F1 and the inner surface microconcavo-convex F2 are the same. FIG. 3B of each figure is a diagram schematically showing the intensity distribution of the bottom echo signal. FIG. 3C of each figure is a diagram schematically explaining the differential intensity distribution of the bottom echo signal. FIG. (D) of each figure is a diagram schematically explaining the calculated intensity distribution of the bottom echo signal.

図2(a)に示すように、管Pの周方向位置P1、P2から送信された超音波は、それぞれ内面微小凹凸F1、F2によって散乱するため、内面微小凹凸F1、F2の存在する管Pの内面から反射した底面エコーBの強度は、内面微小凹凸の存在しない管Pの内面(例えば、管Pの周方向位置P3、P4から管Pの外面に対して垂直に送信された超音波が入射する内面)から反射した底面エコーBの強度よりも小さくなる。このため、図2(b)に示すように、内面微小凹凸F1、F2がそれぞれ存在する管Pの周方向位置P1、P2において、底面エコー信号の強度は減衰する。一方、図2(b)に示すように、内面微小凹凸が存在しない管Pの内面についての底面エコー信号の強度(管Pの周方向位置P1、P2以外の位置から送信された超音波についての底面エコー信号の強度)も、管Pの偏芯や偏肉の影響によって緩やかに変動する。例えば、管Pの周方向位置P3、P4における底面エコー信号の強度が互いに異なるものとなる。このため、単純に底面エコー信号の強度の大小で内面微小凹凸を検出(例えば、底面エコー信号の強度が所定のしきい値未満である場合に内面微小凹凸が存在すると判定)しようとすると、例えば、管Pの偏芯や偏肉に起因した底面エコー信号の強度の減衰箇所を内面微小凹凸であると誤検出するおそれがある。 As shown in FIG. 2A, the ultrasonic waves transmitted from the circumferential positions P1 and P2 of the pipe P are scattered by the inner surface microconcavities and convexities F1 and F2, respectively. The intensity of the bottom surface echo B reflected from the inner surface of the tube P is the ultrasonic wave transmitted perpendicularly to the outer surface of the tube P from the inner surface of the tube P having no minute irregularities on the inner surface (for example, the circumferential positions P3 and P4 of the tube P). It is smaller than the intensity of the bottom surface echo B reflected from the incident inner surface). Therefore, as shown in FIG. 2B, the intensity of the bottom surface echo signal is attenuated at the circumferential positions P1 and P2 of the tubes P in which the inner surface minute irregularities F1 and F2 are present, respectively. On the other hand, as shown in FIG. 2B, the intensity of the bottom surface echo signal for the inner surface of the tube P in which the inner surface has no minute irregularities (the ultrasonic waves transmitted from positions other than the circumferential positions P1 and P2 of the tube P). The strength of the bottom echo signal) also gradually fluctuates due to the influence of the eccentricity and the uneven thickness of the tube P. For example, the intensities of the bottom echo signals at the circumferential positions P3 and P4 of the tube P are different from each other. Therefore, if it is simply attempted to detect the inner surface minute unevenness based on the intensity of the bottom surface echo signal (for example, it is determined that the inner surface minute unevenness exists when the intensity of the bottom surface echo signal is less than a predetermined threshold value), for example , There is a possibility that a portion where the strength of the bottom echo signal is attenuated due to the eccentricity or uneven thickness of the tube P is erroneously detected as an inner surface minute unevenness.

そこで、本発明者らは、上記管Pの偏芯や偏肉の影響を低減して内面微小凹凸を検出可能にするため、まず底面エコー信号の強度分布に管Pの周方向の微分処理を施すことを考えた。具体的には、図2(b)に示すような底面エコー信号の強度分布を構成する複数の点の各強度に対して、注目点から所定の点数の範囲内での強度の最大値から最小値を減算し、該減算した結果を当該注目点の微分強度とする演算を、注目点を順次ずらして実行することにより、図2(c)に示すような底面エコー信号の微分強度分布を作成することを考えた。底面エコー信号の微分強度分布においては、底面エコー信号の強度分布のような管Pの偏芯や偏肉に起因した強度の緩やかな変動成分が低減されるため、管Pの偏芯や偏肉の影響を低減した状態で内面微小凹凸を検出可能である。例えば、図2(c)に示すように、底面エコー信号の微分強度を所定のしきい値Thと比較することで、同寸法の内面微小凹凸F1、F2の双方を検出可能である。 Therefore, in order to reduce the influence of the eccentricity and uneven thickness of the tube P and make it possible to detect minute irregularities on the inner surface, the present inventors first apply differential processing in the circumferential direction of the tube P to the intensity distribution of the bottom surface echo signal. I thought about giving it. Specifically, for each intensity of a plurality of points constituting the intensity distribution of the bottom echo signal as shown in FIG. 2 (b), the maximum value to the minimum intensity within a predetermined point range from the point of interest. The differential intensity distribution of the bottom echo signal as shown in FIG. 2C is created by performing an operation of subtracting the value and using the subtracted result as the differential intensity of the point of interest by sequentially shifting the points of interest. I thought about doing it. In the differential intensity distribution of the bottom echo signal, since the gradual fluctuation component of the intensity due to the eccentricity and uneven thickness of the tube P such as the intensity distribution of the bottom echo signal is reduced, the eccentricity and uneven thickness of the tube P are reduced. It is possible to detect minute irregularities on the inner surface while reducing the influence of. For example, as shown in FIG. 2C, by comparing the differential intensity of the bottom echo signal with a predetermined threshold value Th, it is possible to detect both the inner surface minute irregularities F1 and F2 having the same dimensions.

しかしながら、図3(a)に示すように、管Pの偏芯、偏肉が大きい場合には、例えば、偏芯方向(図3(a)の紙面左右方向)と直交する方向の位置(管Pの周方向位置P2、P4)から送信された超音波は、管Pの内面への入射角が90°から大きくずれることになる。このため、内面微小凹凸の存在しない管Pの内面で反射する場合であっても、超音波の送信方向と同方向に反射する底面エコーBの強度が大きく減衰することになる。また、偏芯方向と同方向の位置(管Pの周方向位置P1、P3)から送信された超音波については、偏芯の向き(図3(a)の紙面右方向)と同じ向きの位置(管Pの周方向位置P1)であるか、逆向きの位置(管Pの周方向位置P3)であるかによって、底面エコーBが受信されるまでの伝搬距離が変わることになる。このため、内面微小凹凸の存在しない管Pの内面で反射する場合であっても、底面エコーBの強度が変動することになる。 However, as shown in FIG. 3A, when the eccentricity and wall thickness of the tube P are large, for example, a position (tube) in a direction orthogonal to the eccentric direction (the left-right direction of the paper surface in FIG. 3A). The ultrasonic waves transmitted from the circumferential positions P2 and P4) of P have a large deviation from 90 ° in the angle of incidence on the inner surface of the tube P. Therefore, even when the reflection is performed on the inner surface of the tube P in which the inner surface has no minute irregularities, the intensity of the bottom echo B reflected in the same direction as the ultrasonic wave transmission direction is greatly attenuated. Further, for the ultrasonic waves transmitted from the positions in the same direction as the eccentric direction (circumferential positions P1 and P3 of the tube P), the positions in the same direction as the eccentric direction (right direction on the paper surface in FIG. 3A). The propagation distance until the bottom surface echo B is received changes depending on whether the position is (the circumferential position P1 of the tube P) or the opposite position (the circumferential position P3 of the tube P). Therefore, the intensity of the bottom surface echo B fluctuates even when the reflection is performed on the inner surface of the tube P in which the inner surface has no minute irregularities.

したがい、図3(b)に示すように、管Pの偏芯や偏肉に起因した底面エコー信号の強度の変動成分が、図2(b)に示す場合の変動成分と比べて大きくなる。このため、管Pの偏芯や偏肉に起因して底面エコーBの強度が減衰する管Pの周方向位置P2に内面微小凹凸F2が存在する場合の底面エコー信号の強度の振幅(周辺の底面エコー信号との強度差)は、管Pの偏芯や偏肉が大きくても底面エコーBの強度が減衰しない管Pの周方向位置P1に内面微小凹凸F1が存在する場合の底面エコー信号の強度の振幅よりも、かなり小さくなる。すなわち、同寸法の内面微小凹凸F1、F2であっても、存在する位置に応じて、底面エコー信号の強度の振幅が大きく異なることになる。この底面エコー信号の強度の振幅差に応じて、図3(c)に示すように、底面エコー信号の微分強度にも差が生じることになる。このため、例えば、底面エコー信号の微分強度を所定のしきい値Thと比較する場合、同寸法の内面微小凹凸F1、F2であっても、一方の内面微小凹凸F1は検出可能であるが、他方の内面微小凹凸F2は検出できないという状況が生じ得る。 Therefore, as shown in FIG. 3 (b), the fluctuation component of the intensity of the bottom echo signal due to the eccentricity and uneven thickness of the tube P becomes larger than the fluctuation component in the case shown in FIG. 2 (b). Therefore, the intensity of the bottom surface echo B is attenuated due to the eccentricity or uneven thickness of the tube P. When the inner surface minute unevenness F2 exists at the circumferential position P2 of the tube P, the amplitude of the intensity of the bottom surface echo signal (peripheral). The intensity difference from the bottom echo signal) is the bottom echo signal when the inner surface minute unevenness F1 exists at the circumferential position P1 of the tube P in which the intensity of the bottom echo B is not attenuated even if the eccentricity or the uneven thickness of the tube P is large. It is much smaller than the amplitude of the intensity of. That is, even if the inner surface microconcavities and convexities F1 and F2 have the same dimensions, the amplitude of the intensity of the bottom echo signal greatly differs depending on the existing position. As shown in FIG. 3C, the differential intensity of the bottom echo signal also differs depending on the amplitude difference of the intensity of the bottom echo signal. Therefore, for example, when the differential intensity of the bottom surface echo signal is compared with a predetermined threshold value Th, one of the inner surface minute irregularities F1 can be detected even if the inner surface minute irregularities F1 and F2 have the same dimensions. A situation may occur in which the other inner surface microconcavo-convex F2 cannot be detected.

そこで、本発明者らは、上記の微分処理よりも管Pの偏芯や偏肉の影響をより一層低減できる処理について更に鋭意検討した結果、底面エコー信号の強度分布に対して前述の演算処理を施せば良いことに想到した。前述の演算処理は、微分処理のように注目点から所定の点数の範囲内での底面エコー信号の強度の最大値から最小値を減算するのではなく、最大値を最小値で除算する処理であるため、たとえ、偏芯、偏肉が大きく、同寸法の内面微小凹凸F1、F2に底面エコー信号の強度の振幅差が生じていたとしても、図3(d)に示すように、作成される底面エコー信号の演算強度は、同寸法の内面微小凹凸F1、F2であれば同等になることが期待できる。このため、例えば、図3(d)に示すように、底面エコー信号の演算強度を所定のしきい値Thと比較することで、同寸法の内面微小凹凸F1、F2の双方を検出可能である。図2(d)に示すように、管Pの偏芯、偏肉が小さい場合も当然に、同寸法の内面微小凹凸F1、F2の双方を検出可能である。 Therefore, as a result of further diligent studies on a process capable of further reducing the influence of the eccentricity and the uneven thickness of the tube P as compared with the above differential process, the present inventors have made the above-mentioned arithmetic process on the intensity distribution of the bottom echo signal. I came up with the idea that I should give it. The above-mentioned arithmetic processing is a process of dividing the maximum value by the minimum value, instead of subtracting the minimum value from the maximum value of the intensity of the bottom echo signal within a predetermined number of points from the point of interest as in the differential processing. Therefore, even if the eccentricity and the uneven thickness are large and the inner surface minute irregularities F1 and F2 having the same dimensions have an amplitude difference in the intensity of the bottom surface echo signal, they are created as shown in FIG. 3 (d). It can be expected that the calculated intensities of the bottom echo signals will be the same if the inner surface minute irregularities F1 and F2 have the same dimensions. Therefore, for example, as shown in FIG. 3D, by comparing the calculated intensity of the bottom surface echo signal with a predetermined threshold value Th, it is possible to detect both the inner surface minute irregularities F1 and F2 having the same dimensions. .. As shown in FIG. 2D, even when the eccentricity and the uneven thickness of the pipe P are small, it is naturally possible to detect both the inner surface minute irregularities F1 and F2 having the same dimensions.

本実施形態に係る内面検査方法では、上述のようにして作成した底面エコー信号の演算強度分布に統計処理を施し、該統計処理によって得られた統計値の大小に基づき、内面微小凹凸を検出する(本発明の第4ステップに相当)。統計処理としては、平均値や標準偏差を算出する処理も考えられるが、本実施形態では、好ましい態様として、平均値×標準偏差を算出する処理を施している。また、本実施形態では、管Pの1周分(管Pの1回転分)の演算強度分布(約400点の演算強度)毎に統計値(平均値×標準偏差)を算出している。 In the inner surface inspection method according to the present embodiment, statistical processing is performed on the calculated intensity distribution of the bottom echo signal created as described above, and minute irregularities on the inner surface are detected based on the magnitude of the statistical value obtained by the statistical processing. (Corresponding to the fourth step of the present invention). As the statistical processing, a process of calculating the average value and the standard deviation can be considered, but in the present embodiment, a process of calculating the average value × the standard deviation is performed as a preferable embodiment. Further, in the present embodiment, the statistical value (mean value × standard deviation) is calculated for each calculated intensity distribution (calculated intensity of about 400 points) for one round of the pipe P (one rotation of the pipe P).

図4及び図5は、以上に説明した本実施形態に係る内面検査方法と、参考例に係る内面検査方法(底面エコー信号の強度分布に微分処理を施して作成した微分強度分布に、本実施形態に係る内面検査方法と同じ統計処理を施し、該統計処理によって得られた統計値の大小に基づき、内面微小凹凸を検出する方法)とを比較した試験結果の一例を示す。図4は、管Pの偏芯、偏肉が小さい(実質的に無い)場合に得られた試験結果の一例を示す。図5は、管Pの偏芯、偏肉が大きい場合に得られた試験結果の一例を示す。各図の(a)は、試験に用いた管Pの内面をITVカメラで撮像した撮像画像の一例を示す。各図の(b)は、本実施形態に係る内面検査方法によって得られる統計値(平均値×標準偏差)の管Pの軸方向についての分布を示す。各図の(c)は、参考例に係る内面検査方法によって得られる統計値(平均値×標準偏差)の管Pの軸方向についての分布を示す。各図の(b)及び(c)には、内面微小凹凸が発生している部位と、内面微小凹凸が発生していない健全な部位との双方について得られた統計値の分布を示している。なお、図4及び図5に示す試験結果は、以下の試験条件で取得したものである。
(1)超音波探触子1の探傷周波数:5MHz
(2)管Pの回転速度:64m/min
(3)管Pの搬送速度:4.4m/min(管Pの1回転当たり、管Pの軸方向に10mm搬送することに相当)
4 and 5 show the inner surface inspection method according to the present embodiment described above and the inner surface inspection method according to the reference example (differential intensity distribution created by subjecting the intensity distribution of the bottom echo signal to the differential intensity distribution). An example of a test result is shown in which the same statistical processing as that of the internal surface inspection method according to the morphology is performed, and a method of detecting minute irregularities on the inner surface based on the magnitude of the statistical value obtained by the statistical processing) is compared. FIG. 4 shows an example of the test results obtained when the eccentricity and the uneven thickness of the tube P are small (substantially absent). FIG. 5 shows an example of the test results obtained when the eccentricity and the uneven thickness of the tube P are large. (A) of each figure shows an example of the image taken by the ITV camera on the inner surface of the tube P used for the test. (B) of each figure shows the distribution of statistical values (mean value × standard deviation) obtained by the inner surface inspection method according to the present embodiment in the axial direction of the pipe P. (C) of each figure shows the distribution of statistical values (mean value × standard deviation) obtained by the internal inspection method according to the reference example in the axial direction of the pipe P. (B) and (c) of each figure show the distribution of the statistical values obtained for both the part where the inner surface minute unevenness is generated and the healthy part where the inner surface minute unevenness is not generated. .. The test results shown in FIGS. 4 and 5 were obtained under the following test conditions.
(1) flaw detection frequency of ultrasonic probe 1: 5 MHz
(2) Rotation speed of pipe P: 64 m / min
(3) Transfer speed of pipe P: 4.4 m / min (equivalent to transporting 10 mm in the axial direction of pipe P per rotation of pipe P)

図4に示す管Pの偏芯、偏肉が小さい場合には、図4(b)に示す本実施形態に係る内面検査方法であっても、図4(c)に示す参考例に係る内面検査方法であっても、内面微小凹凸が発生している部位で得られた統計値は、健全な部位で得られた統計値よりも大きくなっている。このため、例えば、両部位の統計値の間に所定のしきい値を設定し、このしきい値以上であれば内面微小凹凸が存在すると判定することで、内面微小凹凸を検出可能である。 When the eccentricity and the uneven thickness of the pipe P shown in FIG. 4 are small, even with the inner surface inspection method according to the present embodiment shown in FIG. 4 (b), the inner surface according to the reference example shown in FIG. 4 (c). Even with the inspection method, the statistical values obtained at the site where the inner surface micro-concavities and convexities occur are larger than the statistical values obtained at the healthy site. Therefore, for example, the inner surface minute unevenness can be detected by setting a predetermined threshold value between the statistical values of both parts and determining that the inner surface minute unevenness exists if the threshold value or more is set.

一方、図5に示す管Pの偏芯、偏肉が大きい場合には、図5(c)に示す参考例に係る内面検査方法では、内面微小凹凸が発生している部位で得られた統計値と健全な部位で得られた統計値との間に有意差が生じない。このため、両部位の統計値の間にしきい値を設定することができず、内面微小凹凸を検出できない。これに対し、図5(b)に示す本実施形態に係る内面検査方法では、内面微小凹凸が発生している部位で得られた統計値は、健全な部位で得られた統計値よりも大きくなっているため、管Pの偏芯、偏肉が小さい場合と同様に、内面微小凹凸を検出可能である。 On the other hand, when the eccentricity and the uneven thickness of the tube P shown in FIG. 5 are large, the statistics obtained at the site where the inner surface minute unevenness is generated by the inner surface inspection method according to the reference example shown in FIG. There is no significant difference between the values and the statistics obtained at healthy sites. Therefore, it is not possible to set a threshold value between the statistical values of both parts, and it is not possible to detect minute irregularities on the inner surface. On the other hand, in the inner surface inspection method according to the present embodiment shown in FIG. 5 (b), the statistical value obtained at the site where the inner surface minute unevenness occurs is larger than the statistical value obtained at the healthy site. Therefore, it is possible to detect minute irregularities on the inner surface as in the case where the eccentricity and the uneven thickness of the tube P are small.

1・・・超音波探触子
2・・・制御・信号処理手段
P・・・管
1 ... Ultrasonic probe 2 ... Control / signal processing means P ... Tube

Claims (2)

管の外面に対向して超音波探触子を配置する第1ステップと、
前記超音波探触子を前記管の周方向に相対的に移動させると共に、前記超音波探触子から前記管の内面に対して略垂直に超音波を送信し、前記管の内面から反射した底面エコーを前記超音波探触子で受信して、前記管の周方向についての底面エコー信号の強度分布を取得する第2ステップと、
前記第2ステップで取得した底面エコー信号の強度分布に所定の演算処理を施して、底面エコー信号の演算強度分布を取得する第3ステップと、
前記第3ステップで取得した底面エコー信号の演算強度分布に統計処理を施し、該統計処理によって得られた統計値の大小に基づき、前記管の内面の凹凸を検出する第4ステップと、
を含み、
前記演算処理は、前記底面エコー信号の強度分布を構成する複数の点の各強度に対して、注目点から所定の点数の範囲内での強度の最大値を最小値で除算し、該除算した結果を当該注目点の演算強度とする処理である、
ことを特徴する管の内面検査方法。
The first step of arranging the ultrasonic probe facing the outer surface of the tube,
The ultrasonic probe was moved relatively in the circumferential direction of the tube, and ultrasonic waves were transmitted from the ultrasonic probe substantially perpendicular to the inner surface of the tube and reflected from the inner surface of the tube. The second step of receiving the bottom echo with the ultrasonic probe and acquiring the intensity distribution of the bottom echo signal in the circumferential direction of the tube, and
The third step of acquiring the calculated intensity distribution of the bottom echo signal by performing a predetermined arithmetic process on the intensity distribution of the bottom echo signal acquired in the second step,
In the fourth step, the calculated intensity distribution of the bottom echo signal acquired in the third step is subjected to statistical processing, and the unevenness of the inner surface of the pipe is detected based on the magnitude of the statistical value obtained by the statistical processing.
Including
In the arithmetic processing, the maximum value of the intensity within a predetermined point range from the point of interest is divided by the minimum value for each intensity of the plurality of points constituting the intensity distribution of the bottom echo signal, and the division is performed. This is a process in which the result is the calculation strength of the point of interest.
A method for inspecting the inner surface of a pipe.
前記管の内面の凹凸は、前記管の過酸洗によって生じるものである、
ことを特徴とする請求項1に記載の管の内面検査方法。
The unevenness of the inner surface of the pipe is caused by the peracid washing of the pipe.
The method for inspecting the inner surface of a pipe according to claim 1.
JP2017012724A 2017-01-27 2017-01-27 Internal surface inspection method of pipe Active JP6776913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012724A JP6776913B2 (en) 2017-01-27 2017-01-27 Internal surface inspection method of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012724A JP6776913B2 (en) 2017-01-27 2017-01-27 Internal surface inspection method of pipe

Publications (2)

Publication Number Publication Date
JP2018119899A JP2018119899A (en) 2018-08-02
JP6776913B2 true JP6776913B2 (en) 2020-10-28

Family

ID=63043719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012724A Active JP6776913B2 (en) 2017-01-27 2017-01-27 Internal surface inspection method of pipe

Country Status (1)

Country Link
JP (1) JP6776913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381884B2 (en) * 2020-03-05 2023-11-16 日本製鉄株式会社 How to inspect the inner surface of a pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066955B2 (en) * 1985-09-28 1994-01-26 ダイキン工業株式会社 Operation inspection device for rotary compressor
JPH01219506A (en) * 1988-02-29 1989-09-01 Ohbayashi Corp Thickness measuring instrument for facility piping
JPH1144676A (en) * 1997-07-28 1999-02-16 Sekisui Chem Co Ltd Inspection method for piping material
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
JP5887964B2 (en) * 2011-02-04 2016-03-16 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe material manufacturing method

Also Published As

Publication number Publication date
JP2018119899A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5887964B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe material manufacturing method
Skjelvareid et al. Internal pipeline inspection using virtual source synthetic aperture ultrasound imaging
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
CN109196350B (en) Method for detecting defects in materials by ultrasound
JP2015175761A (en) Surface flaw detection method and surface flaw detection device
JP2009210339A (en) Defect inspection method and defect inspection device
JP6776913B2 (en) Internal surface inspection method of pipe
JP6524884B2 (en) Inner surface inspection method of tubular body
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JP7381884B2 (en) How to inspect the inner surface of a pipe
JP3206489B2 (en) Non-destructive inspection method of internal organization
JP5195407B2 (en) Tubular diagnosis apparatus and method
RU2394235C1 (en) Method for ultrasonic inspection of welded joints of small-diametre pipes
JP3748228B2 (en) Method for judging harmful defect in ultrasonic flaw detection and method for using the judgment result
JP6565411B2 (en) Inner surface inspection method for tubular body
KR101731895B1 (en) Method and apparatus for estimating axial extent of cracks in pipes using differential signal
JP5427053B2 (en) Tube thickness measuring device
JPH11211704A (en) Method and apparatus for ultrasonic flaw detection for pipe with internal fin
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP5505806B2 (en) Discrimination method of reflection echo
JP2007139685A (en) Ultrasonic flaw detection method of inner surface deformed pipe and ultrasonic flaw detection device
JP6939450B2 (en) Ultrasonic flaw detection method
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6776913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151