JPS5839073A - Amorphous solar battery - Google Patents

Amorphous solar battery

Info

Publication number
JPS5839073A
JPS5839073A JP56137329A JP13732981A JPS5839073A JP S5839073 A JPS5839073 A JP S5839073A JP 56137329 A JP56137329 A JP 56137329A JP 13732981 A JP13732981 A JP 13732981A JP S5839073 A JPS5839073 A JP S5839073A
Authority
JP
Japan
Prior art keywords
semiconductor layer
crack
lead wire
amorphous semiconductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56137329A
Other languages
Japanese (ja)
Other versions
JPS622713B2 (en
Inventor
Yukio Higaki
桧垣 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56137329A priority Critical patent/JPS5839073A/en
Publication of JPS5839073A publication Critical patent/JPS5839073A/en
Publication of JPS622713B2 publication Critical patent/JPS622713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a solar battery which can prevent an element from breaking its function due to shortcircuit between a surface electrode and a metallic substrate even if a crack is produced by interposing an insulating film between the part which might crack of an amorphous semiconductor layer directly under a bonding position of an external lead wire at the surface side of the battery and the substrate. CONSTITUTION:The connection of an external lead wire 5 cause a crack 6 which reaches an amorphous semiconductor layer 2 from a metal electrode 4 due to heat or pressure upon working such as supersonic welding, spot welding or soldering. Before the layer 2 is grown on a metallic substrate 1, a silicon oxidize film 7 is formed directly under the position to be bonded a surface side lead wire 5. Then, even if the crack 6 occurs, the shortcircuit between the electrode 4 and the substrate 1 is prevented, thereby occurring no damage of the element. The insulating film may be a silicon nitride film by plasma CVD method or various insulating film deposited.

Description

【発明の詳細な説明】 この発明は金属板を基板とするアモルファス太陽電池の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an amorphous solar cell using a metal plate as a substrate.

安価な太陽電池として金属板を基板とするアモルファス
太陽電池が有望視され、研究開発毅:進められている0
第1図は従来のこの種太陽電池の構成を示す断面図でる
る。まず、ステンレス鋼などの銹びにくい金属基板(1
)の上にグロー放電法によリシラン(sia4)ガスを
分解してアそルファス半導体層(2)をデポジションす
る。その時にホスフィン(PHa)またはジポラン(B
2H6)ガスを1%程度混合することによって、それぞ
れn形またはp形のアモルファス半導体層を得るように
して、その伝導形を制御して、連続的にp形、1形およ
びn形のアモルファス半導体層を積層して図示、アモル
ファス半導体層(2)を形成する。次に、このアモルフ
ァス半導体層(2)の上にインジウム・スズ酸化物(工
ndium−Tin・0xi4e : I To )を
蒸着して光学的に透明な導電膜(3)を形成する。この
導電膜(3)はアモルファス半導体層(2)の表面側の
電気抵抗を低下させる目的をもっている。最後にアルミ
ニウムなどを蒸着して金属電極(4)および外部リード
線接続のためのポンディングパッド(特に図示せず)を
形成し、この部分に外部リード線(5)を接続する。他
方の外部接続は金属基板(1)に対して行なわれる。
Amorphous solar cells, which use metal plates as substrates, are seen as promising as inexpensive solar cells, and research and development efforts are underway.0
FIG. 1 is a sectional view showing the structure of a conventional solar cell of this type. First, start with a rust-resistant metal substrate such as stainless steel (1
), an amorphous semiconductor layer (2) is deposited by decomposing resilane (SIA4) gas by a glow discharge method. At that time, phosphine (PHa) or diporane (B
2H6) By mixing about 1% of gas, an n-type or p-type amorphous semiconductor layer is obtained, and the conductivity type is controlled to continuously form p-type, 1-type, and n-type amorphous semiconductor layers. The layers are stacked to form an amorphous semiconductor layer (2) as shown in the figure. Next, an optically transparent conductive film (3) is formed by depositing indium-tin oxide (ITo) on this amorphous semiconductor layer (2). This conductive film (3) has the purpose of lowering the electrical resistance on the surface side of the amorphous semiconductor layer (2). Finally, aluminum or the like is deposited to form a metal electrode (4) and a bonding pad (not particularly shown) for connecting an external lead wire, and an external lead wire (5) is connected to this portion. The other external connection is made to the metal substrate (1).

ところで、金属基板(1)への外部接続は、金属基板(
1)が製置であるので、安全容易であるが、アモルファ
ス半導体層(3)の表面側の外部リード線(5)の接続
には困難を伴う。すなわち、この外部リード線(5)の
接続は、超音波接続、スポット溶接、半田付けなどによ
るが、それらの作業に伴う熱や、圧力のために、第1図
に示したように金属電極(4)からアモルファス半導体
層(2)に達するクラック(6)が発生することがある
。このように1クランク(6)が発生すると、アモルフ
ァス半導体層(3)の厚さが1ミクロン以下で、極めて
薄いので、電極(4)の金属がクランク(6)を通して
容易に基板(1)K達し、この太陽電池を短絡させるこ
とになる。つまり、電極への外部リード線(5)の接続
の工程で、太陽電池を破損する危険が大きかった。
By the way, the external connection to the metal board (1) is made using the metal board (1).
Since 1) is a prefabricated one, it is safe and easy, but it is difficult to connect the external lead wire (5) on the surface side of the amorphous semiconductor layer (3). That is, the external lead wire (5) is connected by ultrasonic connection, spot welding, soldering, etc., but due to the heat and pressure associated with these operations, metal electrodes ( A crack (6) may occur from 4) to the amorphous semiconductor layer (2). When one crank (6) occurs in this way, since the amorphous semiconductor layer (3) is extremely thin, with a thickness of 1 micron or less, the metal of the electrode (4) easily passes through the crank (6) and passes through the substrate (1) K. This will short-circuit the solar cell. In other words, there was a great risk of damaging the solar cell during the process of connecting the external lead wire (5) to the electrode.

この発明は以上のような点に鑑みてなされたもので、表
面偶の外部リード線をボンディングすべき部位の直下に
金属基板とアモルファス半導体層との間に絶縁膜を設け
るととKよって、たとえ上述のようなりラックが発生し
ても短絡事故の発生しないアモルファス太陽電池を提供
することを目的としている。
This invention has been made in view of the above points. It is an object of the present invention to provide an amorphous solar cell that does not cause a short-circuit accident even if a rack occurs as described above.

第2図はこの発明の一実施例の構成を示す断面図で、第
1図の従来例と同等部分は同一符号で示し、その説明の
重複を避ける。すなわち、この実施例では、金属基板(
1)上にアモルファス半導体層(2)を成長させる前に
、将来表面側外部リード線(5)をボンディングすべき
部位の直下にシリコン酸化膜(7)を形成しておくもの
で、以下そのシリコン酸化膜(7)の上を含めて金属基
板(1)の上にア、モルファス半導体層(2)を形成し
、それ以後の工程は従来例と全く同様である。シリコン
酸化膜(7)は400℃前後の温度での化学的気相成長
((!VD)または近年実用化されつつあるプラズマO
VDによってデポジションさせるのが適当である。この
ように1金属基板(1)とアモルファス半導体層(2)
との間のクランク発生の可能性のある部位に堅固衣シリ
コン酸化膜(7)を設けた−ので、たとえ、外部リード
線(5)のボンディングによってクラック(6)が発生
しても、金属電極(4)と金属基板(1)との短絡は阻
止され、素子の破壊は発生しない。このとき、もちろん
アモルファス半導体層(2)内のpn′Iii合はクラ
ック(6)Kよって破壊されるが、アモルファス半導体
層(2)自体が非常に高抵抗で6す、このクラック発生
部位は電極金属(4)の影に入っておシ、もともと太陽
電池としての機能に寄与していない部分であるので、全
体として素子機能を損することはない。
FIG. 2 is a sectional view showing the configuration of an embodiment of the present invention, and parts equivalent to those of the conventional example of FIG. 1 are designated by the same reference numerals to avoid duplication of explanation. That is, in this example, the metal substrate (
1) Before growing the amorphous semiconductor layer (2) on top, a silicon oxide film (7) is formed directly under the area where the surface-side external lead wire (5) will be bonded in the future. A. An amorphous semiconductor layer (2) is formed on the metal substrate (1) including the oxide film (7), and the subsequent steps are exactly the same as in the conventional example. The silicon oxide film (7) is grown by chemical vapor deposition ((!VD)) at a temperature of around 400°C or by plasma O
It is appropriate to deposit by VD. In this way, one metal substrate (1) and an amorphous semiconductor layer (2)
A solid silicon oxide film (7) is provided in the area where a crack may occur between the metal electrode and the metal electrode. A short circuit between (4) and the metal substrate (1) is prevented, and no damage to the device occurs. At this time, of course, the pn'Iii junction in the amorphous semiconductor layer (2) is destroyed by the crack (6) K, but the amorphous semiconductor layer (2) itself has a very high resistance6, and this crack generation site is located at the electrode. Although it is in the shadow of the metal (4), it is a part that does not originally contribute to the function of the solar cell, so it does not impair the device function as a whole.

上記実施例では、シリコン酸化膜を絶縁膜として用いた
が、プラズマ0VDicよるシリコン窒化膜、または蒸
着した各種絶縁膜でもよく、また、パターニングは全面
に付着させた後に1写真展版技術で不用部分を、エツチ
ングしてもよいし、パターン精度を問わないときKはマ
スク蒸着法で所要部位に部分的に付着させてもよい。
In the above embodiment, a silicon oxide film was used as the insulating film, but a silicon nitride film formed by plasma 0VDic or various types of insulating films deposited by vapor deposition may also be used. Patterning can be done on the entire surface and then use one photo printing technique to remove unnecessary parts. K may be etched, or K may be partially deposited on required portions by mask evaporation when pattern accuracy is not a concern.

以上説明したように、この発FJ4になるアモルファス
太陽電池ではアモルファス半導体層にクラックの発生す
るおそれのある表面側外部リード線のボンディング部位
置下の部分に、そのアモルファス半導体層と金属基板と
の間に絶縁膜を介在させたので、上記クラックが発生し
ても表面電極と金属基板との間の短絡たよる素子の機能
破壊が防止できる。
As explained above, in this FJ4 amorphous solar cell, there is a gap between the amorphous semiconductor layer and the metal substrate below the bonding part of the front-side external lead wire, where cracks may occur in the amorphous semiconductor layer. Since the insulating film is interposed between the electrodes, even if the crack occurs, it is possible to prevent functional breakdown of the element due to a short circuit between the surface electrode and the metal substrate.

【図面の簡単な説明】[Brief explanation of drawings]

亦′第1図は従来のアモルファス太陽電池の構成を示す
断面図、第2図はこの発明の一実施例の構成を示す断面
図である0 図において、(1)は金属基板、(2)はアモルファス
半導体層、(3)は透明導電膜、(4)は金属電極、(
5)は外部リード線、(7)は絶縁膜である0なお、図
中同一符号は同一または相当部分を示代理人 葛野信 
−(外1名)
Furthermore, Fig. 1 is a sectional view showing the structure of a conventional amorphous solar cell, and Fig. 2 is a sectional view showing the structure of an embodiment of the present invention. In the figures, (1) is a metal substrate, (2) is an amorphous semiconductor layer, (3) is a transparent conductive film, (4) is a metal electrode, (
5) is an external lead wire, and (7) is an insulating film.0 Note that the same reference numerals in the drawings indicate the same or equivalent parts.
- (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  金属基板上にアモルファス半導体層と透明導
電膜とを順次形成しその上面の一部に金属電極を介して
外部り′−ド線をボンディングしてなるものにおいて、
上記外部リード線のボンディング部位の直下の部分の上
記金属基板と上記アモルファス半導体層との間に絶縁膜
を介在させたことを特徴とするアモルファス太陽電池。
(1) An amorphous semiconductor layer and a transparent conductive film are sequentially formed on a metal substrate, and an external lead wire is bonded to a part of the upper surface via a metal electrode,
An amorphous solar cell characterized in that an insulating film is interposed between the metal substrate and the amorphous semiconductor layer directly below the bonding site of the external lead wire.
JP56137329A 1981-08-31 1981-08-31 Amorphous solar battery Granted JPS5839073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137329A JPS5839073A (en) 1981-08-31 1981-08-31 Amorphous solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137329A JPS5839073A (en) 1981-08-31 1981-08-31 Amorphous solar battery

Publications (2)

Publication Number Publication Date
JPS5839073A true JPS5839073A (en) 1983-03-07
JPS622713B2 JPS622713B2 (en) 1987-01-21

Family

ID=15196117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137329A Granted JPS5839073A (en) 1981-08-31 1981-08-31 Amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS5839073A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590327A (en) * 1984-09-24 1986-05-20 Energy Conversion Devices, Inc. Photovoltaic device and method
US4633034A (en) * 1985-02-08 1986-12-30 Energy Conversion Devices, Inc. Photovoltaic device and method
US4776896A (en) * 1985-11-29 1988-10-11 Fuji Electric Co., Ltd. Amorphous silicon solar battery
US5395457A (en) * 1992-12-16 1995-03-07 Sanyo Electric Co., Ltd. Photovoltaic device and method of manufacturing the same
EP2086022A1 (en) * 2008-01-31 2009-08-05 SANYO Electric Co., Ltd. Solar cell module and method of manufacturing the same
WO2011129083A1 (en) * 2010-04-12 2011-10-20 富士フイルム株式会社 Solar cell module and method for manufacturing same
WO2011135856A1 (en) * 2010-04-30 2011-11-03 富士フイルム株式会社 Solar cell module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110474B2 (en) 2019-02-28 2022-08-01 株式会社日立ハイテク Electrophoresis device capable of independently electrophoresing multiple samples

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590327A (en) * 1984-09-24 1986-05-20 Energy Conversion Devices, Inc. Photovoltaic device and method
US4633034A (en) * 1985-02-08 1986-12-30 Energy Conversion Devices, Inc. Photovoltaic device and method
US4776896A (en) * 1985-11-29 1988-10-11 Fuji Electric Co., Ltd. Amorphous silicon solar battery
US5395457A (en) * 1992-12-16 1995-03-07 Sanyo Electric Co., Ltd. Photovoltaic device and method of manufacturing the same
EP2086022A1 (en) * 2008-01-31 2009-08-05 SANYO Electric Co., Ltd. Solar cell module and method of manufacturing the same
US8426726B2 (en) 2008-01-31 2013-04-23 Sanyo Electric Co., Ltd Solar cell module and method of manufacturing the same
WO2011129083A1 (en) * 2010-04-12 2011-10-20 富士フイルム株式会社 Solar cell module and method for manufacturing same
WO2011135856A1 (en) * 2010-04-30 2011-11-03 富士フイルム株式会社 Solar cell module

Also Published As

Publication number Publication date
JPS622713B2 (en) 1987-01-21

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US5385614A (en) Series interconnected photovoltaic cells and method for making same
JPS60240171A (en) Solar electric generator
JPH0536997A (en) Photovoltaic device
JPS5839073A (en) Amorphous solar battery
JPH05259487A (en) Manufacture of solar cell
US5395457A (en) Photovoltaic device and method of manufacturing the same
CN106887468A (en) Thin film transistor (TFT), array base palte and its manufacture method and display panel
JPS5955079A (en) Thin film semiconductor device
JPH04153623A (en) Wiring structure
JPS5863179A (en) Photovoltaic device
JP3332487B2 (en) Method for manufacturing photovoltaic device
JPS6261376A (en) Solar battery
JPH0415631B2 (en)
JPH06112514A (en) Manufacture of photoelectric conversion semiconductor device
JPS6314873B2 (en)
JPH04234177A (en) Photovoltaic device
JPH0682630B2 (en) Method for manufacturing multi-layer electrode of semiconductor device
JPS6265480A (en) Thin film solar battery
JP3208219B2 (en) Photovoltaic device
JPS60231372A (en) Manufacture of semiconductor device
JP2001358352A (en) Integrated thin film solar cell
JPH10275927A (en) Method for manufacturing photovoltaic device and photovoltaic device
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPS6174376A (en) Thin-film photovoltaic element