JPS5837939B2 - electronic lens - Google Patents

electronic lens

Info

Publication number
JPS5837939B2
JPS5837939B2 JP11994378A JP11994378A JPS5837939B2 JP S5837939 B2 JPS5837939 B2 JP S5837939B2 JP 11994378 A JP11994378 A JP 11994378A JP 11994378 A JP11994378 A JP 11994378A JP S5837939 B2 JPS5837939 B2 JP S5837939B2
Authority
JP
Japan
Prior art keywords
lens
gap
stage
double
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11994378A
Other languages
Japanese (ja)
Other versions
JPS5546424A (en
Inventor
哲 関根
明矩 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP11994378A priority Critical patent/JPS5837939B2/en
Publication of JPS5546424A publication Critical patent/JPS5546424A/en
Publication of JPS5837939B2 publication Critical patent/JPS5837939B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は単一の磁気回路に複数の磁極間隙を有する電子
レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic lens having multiple magnetic pole gaps in a single magnetic circuit.

,走査電子顕微鏡等では、電子銃直下にできるクロスオ
ーバ像をレンズ系により試料面上に縮小結像している。
, scanning electron microscopes, etc., a crossover image formed directly below the electron gun is reduced and formed onto the sample surface using a lens system.

一般に、このレンズ系として、二段レンズ系や三段レン
ズ系が使用されているが、特に、装置のコンパクト化(
鏡簡の長さを短くする)等を目的とした場合には、三段
レンズ系が使用されている。
Generally, a two-stage lens system or a three-stage lens system is used as this lens system.
For purposes such as shortening the length of mirror strips, a three-stage lens system is used.

三段レンズ系にはそれぞれ独立した三つのレンズから構
成されているものと、単一の磁気回路に二つのギャップ
(間隙)を持った、いわゆるダブルギャップレンズとこ
れと独立したレンズから構成されているものがある。
The three-stage lens system consists of three independent lenses, and the other consists of a so-called double-gap lens, which has two gaps in a single magnetic circuit, and an independent lens. There are some.

濾て、後者の如き三段レンズ系のダブルギャップレンズ
は、各ギャップのレンズ強度が同一になるように構成さ
れている。
In other words, a double gap lens of a three-stage lens system, such as the latter, is constructed so that the lens strength of each gap is the same.

従って、走査電子顕微鏡等では必須の操作とも言えるレ
ンズ励磁強度を最大にして電子線を最犬に絞り、高分解
能試料像を得ようとする場合と、逆に励磁強度を最小に
して電子線を最犬に拡げ、最大電子線電流試料像を得よ
うとする場合に問題が生ずる。
Therefore, when trying to obtain a high-resolution sample image by maximizing the lens excitation intensity, which is an essential operation in scanning electron microscopes, etc., you can maximize the excitation intensity of the lens to narrow down the electron beam to the maximum, and vice versa. A problem arises when trying to expand the maximum electron beam current to obtain an image of the sample.

各場合の光略図がそれぞれ第1図a,bである。The optical diagrams in each case are shown in FIGS. 1a and 1b, respectively.

(但し、図中1は電子銃直下にできるクロスオーバ像、
2,2′はラインA1上に存在するダブルギャップレン
ズの前段レンズの結像点、3,3′ はラインA2上に
存在するダブルギャップレンズの後段レンズの結像点、
4,4′ はラインB上に存在する対物レンズの結像点
、5は試料である)すなわち、ダブルギャップ後段レン
ズの光軸上の結像点3と3′の隔たりd1が著しく大き
い。
(However, 1 in the figure is a crossover image formed directly below the electron gun,
2, 2' are image forming points of the front stage lens of the double gap lens existing on line A1, 3, 3' are image forming points of the rear stage lens of the double gap lens existing on line A2,
4 and 4' are the imaging points of the objective lens existing on the line B, and 5 is the sample) That is, the distance d1 between the imaging points 3 and 3' on the optical axis of the double gap rear lens is extremely large.

従って、ダブルギャップレンズと試料の間に置かれた対
物レンズの励磁の強さを、ダブルギャップレンズの前記
操作に従属的に調整し、ダブルギャップ後段レンズの光
軸上の結像点の像を試料面上でフォーカスさせるように
していた。
Therefore, the excitation strength of the objective lens placed between the double gap lens and the sample is adjusted depending on the operation of the double gap lens, and the image of the imaged point on the optical axis of the double gap rear lens is adjusted. The focus was on the sample surface.

本発明は、この様な欠点を解決する為になされたもので
、新規な電子レンズを提供するものである。
The present invention was made to solve these drawbacks and provides a novel electronic lens.

第2図は本発明の一実施例を示したダブルギャップレン
ズの概略図で、10はヨーク,11は励磁コイル,12
.13はそれぞれ前段レンズの上部磁極片,下部磁極片
で、該二つの磁極片はスペーサ−14によって一体化さ
れている。
FIG. 2 is a schematic diagram of a double gap lens showing an embodiment of the present invention, in which 10 is a yoke, 11 is an excitation coil, and 12 is a schematic diagram of a double gap lens showing an embodiment of the present invention.
.. Reference numerals 13 denote an upper magnetic pole piece and a lower magnetic pole piece of the front lens, respectively, and these two magnetic pole pieces are integrated by a spacer 14.

15,16はそれぞれ後段レンズの上部磁極片,下部磁
極片で、スペーサ17によって一体化されている。
Reference numerals 15 and 16 are upper and lower magnetic pole pieces of the rear lens, respectively, which are integrated by a spacer 17.

さて、単一の磁気回路に二つのギャップを有するダブル
ギャップレンズ等価格回路は、第3図に示す様になる。
Now, a double gap lens equivalent circuit having two gaps in a single magnetic circuit is as shown in FIG.

(但し、Eoほこの磁気回路の起磁力、E,,E2はそ
れぞれ前段,後段レンズのギャップに生ずる起磁力、R
1,R2はそれぞれ前段,後段レンズの磁気抵抗とする
)該ダブルギャップレンズの前段レンズ、後段レンズの
焦点距離をそれぞれf1,f2とし、第4図に示す様に
、上部磁極片Oと下部磁極片UのギャップをQ,穴径を
P、下部磁極片の上面面積をSとしたとき、磁気抵抗R
はギャップQに比例し、又、面積Sに反比例する。
(However, the magnetomotive force of the magnetic circuit around Eo, E, and E2 are the magnetomotive forces generated in the gap between the front and rear lenses, respectively, and R
1 and R2 are the magnetic resistances of the front and rear lenses, respectively) The focal lengths of the front and rear lenses of the double gap lens are f1 and f2, respectively, and the upper magnetic pole piece O and the lower magnetic pole are When the gap of one piece U is Q, the hole diameter is P, and the upper surface area of the lower magnetic pole piece is S, magnetic resistance R
is proportional to the gap Q and inversely proportional to the area S.

又、この磁気回路の起磁力が一定であれば、レンズ焦点
距離fは穴径PとギャップQにそれぞれ比例する。
Further, if the magnetomotive force of this magnetic circuit is constant, the lens focal length f is proportional to the hole diameter P and the gap Q, respectively.

本発明では、前述の如き関係を利用して、後段レンズの
レンズ強度が前段レンズのレンズ強度の凡そ3倍から1
0倍になるように構或したことを特徴としている。
In the present invention, by utilizing the above-mentioned relationship, the lens strength of the rear lens is approximately 3 times to 1 times that of the front lens.
It is characterized by being constructed so that it becomes 0 times.

すなわち前段レンズの穴径を後段レンズの穴径に比べ前
述のレンズ強度比が得られるよう大きくしている。
That is, the hole diameter of the front lens is made larger than the hole diameter of the rear lens so that the above-mentioned lens strength ratio can be obtained.

この様に成せば、後段レンズの焦点距離f2が前段レン
ズの焦点距離f1 より凡そ3倍から10倍小さくな
る。
By doing so, the focal length f2 of the rear lens becomes approximately 3 to 10 times smaller than the focal length f1 of the front lens.

すなわち、後段レンズのレンズ強度が、前段レンズのレ
ンズ強度の凡そ3倍から10倍大きくなる。
That is, the lens strength of the rear lens is approximately 3 to 10 times greater than the lens strength of the front lens.

同、前段レンズの穴径を大きくすれば、上部磁極片の上
面面積が小さくなり、磁気抵抗R1が大きくなるが、穴
径の増加に対する該面積の減少程度は非常に小さいので
、磁気抵抗R1の増加は無視しうる。
Similarly, if the hole diameter of the front lens is increased, the top surface area of the upper magnetic pole piece will become smaller, and the magnetic resistance R1 will increase, but the degree of decrease in this area with respect to the increase in the hole diameter is very small, so The increase is negligible.

又前段レンズのギャップを後段レンズのギャップに比べ
数倍大きくすれば、前段レンズの磁気抵抗R1が大きく
なってし1い、等価回路から明らかな如く、後段レンズ
のレンズ強度も弱くなるので、各段レンズのギャップハ
共に小さくなる。
Furthermore, if the gap of the front lens is made several times larger than the gap of the rear lens, the magnetic resistance R1 of the front lens will increase, and as is clear from the equivalent circuit, the lens strength of the rear lens will also become weaker. Both the gaps between the stage lenses become smaller.

斯くの如き構成されたダブルギャップレンズと、その下
方に対物レンズを配置した、いわゆる三段レンズ系のレ
ンズ励磁強度を最大にして電子線を最犬に絞った時と、
逆に励磁強度を最小にして電子線を最犬に広げた時の光
略図は、それぞれ第5[ka,bの如くなる。
When the excitation intensity of the so-called three-stage lens system is maximized and the electron beam is narrowed down to its maximum intensity in a so-called three-stage lens system consisting of a double-gap lens configured as described above and an objective lens placed below it,
On the other hand, when the excitation intensity is minimized and the electron beam is widened to its maximum extent, the optical diagrams become as shown in the fifth [ka, b, respectively.

(但し図中1は電子銃直下にできるクロスオーバ像、5
は試料、20.20’はラインA1上に存在するダブル
ギャップの前段レンズの結像点、30,30’Uライン
A2上に存在するダブルギャップレンズの後段レンズの
結像点、40.40’はラインB上に存在する対物レン
ズの結像点である。
(However, 1 in the figure is a crossover image formed directly below the electron gun, and 5
is the sample, 20.20' is the imaging point of the front lens of the double gap existing on line A1, 30,30' is the imaging point of the rear lens of the double gap lens existing on line A2, 40.40' is the imaging point of the objective lens existing on line B.

すなわち、ダブルギャップ後段レンズの光軸上結像点3
0.30’の隔たりd2が著しく小さい。
In other words, the imaging point 3 on the optical axis of the double gap rear lens
The distance d2 of 0.30' is extremely small.

従って試料上での対物レンズ像のデイフォーカス程度が
無視できるようになり、少なくとも対物レンズの励磁の
強さを、ダブルギャップレンズの前記操作に従属的に調
整する必要はなくなり、操作が著しく簡単なものとする
Therefore, the degree of day focus of the objective lens image on the sample can be ignored, and at least it is no longer necessary to adjust the excitation strength of the objective lens dependently on the operation of the double gap lens, which greatly simplifies the operation. shall be taken as a thing.

伺後段レンズのレンズ強度を前段レンズのレンズ強度よ
り10倍以上大きくすると、磁気飽和が起り、正常なレ
ンズ作用が行なわれない。
If the lens strength of the rear lens is made 10 times or more greater than the lens strength of the front lens, magnetic saturation will occur and the lens will not function properly.

又、3倍以下にすれば、ダブルギャップ後段レンズの光
軸上結像点30.30’の隔たりd2が前述した従来の
三段レンズ系のダブルギャップレンズにおける隔たりd
1 とさほど変わるなくなり効果が薄い。
Also, if it is 3 times or less, the distance d2 between the imaging points 30.30' on the optical axis of the double-gap rear lens is the same as the distance d2 of the double-gap lens of the conventional three-stage lens system.
1 and the effect is weak.

【図面の簡単な説明】[Brief explanation of the drawing]

第114a t bは各々、ダブルギャップレンズを含
む従来の三段レンズ系の電子線を最犬に絞った時と最犬
に広げた時の光略図、第2図は本発明のダブルギャップ
レンズの一実施例図、第3図はその磁気的等価回路、第
4図は本発明の原理を説明する為に使用したレンズの一
部拡大図、第5図は本発明のダブルギャップレンズを含
む三段レンズ系の電子線を最大に絞った時と最犬に広げ
た時の光略図である。 1・・・・・・クロスオーバ像、5・・・・・・試料、
10・・・・・・ヨーク、11・・・・・・励磁コイル
、12・・・・・・ダブルギャップレンズの前段レンズ
上部磁極片、13・・・・・・ダブルギャップレンズの
前段レンズ下部磁極片、14・・・・・・スペーサ、1
5・・・・・・ダブルギャップレンズの後段レンズ上部
磁極片、16・・・・・・ダブルギャップレンズの後段
レンズ下部磁極片、17・・・・・・スペーサ。
114a and 114b are schematic optical diagrams of the conventional three-stage lens system including a double gap lens when the electron beam is narrowed down to the maximum extent and when it is widened to the maximum extent, respectively. 3 is a magnetic equivalent circuit thereof, FIG. 4 is a partially enlarged view of a lens used to explain the principle of the present invention, and FIG. This is an optical diagram of the stage lens system when the electron beam is narrowed down to the maximum and when it is widened to the maximum. 1... Crossover image, 5... Sample,
10... Yoke, 11... Excitation coil, 12... Upper magnetic pole piece of the front stage lens of the double gap lens, 13... Lower part of the front stage lens of the double gap lens. Magnetic pole piece, 14... Spacer, 1
5... Upper magnetic pole piece of the rear lens of the double gap lens, 16... Lower magnetic pole piece of the rear lens of the double gap lens, 17... Spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 電子銃から発生する電子線を試料上で細く集束させ
る為のレンズ系に使用される二段の電子レンズを単一磁
気回路で構或した装置に耘いて、前記単一磁気回路中に
二つの磁極間隙を設け、前段の間隙にできる磁界による
レンズの強度より後段の間隙にできる磁界によるレンズ
の強度が凡そ3倍から10倍大きくなるように構成した
ことを特徴とする電子レンズ。
1. A two-stage electron lens used in a lens system for narrowly focusing an electron beam generated from an electron gun on a sample is constructed using a single magnetic circuit. 1. An electronic lens characterized in that two magnetic pole gaps are provided so that the strength of the lens due to the magnetic field generated in the gap in the rear stage is approximately 3 to 10 times greater than the strength of the lens due to the magnetic field generated in the gap in the rear stage.
JP11994378A 1978-09-29 1978-09-29 electronic lens Expired JPS5837939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11994378A JPS5837939B2 (en) 1978-09-29 1978-09-29 electronic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11994378A JPS5837939B2 (en) 1978-09-29 1978-09-29 electronic lens

Publications (2)

Publication Number Publication Date
JPS5546424A JPS5546424A (en) 1980-04-01
JPS5837939B2 true JPS5837939B2 (en) 1983-08-19

Family

ID=14774004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11994378A Expired JPS5837939B2 (en) 1978-09-29 1978-09-29 electronic lens

Country Status (1)

Country Link
JP (1) JPS5837939B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348937U (en) * 1986-09-18 1988-04-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348937U (en) * 1986-09-18 1988-04-02

Also Published As

Publication number Publication date
JPS5546424A (en) 1980-04-01

Similar Documents

Publication Publication Date Title
US4853545A (en) Particle beam apparatus for low-error imaging of line-shaped subjects
GB2182485A (en) Ion beam apparatus
JPS6124782B2 (en)
KR880004539A (en) Color display system and cathode ray tube
US2586559A (en) Multiple element electron lens arrangement
US6140645A (en) Transmission electron microscope having energy filter
JPS5837939B2 (en) electronic lens
JP2000228162A (en) Electron beam device
JPS5944743B2 (en) Irradiation electron lens system for scanning electron microscopes, etc.
JP3351647B2 (en) Scanning electron microscope
US4468563A (en) Electron lens
JPH0654643B2 (en) Lens for field emission electron gun
US2418432A (en) Magnetic electron lens system
GB865050A (en) Improvements in or relating to x-ray shadow microscopes with adjustable optical focussing
JPS6336108B2 (en)
TW548664B (en) Split magnetic lens for controlling a charged particle beam
JPH0828200B2 (en) Electromagnetic lens
JPS6328518Y2 (en)
JPS6241376B2 (en)
JPS58119146A (en) Electron microscope
JPH0136284Y2 (en)
JPS6041414B2 (en) Focus lens manufacturing method
JPH0145078Y2 (en)
KR830002712B1 (en) Electronic lens
JPS6063866A (en) Objective lens movable diaphragm device of electron microscope