JPS5836848B2 - Method for forming side electrodes of tuning fork type piezoelectric vibrator - Google Patents

Method for forming side electrodes of tuning fork type piezoelectric vibrator

Info

Publication number
JPS5836848B2
JPS5836848B2 JP52069594A JP6959477A JPS5836848B2 JP S5836848 B2 JPS5836848 B2 JP S5836848B2 JP 52069594 A JP52069594 A JP 52069594A JP 6959477 A JP6959477 A JP 6959477A JP S5836848 B2 JPS5836848 B2 JP S5836848B2
Authority
JP
Japan
Prior art keywords
thin film
conductive thin
photoresist
tuning fork
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52069594A
Other languages
Japanese (ja)
Other versions
JPS544588A (en
Inventor
六己 祢■田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushima Kogyo KK
Original Assignee
Matsushima Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushima Kogyo KK filed Critical Matsushima Kogyo KK
Priority to JP52069594A priority Critical patent/JPS5836848B2/en
Publication of JPS544588A publication Critical patent/JPS544588A/en
Publication of JPS5836848B2 publication Critical patent/JPS5836848B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は腐蝕抜き加工により形威される超小型の音叉型
圧電振動子の側面電極形威方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for shaping side electrodes of an ultra-small tuning fork type piezoelectric vibrator which is shaped by corrosion removal processing.

本発明の目的は腐蝕抜き加工により形或される音叉型圧
電振動子に側面電極を簡易的に形成し、より高性能な音
叉型圧電振動子を安価に得ることにある。
An object of the present invention is to easily form side electrodes on a tuning fork type piezoelectric vibrator formed by corrosion removal processing, and to obtain a higher performance tuning fork type piezoelectric vibrator at a low cost.

近来、水晶発振式電子腕時計の普及に伴い、時間標準と
しての水晶振動子にはさらに小型化、高性能化、定価格
化が要求されている。
BACKGROUND ART In recent years, with the spread of crystal oscillation type electronic wristwatches, crystal resonators used as time standards are required to be further downsized, have higher performance, and have a fixed price.

このため、従来の機械加工による水晶振動子に変って、
腐食抜き加工による水晶振動子が実用化され、その普及
が期待されている。
For this reason, instead of the conventional machined crystal resonator,
Quartz crystal resonators made by corrosion-removal processing have been put into practical use, and their widespread use is expected.

しかし、該水晶振動子は従来の機械加工振動子に比較し
、小型化、低価格化においては優れているが、性能面に
おいて不充分である。
However, although this crystal resonator is superior in terms of size and cost reduction compared to conventional mechanically processed resonators, it is insufficient in terms of performance.

性能面でとりわけCI値が高いという点で劣っており、
腐蝕抜き加工による超小型振動子の普及に大きな阻害要
因となっている。
It is inferior in terms of performance, especially in terms of high CI value,
This is a major impediment to the widespread use of ultra-compact resonators that require corrosion removal processing.

CI値の高い原因は、従来の腐蝕抜き加工により形或さ
れる水晶振動子が、その腐蝕加工面である側面に電極を
有さないことに起因する。
The reason for the high CI value is that the crystal resonator formed by conventional corrosion removal processing does not have electrodes on its side surface, which is the corrosion processing surface.

第1図に従来の側面電極を有さない腐蝕抜き加工による
水晶振動子の一例を示す。
FIG. 1 shows an example of a conventional quartz crystal resonator which does not have side electrodes and has been subjected to corrosion removal processing.

第1図Aに該水晶振動子の平面図を示し、そのM−M’
断面における加工工程の代表例を第1図B−Fに示す。
FIG. 1A shows a plan view of the crystal resonator, and its M-M'
Representative examples of processing steps in cross section are shown in FIGS. 1B-F.

第1図Aにおいて、1は水晶振動子、2,3は該水晶振
動子の表面に設けられた2個の電極であり、該水晶振動
子の裏面には、電極2,3とそれぞれ電気的に同相の電
極4,5が水晶振動子の平面に関して、表面電極と鏡像
関係に設けられている。
In FIG. 1A, 1 is a crystal oscillator, 2 and 3 are two electrodes provided on the surface of the crystal oscillator, and electrodes 2 and 3 are provided on the back surface of the crystal oscillator, respectively. In-phase electrodes 4 and 5 are provided in a mirror image relationship with the surface electrodes with respect to the plane of the crystal resonator.

第1図B−Fに示す該水晶振動子の一般的な腐蝕抜き加
工の工程は、第1図Bの、水晶薄板7に水晶腐食液に対
して対蝕性を有する導電性薄膜6を振動子外形形状に形
或する工程、第1図Cの該導電性薄膜6の上に電極形状
のフォトレジスト8を形或する工程、第1図Dの該導電
性薄膜6を耐蝕膜として水晶を振動子外形形状1に腐蝕
抜き加工する工程、第1図Eの前記フォトレジスト8を
耐蝕膜として導電性薄膜6を腐蝕加工することにより、
電極2,3,4.5を形成する工程、第1図Fの前記フ
ォトレジストを除去する工程とから或る。
The general process of removing corrosion of the crystal resonator shown in FIGS. A step of forming an electrode-shaped photoresist 8 on the conductive thin film 6 shown in FIG. The process of performing corrosion removal processing on the external shape 1 of the vibrator, by etching the conductive thin film 6 using the photoresist 8 shown in FIG. 1E as a corrosion-resistant film,
The process includes a step of forming electrodes 2, 3, 4.5, and a step of removing the photoresist shown in FIG. 1F.

以上、従来の腐蝕抜き加工による水晶振動子では、その
腐蝕加工面である側面に電極を有さす、表裏面のみに電
極が形或されているため、電界を印加した場合電気力線
が局在し、効率の良い励振ができず、したがってCI値
が高くなるという欠点を有している。
As mentioned above, in the case of a crystal resonator made by conventional corrosion removal processing, the electrodes are formed only on the front and back surfaces, with electrodes formed on the side surface which is the corrosion processed surface, so when an electric field is applied, the lines of electric force are localized. However, it has the disadvantage that efficient excitation cannot be performed, resulting in a high CI value.

このため、腐蝕抜き加工による水晶振動子に側面電極を
形或しようという試みがなされており、第2図に従来の
側面電極を有する腐蝕抜き加工による水晶振動子の一例
を示す。
For this reason, attempts have been made to form side electrodes on a crystal resonator by corrosion removal processing, and FIG. 2 shows an example of a conventional corrosion removal processing crystal resonator having side electrodes.

第2図Aは従来の側面電極を有する水晶振動子の平面図
であり、9は水晶振動子、10.11は該水晶振動子の
表面に設けられた2個の電極12,13は側面電極であ
る。
FIG. 2A is a plan view of a conventional crystal resonator having side electrodes, where 9 is a crystal resonator, and two electrodes 12 and 13 provided on the surface of the crystal resonator 10 and 11 are side electrodes. It is.

また第2図Bは電極のネガティブパターンをフォトレジ
ストで形或した図を示し、14はフォトレジストである
Further, FIG. 2B shows a diagram in which the negative pattern of the electrode is formed with photoresist, and 14 is the photoresist.

第2図C〜Gは該水晶振動子のo−o’断面における従
来の腐蝕抜き加工工程についての実施例を示す説明図で
あり、第2図H−Lは該水晶振動子のP−P’断面にお
ける従来の腐蝕抜き加工工程についての実施例を示す説
明図である。
FIGS. 2C to 2G are explanatory diagrams showing an example of the conventional corrosion removal processing process on the o-o' cross section of the crystal resonator, and FIG. It is an explanatory view showing an example of a conventional corrosion removal processing process in a cross section.

第2図C,Hは水晶薄板15に形戊された振動子外形形
状の2層の導電性薄膜16.17の上に第2図Bに示す
電極のネガティブパターンのフォトレジスト14を形威
する工程、第2図D,Iは該導電性薄膜を耐蝕膜として
水晶薄板を振動子外形形状に腐蝕抜き加工する工程、第
2図E,Jは表面からスパッタリングすることにより、
導電性薄膜16と同一の導電性薄膜18および他の導電
性薄膜17と同一の導電性薄膜19を形或し、次に裏面
からスパツタリソグすることにより、導電性薄膜16と
同一の導電性薄膜20および他の導電性薄膜17と同一
の導電性薄膜21を形成する工程、第2図F,Kはリフ
トオフ法により前記フォトレジストを剥離する工程、第
2図G,Lは導電性薄膜をそれぞれ1層ずつ腐蝕加工に
より除去する工程である。
2C and 2H, a photoresist 14 with a negative pattern of electrodes shown in FIG. 2B is formed on a two-layer conductive thin film 16.17 having the external shape of a vibrator formed on a crystal thin plate 15. The steps, D and I in FIG. 2, are the steps of removing corrosion from the crystal thin plate into the external shape of the vibrator using the conductive thin film as a corrosion-resistant film, and the steps E and J in FIG. 2 are by sputtering from the surface.
A conductive thin film 18 that is the same as the conductive thin film 16 and a conductive thin film 19 that is the same as the other conductive thin film 17 are formed, and then a conductive thin film 20 that is the same as the conductive thin film 16 is formed by sputtering from the back side. and the process of forming a conductive thin film 21 that is the same as the other conductive thin film 17; FIGS. This is a process in which layers are removed layer by layer through corrosion processing.

以上の従来の製造方法により側面電極を有する水晶振動
子は以下に列挙する欠点を有する。
The crystal resonator having side electrodes produced by the conventional manufacturing method described above has the following drawbacks.

(1) リフトオフ法により確実にフォトレジストを
・剥離し、かつ該フォトレジスト上に形或された導電性
薄膜を除去するには、フォトレジストを厚くする必要が
あるためフォトレジストのパターン精度が低下する。
(1) In order to reliably peel off the photoresist using the lift-off method and remove the conductive thin film formed on the photoresist, it is necessary to thicken the photoresist, which reduces the pattern accuracy of the photoresist. do.

したがって超小型振動子に設ける微細な電極形状の形成
を困難にしている。
Therefore, it is difficult to form minute electrode shapes to be provided in ultra-small vibrators.

(2)音叉叉部に形戊されたフォトレジストは水晶薄板
の腐蝕抜き加工中に剥離したり、形状変化を生じやすく
、そのため叉部での電極間ショートが発生しやすい。
(2) The photoresist formed into the tuning fork part is likely to peel off or change its shape during the corrosion removal process of the crystal thin plate, and therefore short circuits between the electrodes at the fork part are likely to occur.

(3)音叉叉部に形或されたフォトレジストが水晶薄板
の腐蝕抜き加工中腐蝕液の循環の妨げとなり、音叉叉部
の腐蝕抜き形状が悪くなる。
(3) The photoresist formed on the tuning fork portion obstructs the circulation of the corrosive solution during the etching process of the crystal thin plate, and the shape of the tuning fork portion is deteriorated.

次に従来の側面電極を有する腐蝕抜き加工による水晶振
動子の他の例を第3図に示す。
Next, FIG. 3 shows another example of a conventional corrosion-removed crystal resonator having side electrodes.

第3図Aは本例における水晶振動子の平面図であり、第
3図BはQ)−Q’断面における断面図であり、22は
水晶振動子、23.24は該水晶振動子の表面に形或さ
れた2個の電極であり、該水晶振動子の裏面には電極2
3.24とそれぞれ電気的に同相の電極25 .26が
水晶振動子の平面に関して表裏電極と鏡像関係に形或さ
れている。
FIG. 3A is a plan view of the crystal resonator in this example, and FIG. 3B is a cross-sectional view taken along the Q)-Q' cross section, where 22 is the crystal resonator, and 23 and 24 are the surfaces of the crystal resonator. There are two electrodes on the back side of the crystal resonator.
3.24 and electrically in-phase electrodes 25 . 26 is formed in a mirror image relationship with the front and back electrodes with respect to the plane of the crystal resonator.

27.28,29.30は本実施例において形威される
側面電極である。
27, 28 and 29, 30 are side electrodes used in this embodiment.

本実施例においては、振動子外形形状の腐蝕抜き加工お
よび表裏電極の腐蝕加工の後、第3図Cに示すように、
音叉腕の側面および側面と表裏電極の接続部のみにスパ
ッタリングにより導電性薄膜が形或できるような孔形状
を有するマスク31,32を該水晶振動子に密着させて
、スパッタリングにより側面電極を形戊するものである
In this example, after the corrosion removal process of the external shape of the vibrator and the corrosion process of the front and back electrodes, as shown in FIG. 3C,
Masks 31 and 32 having hole shapes that allow a conductive thin film to be formed by sputtering only on the side surfaces of the tuning fork arm and the connections between the side surfaces and the front and back electrodes are brought into close contact with the crystal resonator, and the side electrodes are formed by sputtering. It is something to do.

第3図DはR−R’断面における断面図である。FIG. 3D is a sectional view taken along the line R-R'.

本実施例に示す水晶振動子は以下に列挙する欠点を有す
る。
The crystal resonator shown in this example has the following drawbacks.

(1)マスクの寸法精度は少なくとも水晶振動子の外側
の電極の幅以下が必要であるが、一般的にはマスク寸法
精度は板厚の±15係程度のため、寸法精度を良くする
ためにはマスクの板厚を薄くしなければならない。
(1) The dimensional accuracy of the mask must be at least less than the width of the outer electrode of the crystal resonator, but in general, the dimensional accuracy of the mask is about ±15 factors of the plate thickness, so in order to improve the dimensional accuracy, The thickness of the mask must be made thinner.

しかし、マスクの板厚を薄くした場合には破損しやすく
なり、また作業性も悪くなるためマスクの板厚は100
μm程度が限度と考えられる。
However, if the thickness of the mask is made thinner, it becomes easier to break and workability becomes worse, so the thickness of the mask is 100 mm.
The limit is considered to be around μm.

したがって超小型振動子に設ける微細な電極形状への適
用は困難である。
Therefore, it is difficult to apply it to minute electrode shapes provided in ultra-small vibrators.

(2)マスクと水晶振動子との合せ作業およびマスクと
水晶振動子とを均一に密着させて固定する作業に手間が
かかる。
(2) It takes time and effort to align the mask and the crystal resonator and to fix the mask and the crystal resonator evenly and closely together.

またマスクと水晶振動子との合せ精度が悪い場合、ある
いはマスクのソリ,ゴミの介在等により水晶振動子とマ
スクとが密着していない場合には電極間ショートが生ず
る。
Further, if the precision of alignment between the mask and the crystal resonator is poor, or if the crystal resonator and the mask are not in close contact due to warping of the mask, intervening dust, etc., a short circuit between the electrodes will occur.

またマスクと水晶振動子とを均一に固定せずに一部を強
く固定した場合、水晶振動子の割れ、マスクの破損が生
ずる。
Furthermore, if the mask and the crystal resonator are not fixed evenly and some parts are strongly fixed, the crystal resonator will crack and the mask will be damaged.

以上、従来の側面電極を有する腐蝕抜き加工による水晶
振動子は、水晶振動子の超小型化によりさらに適用が困
難である。
As mentioned above, it is even more difficult to apply the conventional quartz crystal resonator having side electrodes processed by corrosion removal processing due to miniaturization of the crystal resonator.

本発明は、腐蝕抜き加工により超小型音叉型圧電振動子
の側面電極を簡易的に形成でき、より高性能な圧電振動
子を低価格で供するものであり、本発明の一実施例を第
4図に示す。
The present invention enables the side electrodes of an ultra-small tuning fork type piezoelectric vibrator to be easily formed by corrosion removal processing, and provides a piezoelectric vibrator with higher performance at a lower cost. As shown in the figure.

第4図D−Gは音叉腕断面図を示す。FIG. 4 DG shows a sectional view of the tuning fork arm.

第4図A,Dは第1図に示した水晶振動子である。4A and 4D are the crystal resonators shown in FIG. 1.

該水晶振動子の表裏に第4図B,Eに示すようにフォト
レジスト33および34をそれぞれ形戊する。
Photoresists 33 and 34 are formed on the front and back surfaces of the crystal resonator, respectively, as shown in FIGS. 4B and 4E.

該フォトレジストは少なくとも該水晶振動子の音叉腕の
側面および該側面と表裏電極との接続部分に導電性薄膜
が形或でき、かつ音叉叉部付近および表裏電極の大部分
には導電性薄膜が形威されないような形状になっている
ものである。
The photoresist has a conductive thin film formed at least on the side surfaces of the tuning fork arms of the crystal resonator and the connecting portions between the side surfaces and the front and back electrodes, and a conductive thin film is formed in the vicinity of the tuning fork part and most of the front and back electrodes. It has a shape that does not affect its appearance.

次に、第4図Fに示すように表面より導電性薄膜35を
、次に裏面より導電性薄膜36をスパッタリングする。
Next, as shown in FIG. 4F, a conductive thin film 35 is sputtered from the front surface, and then a conductive thin film 36 is sputtered from the back surface.

次に、前記フォトレジスト33.34をリフトオフ法を
用いて除去すれば、フォトレジスト33,34に形威さ
れた導電性薄膜35.36はフォトレジスト33 .3
4とともに除去され第4図C,Gに示すように表裏電極
と接続する側面電極37,38が形成される。
Next, when the photoresists 33 and 34 are removed using a lift-off method, the conductive thin films 35 and 36 formed on the photoresists 33 and 34 become the photoresists 33 and 34. 3
As shown in FIGS. 4C and 4, side electrodes 37 and 38 connected to the front and back electrodes are formed.

以上、本発明は次に列挙する利点を有する。As described above, the present invention has the following advantages.

1.振動子外形形状の腐蝕抜き加工および表裏電極の形
或は、従来の側面電極を有さない腐蝕抜き加工による圧
電振動子と同一の工程によるため、振動子外形形状およ
び電極形状および電極形状の精度が良く、超小型圧電振
動子に容易に適用することができる。
1. The accuracy of the vibrator external shape, electrode shape, and electrode shape is improved because the process is the same as that of a piezoelectric vibrator, which involves corrosion removal processing of the external shape of the vibrator and the shape of the front and back electrodes, or conventional corrosion removal processing without side electrodes. It has good properties and can be easily applied to ultra-small piezoelectric vibrators.

2.フォトレジストの形状は比較的太きいため、リフト
オフ法を確実に行なう目的でフォトレジストの厚味を厚
くしても、従来のフォトリソグラフイ技術により振動子
との合せ精度を十分満足できるため、マスクずれによる
電極間ショートがほとんど生じることはない。
2. Since the shape of the photoresist is relatively thick, even if the thickness of the photoresist is increased to ensure the lift-off method, the alignment accuracy with the vibrator can be satisfied using conventional photolithography technology, so the mask Short circuits between electrodes due to misalignment rarely occur.

3. フォトレジストと振動子とは十分密着するため、
スパッタリング時の導電性薄膜のまわり込みによる電極
間ショートを生じることはない。
3. Since the photoresist and the vibrator are in close contact with each other,
No short circuit between electrodes occurs due to the conductive thin film wrapping around during sputtering.

4.スパッタリングの際、治具への固定作業等が必要な
く、基板の上に置くだけで良いことから、作業が簡単と
なる。
4. During sputtering, there is no need to fix the device to a jig, just place it on the substrate, which simplifies the process.

次に本発明の応用例を第5図に示す。Next, an application example of the present invention is shown in FIG.

第5図Aは、振動子1の表面のみにフォトレジスト39
を形威した場合の音叉腕断面図を示し、第5図Bは振動
子1に表面からのみ導電性薄膜40をスパッタリングし
た音叉腕断面図を示す。
In FIG. 5A, a photoresist 39 is applied only to the surface of the vibrator 1.
FIG. 5B shows a cross-sectional view of a tuning fork arm in which a conductive thin film 40 is sputtered only from the surface of the vibrator 1. FIG.

この場合、導電性薄膜40は表面および側面はもちろん
、裏面の一部にも形威される。
In this case, the conductive thin film 40 is formed not only on the front surface and side surfaces but also on a part of the back surface.

したがって前記フォトレジスト39をリフトオフ法を用
いて除去することにより、第5図Cに示すように表裏電
極と接続する側面電極が形威される。
Therefore, by removing the photoresist 39 using a lift-off method, side electrodes connected to the front and back electrodes are formed as shown in FIG. 5C.

以上、本発明は腐蝕抜き加工による水晶振動子に、簡易
的に側面電極を形戒することができるが本発明は水晶振
動子に限るものでなく、タンタル酸リチウム,ニオプ酸
リチウム等、腐蝕抜き加工によって外形形状を形戒する
あらゆる音叉型電圧振動子に応用可能であり、また電極
構造も本例に限るものではない。
As described above, the present invention can simply add side electrodes to a crystal resonator that has been subjected to corrosion removal processing, but the present invention is not limited to crystal resonators, and can be applied to lithium tantalate, lithium niobate, etc. The present invention can be applied to any tuning fork type voltage vibrator whose external shape is modified by processing, and the electrode structure is not limited to this example.

本発明は腐蝕抜き加工による圧電振動子の特徴である超
小型化,低価格化を損なうことなく、さらに従来の機械
加工による比較的大型な圧電振動子に匹敵する性能が容
易に得られるという点でその効果は非常に太きい。
The present invention has the advantage that without sacrificing the characteristics of ultra-miniaturization and low cost of piezoelectric vibrators produced by corrosion removal processing, it is also possible to easily obtain performance comparable to relatively large piezoelectric transducers produced by conventional machining. The effect is very strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来の側面電極を有さない腐蝕抜き加工によ
る水晶振動子の平面図を示し、B−Fはその製造方法の
一例を示す工程断面図。 第2図Aは従来の側面電極を有する腐蝕抜き加工による
水晶振動子の平面図であり、Bはそのレジスト配置平面
図、C−Lは製造方法の一例を示す工程断面図。 第3図A,Bは従来の側面電極を有する腐蝕抜き加工に
よる水晶振動子の平面図と断面図、CDはマスクを使用
した水晶振動子の製造方法を示す平面図と断面図の他の
例。 第4図は本発明の一実施例であり、A,B,Cは本発明
の製造方法の工程平面図、D−Gはその工程断面図。 第5図は本発明の応用例であり、A,B,Cは本発明の
製造方法の工程断面図。 1・・・・・・水晶振動子、2,3・・・・・・表面電
極、4,5・・・・・・裏面電極、6・・・・・・導電
性薄膜、7・・・・・・水晶薄板、8・・・・・・フォ
トレジスト、9・・・・・・水晶振動子、10.11・
・・・・・表面電極、12,13・・・・・・側面電極
、14・・・・・・フォトレジスト、15・・・・・・
水晶薄板、16,17.18.19,20.21・・・
・・・導電性薄膜、22・・・・・・水晶振動子、23
,24・・・・・・表面電極、25,26・・・・・・
裏面電極、27 .2B ,29.30・・・・・・側
面電極、31.32・・・・・・マスク、33,34・
・・・・・フォトレジスト、35,36・・・・・・導
電性薄膜、37 .38・・・・・・側面電極、39・
・・・・・フォトレジスト、40・・・・・・導電性薄
膜。
FIG. 1A shows a plan view of a conventional quartz crystal resonator without side electrodes by corrosion removal processing, and B-F is a cross-sectional view showing an example of its manufacturing method. FIG. 2A is a plan view of a conventional quartz crystal resonator having side electrodes processed by corrosion removal, B is a plan view of the resist arrangement, and C-L is a process sectional view showing an example of the manufacturing method. Figures 3A and 3B are a plan view and a cross-sectional view of a conventional corrosion-removed crystal resonator with side electrodes, and CD is another example of a plan view and cross-sectional view showing a method of manufacturing a crystal resonator using a mask. . FIG. 4 shows an embodiment of the present invention, where A, B, and C are process plan views of the manufacturing method of the present invention, and DG is a cross-sectional view of the process. FIG. 5 shows an application example of the present invention, and A, B, and C are process cross-sectional views of the manufacturing method of the present invention. 1... Crystal resonator, 2, 3... Surface electrode, 4, 5... Back electrode, 6... Conductive thin film, 7... ... Crystal thin plate, 8 ... Photoresist, 9 ... Crystal resonator, 10.11.
...Surface electrode, 12, 13...Side electrode, 14...Photoresist, 15...
Crystal thin plate, 16, 17, 18, 19, 20, 21...
... Conductive thin film, 22 ... Crystal resonator, 23
, 24... Surface electrode, 25, 26...
Back electrode, 27. 2B, 29.30...Side electrode, 31.32...Mask, 33,34...
... Photoresist, 35, 36 ... Conductive thin film, 37. 38...Side electrode, 39.
... Photoresist, 40 ... Conductive thin film.

Claims (1)

【特許請求の範囲】 1 音叉型圧電振動子の外形形状に腐食抜き加工されて
いる電圧性薄板の表,裏各平面に導電性薄膜が形威され
ている音叉型圧電振動子の側面電極形戒方法において、
前記導電性薄膜によって表裏面に電極形戒する第1の工
程、前記電極が形或されている表,裏各平面の端部に達
しない部分までをフォトレジストで被う第2の工程と、
前記表裏各平面より導電性薄膜をスパッタリングして、
前記音叉型圧電振動子の外形形状のほぼ全面に導電性薄
膜を形戒する第3の工程と、前記各工程により形成され
た前記フォトレジストと、前記フォトレジスト上に形威
されている導電性薄膜とを除去する第4の工程とからな
る音叉型圧電振動子の側面電極形戒方法。 2・音叉型圧電振動子の外形形状に腐食抜き加工されて
いる圧電性薄板の表,裏各平面に導電性薄膜が形威され
ている音叉型圧電振動子の側面電極形戊方法において、
前記導電性薄膜によって表裏面に電極形成する第1の工
程、前記電極が形成されている表,裏いずれか一方の平
面の端部に達しない部分までをフォトレジストで被う第
2の工程と、該工程によりフォトレジストで被われた前
記表,裏いずれか一方の平面より導電性薄膜をスパッタ
リングして、前記音叉型圧電振動子の外形形状の表,裏
いずれか一方の平面の全面と、側面とに導電性薄膜を形
威する第3の工程と、前記各工程により形威された前記
フォトレジストと、前記フォトレジスト上に形威されて
いる導電性薄膜とを除去する第4の工程とからなる音叉
型圧電振動子の側面電極形戒方法。
[Scope of Claims] 1. A side electrode type of a tuning fork type piezoelectric vibrator, in which a conductive thin film is formed on each of the front and back planes of a voltage conductive thin plate which has been subjected to corrosion removal processing in the outer shape of the tuning fork type piezoelectric vibrator. In the precept method,
A first step of forming electrode shapes on the front and back surfaces using the conductive thin film, a second step of covering with photoresist up to the portions of the front and back surfaces where the electrodes are formed, up to the ends thereof;
Sputtering a conductive thin film from each of the front and back planes,
a third step of forming a conductive thin film over almost the entire external shape of the tuning fork type piezoelectric vibrator; the photoresist formed by each of the steps; and a conductive film formed on the photoresist. and a fourth step of removing the thin film. 2. In a method for forming side electrodes of a tuning fork type piezoelectric vibrator, in which a conductive thin film is formed on each of the front and back planes of a piezoelectric thin plate that has been subjected to a corrosion removal process in the external shape of the tuning fork type piezoelectric vibrator,
a first step of forming electrodes on the front and back surfaces using the conductive thin film; a second step of covering with a photoresist up to a portion of the plane on which the electrodes are formed that does not reach the edge of either the front or back surface; , sputtering a conductive thin film from either the front or back plane covered with photoresist in the step, to cover the entire surface of either the front or back plane of the external shape of the tuning fork type piezoelectric vibrator; a third step of forming a conductive thin film on the side surfaces, and a fourth step of removing the photoresist formed in each of the above steps and the conductive thin film formed on the photoresist. A side electrode type precept method for a tuning fork type piezoelectric vibrator consisting of.
JP52069594A 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator Expired JPS5836848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52069594A JPS5836848B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52069594A JPS5836848B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPS544588A JPS544588A (en) 1979-01-13
JPS5836848B2 true JPS5836848B2 (en) 1983-08-12

Family

ID=13407304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52069594A Expired JPS5836848B2 (en) 1977-06-13 1977-06-13 Method for forming side electrodes of tuning fork type piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPS5836848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042794A (en) * 2006-08-10 2008-02-21 Citizen Holdings Co Ltd Piezoelectric device and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193887A (en) * 1975-02-17 1976-08-17
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193887A (en) * 1975-02-17 1976-08-17
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042794A (en) * 2006-08-10 2008-02-21 Citizen Holdings Co Ltd Piezoelectric device and its manufacturing method

Also Published As

Publication number Publication date
JPS544588A (en) 1979-01-13

Similar Documents

Publication Publication Date Title
US7485238B2 (en) Etching method, etched product formed by the same, and piezoelectric vibration device, method for producing the same
US7690095B2 (en) Method for manufacturing quartz piece
US8093787B2 (en) Tuning-fork-type piezoelectric vibrating piece with root portions having tapered surfaces in the thickness direction
US6961981B2 (en) Method of producing a piezoelectric resonator
US4253036A (en) Subminiature tuning fork quartz crystal vibrator with nicrome and palladium electrode layers
JP2007329879A (en) Tuning-fork type bending crystal oscillator piece and manufacturing method therefor
JPS5821965B2 (en) Method for forming side electrodes of tuning fork type piezoelectric vibrator
JP2004364019A (en) Piezoelectric vibration chip, piezoelectric vibrator, piezoelectric oscillator, gyroscope sensor, electronic apparatus, and manufacturing method
JP2008085631A (en) Manufacturing method of vibration reed, vibration reed, and vibrator
US7518296B2 (en) Piezoelectric resonator with short-circuits preventing means
JPS5836848B2 (en) Method for forming side electrodes of tuning fork type piezoelectric vibrator
JP5890271B2 (en) Tuning fork-type bending crystal resonator element and manufacturing method thereof
JP2001144581A (en) Piezoelectric vibrator and its manufacturing method
US4232109A (en) Method for manufacturing subminiature quartz crystal vibrator
JP6055294B2 (en) Method for manufacturing piezoelectric element
JP2004173218A (en) Manufacturing method for quartz oscillator
JPH09107259A (en) Photo mask and electrode pattern for production of surface acoustic wave element
JPS6038891B2 (en) Manufacturing method of ultra-small crystal unit
JPH11312943A (en) Production of surface acoustic wave device
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JPS6127929B2 (en)
JPH0864931A (en) Microelectrode forming method of electronic component
JP4016695B2 (en) Method for manufacturing piezoelectric vibration device and piezoelectric vibration device manufactured by the manufacturing method
JPH1136086A (en) Etching method and etching device
JPH10284966A (en) Manufacture of electrode film on piezoelectric element plate