JPS5835315A - Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace - Google Patents

Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace

Info

Publication number
JPS5835315A
JPS5835315A JP56133850A JP13385081A JPS5835315A JP S5835315 A JPS5835315 A JP S5835315A JP 56133850 A JP56133850 A JP 56133850A JP 13385081 A JP13385081 A JP 13385081A JP S5835315 A JPS5835315 A JP S5835315A
Authority
JP
Japan
Prior art keywords
combustion
hydrogen chloride
burnt
gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133850A
Other languages
Japanese (ja)
Inventor
Toshimasa Hirama
平間 利昌
Hiroki Nishizaki
西崎 寛樹
Yasushi Kochiyama
河内山 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56133850A priority Critical patent/JPS5835315A/en
Publication of JPS5835315A publication Critical patent/JPS5835315A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel

Abstract

PURPOSE:To enable to remove hydrogen chloride and sulfur oxide contained in combustion gas, simultaneously, easily, and efficiently, by adding calcium compound to the gas, in case that a material to be burnt, containing chlorine content and sulfur content, is burnt in a combustion furnace. CONSTITUTION:When a material to be burnt is burnt, first of all, a calcium compound and a material to be burnt are fed into a fluidized bed part 4, respectively, from a feeder port 3 on the side wall of a fluidized bed combustion furnace 15, for instance, by the intermediary of each hopper 1 and 2. On the other hand, combustion air 7 is fed into the furnace 15, passing through an air inducing chamber 8 and an air dispersing plate 9. With such an arrangement, ion oxide and hydrogen chloride generated in the fluidized bed part 4 during combustion are absorbed by calcium compound, which is discharged from a discharge port 5 as waste absorbent. Waste gas is discharged from a discharge port 10, and dust is separated from the waste gas 12 by a dust collector 11. With such an arrangement, hydrogen chloride and ion oxide contained in combustion gas can be removed from the gas, simultaneously, easily and efficiently.

Description

【発明の詳細な説明】 本発明は被燃焼物をボイラーや焼却炉などの燃焼炉内で
燃焼させるに際し、生成される燃焼ガスから、それに含
まれる塩化水素とイオウ酸化物を同時かつ効率的に除去
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of simultaneously and efficiently removing hydrogen chloride and sulfur oxides contained in the generated combustion gas when combustible materials are combusted in a combustion furnace such as a boiler or an incinerator. It relates to a method of removal.

省資源の気運の高まりと共に、石炭、各種廃棄物、低品
位燃料などの燃料資源をエネルギーとしてより有効に活
用する新しい技術の開発が広く進められている。このよ
うな技術の開発に当・つては、エネルギー回収効率の向
上と共に、廃ガスの無公害化も重要な技術課題の1つに
なっている。
With the growing trend towards resource conservation, the development of new technologies that more effectively utilize fuel resources such as coal, various wastes, and low-grade fuels as energy is being widely promoted. In developing such technology, one of the important technical issues is to improve energy recovery efficiency and to make waste gas pollution-free.

一般に、石油、石炭及び都市ゴミやその熱分解生成物な
どには、イオウ分、窒素分及び塩素分などの不純物が含
まれている。これらの成分は、燃焼によってそれぞれイ
オウ酸化物(主としてSO□)、窒素酸化物及び塩化水
素に変化し、大気汚染の原因となる。これらの汚染物の
中、窒素酸化物は燃焼技術の改良と、燃焼状態の制御に
よっである程度の低減が可能になっているが、イオウ酸
化物と塩化水素は燃焼技術の改良によってこれらの低減
をはかることは不可能である。そこで、現状では、イオ
ウ酸化物に対しては石灰を使用した湿式吸収法及び塩化
水素に対しては苛性ソーダを吸収剤とした湿式吸収法が
一般に用いられているが、このような湿式法の場合、処
理施設費が大きくなるばかりでなく、エネルギー回収効
率の低下、ランニ  石炭物の燃焼について種々研究を
行っていたところ、1メ塩炭酸カルシウムなどのカルシ
ウム化合物の存在下  分ノで燃焼を行う時には、燃焼
により発生した塩化水  物の素とイオウ酸化物はカル
シウム化合物に効率よく   のと同時吸収除去され、
殊に、イオウ酸化物の吸収効  が含含む被燃焼物を燃
焼炉内において燃焼させるに際  量比本発明における
被燃焼物としては、燃焼可能な  に・ものであれば任
意のものが用いられ、石油系及び  であ系の燃料をは
じめ、都市ゴミ及びその熱分解物、及びその他の廃棄物
が挙げられる。本発用いる被燃焼物は、不純物として、
イオウ分素分を必須成分として含むものである。塩素存
在は、カルシウム化合物によるイオウ酸化吸収効率を高
める上では、むしろ好ましいも言える。従って、被燃焼
物がイオウ分のみしまない場合には、塩素分を含む被燃
焼物を混て燃焼させることにより、イオウ酸化物の重率
を高めることができる。被燃焼物中に含まイオウ分と塩
素分の割合は特に制約されない元素量換算で、イオウ分
に対する塩素分の電率C1/Sが0.1以上になるよう
にするのがよい。
Generally, petroleum, coal, municipal waste, and their thermal decomposition products contain impurities such as sulfur, nitrogen, and chlorine. These components change into sulfur oxides (mainly SO□), nitrogen oxides, and hydrogen chloride through combustion, causing air pollution. Among these pollutants, nitrogen oxides can be reduced to some extent by improving combustion technology and controlling combustion conditions, while sulfur oxides and hydrogen chloride can be reduced by improving combustion technology. It is impossible to measure. Therefore, at present, the wet absorption method using lime is generally used for sulfur oxides, and the wet absorption method using caustic soda as an absorbent for hydrogen chloride. However, not only does the cost of treatment facilities increase, but also the energy recovery efficiency decreases.We have been conducting various studies on the combustion of coal materials, and have found that when combustion is performed in the presence of calcium compounds such as 1-metal calcium carbonate, The chloride water elements and sulfur oxides generated by combustion are efficiently absorbed and removed by calcium compounds at the same time.
In particular, the absorption effect of sulfur oxides is particularly important when burning a combustible material containing sulfur oxides in a combustion furnace.The combustible material in the present invention may be any combustible material. , petroleum-based and gas-based fuels, municipal waste and its pyrolysis products, and other wastes. The combustible material used in this invention contains impurities as follows:
It contains sulfur as an essential component. The presence of chlorine is rather preferable in terms of increasing the efficiency of sulfur oxidation absorption by calcium compounds. Therefore, if the material to be burned does not contain only sulfur, the weight percentage of sulfur oxides can be increased by mixing and burning the material containing chlorine. The ratio of sulfur and chlorine contained in the material to be burnt is not particularly restricted, and is preferably set such that the electrical ratio C1/S of chlorine to sulfur is 0.1 or more, in terms of the amount of elements.

発明で吸収剤として用いるカルシウム化合物燃焼温度(
700〜900℃)でイオウ酸化物と水素に対して反応
性を示すものであればよく、ようなものには、酸化カル
シウム、水酸化カラム、炭酸カルシウムなどが挙げられ
る。殊炭酸カルシウムは、安価であり、安定な物質るこ
と、粒状を保ちやすいことなどの観点から好ましいもの
である。カルシウム化合物の使用割合量は、前記イオウ
酸化物と塩化水素に対する理論量の少なくとも2倍、好
ましくは3倍以上の割合であればよく、このカルシウム
化合゛物は、通常、被燃焼物と共に連続的に燃焼炉内に
投入される。
Calcium compound combustion temperature used as an absorbent in the invention (
Any material may be used as long as it shows reactivity with sulfur oxide and hydrogen at a temperature of 700 to 900°C, such as calcium oxide, hydroxide column, calcium carbonate, and the like. Calcium carbonate is particularly preferred from the viewpoints of being inexpensive, being a stable substance, and easily maintaining its granular form. The proportion of the calcium compound to be used may be at least twice, preferably three times or more, the theoretical amount for the sulfur oxide and hydrogen chloride, and this calcium compound is usually continuously used together with the material to be combusted. It is then put into the combustion furnace.

本発明によるカルシウム化合物に対スるイオウ酸化物及
び塩化水素の吸収除去は、燃焼炉内において行われるこ
とから、従来の湿式処理に見られ庭ような大型の付属設
備を設ける必要はなく、その上、燃焼炉内でイオウ酸化
物及び塩化水素が除去されることから、燃焼炉の腐蝕が
抑制される利点もあり、さらに、ボイラーの場合には、
熱回収部の腐蝕を低減させることができるために、過熱
蒸気圧を高めてエネルギー回収効率の向上をはかること
も可能である。
Since the absorption and removal of sulfur oxides and hydrogen chloride for calcium compounds according to the present invention is carried out in a combustion furnace, there is no need to install large-scale attached equipment such as a garden, which is required in conventional wet processing. In addition, sulfur oxides and hydrogen chloride are removed in the combustion furnace, which has the advantage of suppressing corrosion in the combustion furnace.Furthermore, in the case of boilers,
Since corrosion of the heat recovery section can be reduced, it is also possible to increase the superheated steam pressure and improve energy recovery efficiency.

次に、本発明を図面により説明する。Next, the present invention will be explained with reference to the drawings.

図面において、符号1はカルシウム化合物ホッパー、2
は燃料(被燃焼物)ホッパーであシ、これらのホッパー
を通して、カルシウム化合物と燃料が流動燃焼炉15の
側面の供給口3から流動層部4に入る。一方、燃焼用空
気7は導風室8及び分散板9を通して供給される。流動
層部4で燃焼発生したイオウ酸化物と塩化水素はカルシ
ウム化合物によって吸収され、イオウ酸化物と塩化水素
を吸収したカルシウム化合物は廃吸収剤として排出口5
から排出される。飛散するダストは排ガス出口10を通
って集塵器11によって廃ガス12から分離される。1
3及び14は熱回収のための伝熱管である。
In the drawings, reference numeral 1 indicates a calcium compound hopper, and 2
are fuel (combustible material) hoppers, and through these hoppers, the calcium compound and fuel enter the fluidized bed section 4 from the supply port 3 on the side of the fluidized combustion furnace 15. On the other hand, combustion air 7 is supplied through an air guide chamber 8 and a distribution plate 9. The sulfur oxides and hydrogen chloride generated by combustion in the fluidized bed section 4 are absorbed by calcium compounds, and the calcium compounds that have absorbed the sulfur oxides and hydrogen chloride are discharged to the discharge port 5 as a waste absorbent.
is discharged from. The flying dust passes through the exhaust gas outlet 10 and is separated from the exhaust gas 12 by a precipitator 11 . 1
3 and 14 are heat transfer tubes for heat recovery.

上記したように、本発明では、塩化水素やイオウ酸化物
を吸収するための特別の設備を設置する必要がなく、カ
ルシウム化合物を、燃料流動化用媒体と兼用することも
可能である。吸収反応温度、即ち、流動層部4の温度は
700〜900℃の範囲が望ましい。脱塩化水素率及び
脱硫率を向上させるためには、燃料に対するカルシウム
化合物の供給比を高めることが必要になるが、こり供給
比は通常Ca/(Ct2+S)のモル比で2以上、好ま
しくは3以上である。
As described above, in the present invention, there is no need to install special equipment for absorbing hydrogen chloride and sulfur oxides, and the calcium compound can also be used as a fuel fluidization medium. The absorption reaction temperature, that is, the temperature of the fluidized bed section 4 is preferably in the range of 700 to 900°C. In order to improve the dehydrochlorination rate and the desulfurization rate, it is necessary to increase the supply ratio of calcium compounds to fuel, but the calcium compound supply ratio is usually a molar ratio of Ca/(Ct2+S) of 2 or more, preferably 3. That's all.

なお、本発明は、流動燃焼に限らず、他の燃焼における
脱硫及び脱塩素に適用し得ることは当然のことである。
Note that the present invention is naturally applicable not only to fluidized combustion but also to desulfurization and dechlorination in other types of combustion.

次に本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 図面に示すような流動燃焼炉を用いて都市ゴミの熱分解
生成物を800℃で燃焼させぞ。この場合、吸収剤なし
では廃ガス中に塩化水素が1200 ppm、イオウ酸
化物(80□)が500 ppm含まれる。これに対し
て、Ca/(C42+S)のモル比で約2に相当する炭
酸カルシウムを混入すると、塩化水素は450 ppm
、イオウ酸化物は50ppmまで低下し、それぞれの吸
収率は約60チ及び90チであった。また、炭酸カルシ
ウムに代えて、酸化カルシウムを用いても同様の結果が
得られた。
EXAMPLE Let's burn the thermal decomposition products of municipal waste at 800°C using a fluidized combustion furnace as shown in the drawings. In this case, without an absorbent, the waste gas contains 1200 ppm of hydrogen chloride and 500 ppm of sulfur oxide (80□). On the other hand, when calcium carbonate with a Ca/(C42+S) molar ratio of approximately 2 is mixed, hydrogen chloride becomes 450 ppm.
, sulfur oxides were reduced to 50 ppm, and the respective absorption rates were about 60 and 90 inches. Similar results were also obtained when calcium oxide was used instead of calcium carbonate.

なお、比較のために塩素分を実質的に含有しないが同程
度のイオウ分を含む燃3料を前記と同様にして燃焼させ
た場合、イオウ吸収率は約60チであり、塩素分の共存
j4−都市ゴミ熱分解生成物を燃焼する場合よりもその
イオウ酸化物吸収率は低下することが認められた。
For comparison, when fuel 3 containing substantially no chlorine content but containing the same amount of sulfur was burned in the same manner as above, the sulfur absorption rate was approximately 60%, and the coexistence of chlorine content was j4-It was observed that the sulfur oxide absorption rate was lower than that when the municipal waste pyrolysis product was combusted.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施する場合の装置説明図である。 l・・・カルシウム化合物ホツノく−、2・・・燃料ホ
ラ° 、3・・・供給口、4・・・流動層部、5・・・
排出口、6・・・排出カルシウム化合物、7・・・空気
、8・・・導風室、9・・・分散板、lO・・・排〃ス
出口、11・・・集塵器、12・・・廃ガス、13 、
14・・・伝−管、15・・・流動燃焼炉。 特許比−人 工業技術院艮 石 坂 誠 −指定代理人
 工業技術院北海道工業開発試験所長   佐 藤 俊
 夫
The drawing is an explanatory diagram of an apparatus for carrying out the present invention. l... Calcium compound hot, 2... Fuel hole, 3... Supply port, 4... Fluidized bed section, 5...
Exhaust port, 6... Exhaust calcium compound, 7... Air, 8... Air guide chamber, 9... Dispersion plate, lO... Exhaust outlet, 11... Dust collector, 12 ...waste gas, 13,
14... Transfer tube, 15... Fluidized combustion furnace. Patent ratio: Makoto Ishizaka, Agency of Industrial Science and Technology - Designated agent: Toshio Sato, Director, Hokkaido Industrial Development Testing Institute, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] (1)塩素分及びイオウ分を含む被燃焼物を燃焼炉内に
おいて燃焼させるに際し、該被燃焼物をカルシウム化合
物の存在下で燃焼させることにより、燃焼によって発生
した塩化水素−及びイオウ酸化物を該カルシウム化合物
に同時吸収除去させること及びイオウ酸化物の吸収除去
率を高めることを特徴とする燃焼炉内における塩化水素
とイオウ酸化物の同時除去方法。
(1) When burning materials containing chlorine and sulfur in a combustion furnace, hydrogen chloride and sulfur oxides generated by combustion are removed by burning the materials in the presence of calcium compounds. A method for simultaneously removing hydrogen chloride and sulfur oxides in a combustion furnace, characterized by simultaneously absorbing and removing the calcium compound and increasing the rate of absorption and removal of sulfur oxides.
JP56133850A 1981-08-25 1981-08-25 Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace Pending JPS5835315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133850A JPS5835315A (en) 1981-08-25 1981-08-25 Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133850A JPS5835315A (en) 1981-08-25 1981-08-25 Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace

Publications (1)

Publication Number Publication Date
JPS5835315A true JPS5835315A (en) 1983-03-02

Family

ID=15114487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133850A Pending JPS5835315A (en) 1981-08-25 1981-08-25 Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace

Country Status (1)

Country Link
JP (1) JPS5835315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163511A (en) * 1987-05-22 1989-06-27 Evs Energ Versorgungssyst Gmbh Method and device for coupling salt-forming element with solid substance when fossil fuel, dust, etc. are burnt
JPH03502128A (en) * 1987-10-16 1991-05-16 藤本 明男 Waste treatment method using oxy-combustion
JPH0783422A (en) * 1993-06-28 1995-03-28 Kawasaki Heavy Ind Ltd Removing method for hydrogen chloride of fluidized bed refuse incinerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163511A (en) * 1987-05-22 1989-06-27 Evs Energ Versorgungssyst Gmbh Method and device for coupling salt-forming element with solid substance when fossil fuel, dust, etc. are burnt
JPH03502128A (en) * 1987-10-16 1991-05-16 藤本 明男 Waste treatment method using oxy-combustion
JPH0783422A (en) * 1993-06-28 1995-03-28 Kawasaki Heavy Ind Ltd Removing method for hydrogen chloride of fluidized bed refuse incinerator

Similar Documents

Publication Publication Date Title
US8124561B2 (en) Production of activated char using hot gas
EP0602238B1 (en) Process for combustion of sulfur-containing, carbonaceous materials
CN100529529C (en) Process and its device for clean burning and value gaining burning of solid fuel
JPH0634102B2 (en) Waste heat conversion method
GB2234232A (en) Desulphurizing flue gas with calcium salts
JPH0456202B2 (en)
CN101749714A (en) Waste incineration method capable of inhibiting generation of dioxins and system thereof
CA2445182C (en) Processes and systems for using biomineral by-products as a fuel and for nox removal at coal burning power plants
WO2003057803A1 (en) Processes and systems for using biomineral by-products as a fuel and for nox removal at coal burning power plants
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
CN201666577U (en) Waste incineration system for inhibiting generation of dioxin-like chemicals
CN108568292A (en) A method of preparing high-efficiency adsorbent using fluidized gasification flying dust and industrial waste sulfuric acid
RU2570331C1 (en) Method for processing solid household and industrial wastes and device for thereof realisation
CN103791503A (en) Organic solid waste gasifying and incineration integrated device and method
JPS5835315A (en) Simultaneous removing method of hydrogen chloride and sulfur oxide from combustion furnace
JPH10267221A (en) Desulfurization method of exhaust gas of fluidized bed furnace
CN1632379A (en) Double temperature double bed gasification, oxidization and fluidized bed incinerator for disposing high concentration organic effluent liquor
CA2600875C (en) Production of activated char using hot gas
JPH08110021A (en) Produced gas processing apparatus for waste melting furnace
CN206861547U (en) A kind of device for the processing sludge that burnt based on heat accumulating type chemical chain
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
CA1261812A (en) Process for concentrating waste products arising during the manufacture of carbon electrodes, and an appropriate absorbent for this purpose
JP3757032B2 (en) Waste pyrolysis melting combustion equipment
JPS594808A (en) Combustion of substance containing chloric component
RU2151958C1 (en) Method for thermal decontamination of solid wastes