JPH10267221A - Desulfurization method of exhaust gas of fluidized bed furnace - Google Patents

Desulfurization method of exhaust gas of fluidized bed furnace

Info

Publication number
JPH10267221A
JPH10267221A JP9076919A JP7691997A JPH10267221A JP H10267221 A JPH10267221 A JP H10267221A JP 9076919 A JP9076919 A JP 9076919A JP 7691997 A JP7691997 A JP 7691997A JP H10267221 A JPH10267221 A JP H10267221A
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
sludge
desulfurization
concrete sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9076919A
Other languages
Japanese (ja)
Other versions
JP3384435B2 (en
Inventor
Naoki Fujiwara
尚樹 藤原
Hiroaki Kuroki
裕昭 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP07691997A priority Critical patent/JP3384435B2/en
Priority to CNB981088260A priority patent/CN1140321C/en
Publication of JPH10267221A publication Critical patent/JPH10267221A/en
Application granted granted Critical
Publication of JP3384435B2 publication Critical patent/JP3384435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the discharge quantity of ash from desulfurizing equipment and furthermore, promote effective utilization of limestone and dolomite resources by using crude concrete sludge as desulfulizing agent in a furnace. SOLUTION: This desulfulizing method is a process of employing excessive components or the like of crude concrete to be used in construction, civil engineering industries as desulfulizing agent of a fluidized bed furnace and removes sulfur components in a gas generated in a normal pressure fluidized bed combustion boiler, a fluidized bed gasifying furnace or a fluidizing bed partially gasifying furnace. In this method, any of crude concrete sludge, dehydrated sludge cake and supernatant water is applicable. The crude concrete sludge is so arranged preferably in the fluidized bed furnace that Ca components in the crude concrete reaches 1-3 in molar ratio with respect to sulfur components in a fuel. The temperature of combustion and gasification in a normal pressure fluidized bed combustion boiler or the like is preferably within a range of 500-2,000 deg.C and, moreover, for higher efficiency of desulfurization, it is set in a range 750-1,000 deg.C to improve reaction rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流動層炉の炉内で発
生する排ガスの脱硫方法に関し、更に詳しくは、建築,
土木業などで使用される生コンクリートの余剰分やコン
クリートローリーの洗浄の際に生成する生コンクリート
スラッジを常圧流動層燃焼ボイラー,流動層ガス化炉ま
たは流動層部分ガス化炉の脱硫剤として使用する脱硫方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurizing exhaust gas generated in a fluidized bed furnace,
Uses surplus of ready-mixed concrete used in the civil engineering industry and ready-mixed concrete sludge generated when washing concrete lorries as a desulfurizing agent for normal-pressure fluidized bed combustion boilers, fluidized bed gasifiers or fluidized bed partial gasifiers To a desulfurization method.

【0002】[0002]

【従来の技術】石油,石炭などの化石燃料や産業廃棄
物,都市ゴミなどの廃棄物には、硫黄分が含まれている
ことが多く、それらを燃料とする燃焼炉,ガス化炉等に
おいては、硫黄の燃焼によって生ずる有害ガス、亜硫酸
ガス,硫酸ガス等の硫黄酸化物(SOx)を環境基準に
適合する濃度まで除去して燃焼ガスを排出しなければな
らない。従来、これらの炉で使用されている脱硫方法に
は大きく分けて次の2つの方法がある。 (1)炉内脱硫法; 炉内に脱硫剤を投入し、硫黄酸化
物を吸収除去する方法。通常、脱硫剤としては石灰石か
ドロマイトが使用され、吸収反応後の脱硫剤は、石膏に
変化するため有効利用される。この方法は主に流動層炉
で使用されている。 (2)排煙脱硫法; 炉後流の煙道の一部に脱硫剤と排
ガスの接触槽(塔)を設け、吸収あるいは吸着によって
排ガス中の硫黄酸化物を除去する方法。この方法では、
脱硫の種類によって使用される脱硫剤が異なる。
2. Description of the Related Art Fossil fuels such as petroleum and coal, industrial waste, and waste such as municipal waste often contain sulfur, and are used in combustion furnaces and gasification furnaces that use such fuels as fuel. It is necessary to remove combustion gases by removing sulfur oxides (SOx) such as harmful gas, sulfurous acid gas, sulfuric acid gas and the like generated by combustion of sulfur to a concentration that conforms to environmental standards. Conventionally, desulfurization methods used in these furnaces are roughly classified into the following two methods. (1) Furnace desulfurization method: A method in which a desulfurizing agent is charged into a furnace to absorb and remove sulfur oxides. Usually, limestone or dolomite is used as the desulfurizing agent, and the desulfurizing agent after the absorption reaction is effectively used because it changes into gypsum. This method is mainly used in fluidized bed furnaces. (2) Flue gas desulfurization method: A method in which a contact tank (tower) for a desulfurizing agent and exhaust gas is provided in a part of the flue downstream of the furnace, and sulfur oxides in the exhaust gas are removed by absorption or adsorption. in this way,
The desulfurizing agent used depends on the type of desulfurization.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記炉
内脱硫法においては、脱硫剤として使用される石灰石や
ドロマイトの利用率が低い。例えば、常圧バブリング型
の流動層燃焼ボイラーにおいては90%以上の脱硫率を
得る場合、石灰石の利用率は15〜25%程度であり、
循環型流動層燃焼ボイラーにおいてはその利用率は25
〜35%といわれている。従って、燃料中に含まれる硫
黄分を完全に除去するには、これに対しモル比で3〜6
倍の脱硫剤の投入が必要であった。これは平均粒径20
0ミクロン程度の石灰石ではその表面でのみ脱硫が起こ
り粒子の内部まで反応しないため、未利用のCaが増え
てしまうためである。このような問題を解決するために
は、より粒子径が細かく利用可能な表面積の割合が多い
石灰石を用いることが考えられるが、石灰石を細かくす
ることは粉砕にかかるコストの増加を招き、また投入し
た石灰石粒子が細かすぎるとガス流れに同伴して炉外へ
排出されてしまいやはり利用率が低下してしまうという
問題があった。一方、低い利用率での脱硫剤の使用は、
流動層燃焼ボイラー,ガス化炉などの運用に際し、無駄
な脱硫剤の使用を余儀なくするばかりでなく、灰として
処理される残渣の排出量を増大させるという問題があ
る。我国における上記灰の排出量は近年増加の傾向にあ
り、その処理方法が社会的な問題となっており、灰の排
出量の低減は重要な技術的課題となっている。また、石
灰石やドロマイトは、それ自体重要な原材料資源であ
り、資源の有効利用という観点から見た場合、これに代
えて廃棄物などの代替品を利用することが望まれてい
る。本発明はこのような状況下でなされたものである。
すなわち、本発明は、炉内脱硫法において脱硫剤として
従来使用されている石灰石やドロマイトの代わりに生コ
ンクリートスラッジを使用することにより、脱硫効率
(脱硫剤の利用率)を向上することにある。また、本発
明の目的は炉内脱硫設備を有する燃焼ボイラー、ガス化
炉などからの灰の排出量を低減し、更に、石灰石,ドロ
マイト資源の有効利用を促進することを目的とするもの
である。
However, in the in-furnace desulfurization method, the utilization of limestone and dolomite used as desulfurizing agents is low. For example, when a desulfurization rate of 90% or more is obtained in a normal-pressure bubbling type fluidized bed combustion boiler, the utilization rate of limestone is about 15 to 25%.
In a circulating fluidized bed combustion boiler, the utilization factor is 25.
It is said to be ~ 35%. Therefore, in order to completely remove the sulfur contained in the fuel, a molar ratio of 3 to 6 is required.
It was necessary to double the amount of desulfurizing agent. It has an average particle size of 20
This is because in the case of limestone of about 0 μm, desulfurization occurs only on the surface of the limestone and does not react inside the particles, so that unused Ca increases. In order to solve such a problem, it is conceivable to use limestone having a smaller particle size and a larger percentage of available surface area.However, making the limestone finer increases the cost of pulverization, and If the limestone particles are too fine, they are discharged out of the furnace along with the gas flow, and there is a problem that the utilization rate is also lowered. On the other hand, the use of desulfurizing agents at low utilization rates
In operation of a fluidized bed combustion boiler, gasification furnace or the like, there is a problem that not only useless use of a desulfurizing agent but also increase in discharge of residues treated as ash are caused. The emission of the above ash in Japan has been increasing in recent years, and its disposal method has become a social problem, and reducing the emission of ash has become an important technical issue. In addition, limestone and dolomite are important raw material resources themselves, and it is desired to use alternatives such as waste instead of these from the viewpoint of effective use of resources. The present invention has been made under such circumstances.
That is, the present invention is to improve desulfurization efficiency (utilization rate of desulfurizing agent) by using ready-mixed concrete sludge instead of limestone and dolomite conventionally used as desulfurizing agents in a furnace desulfurization method. Another object of the present invention is to reduce the amount of ash emitted from a combustion boiler or gasifier having an in-furnace desulfurization facility, and to promote the effective use of limestone and dolomite resources. .

【0004】[0004]

【課題を解決するための手段】本発明者等は上記目的を
達成するために鋭意研究を重ねた結果、建築,土木業な
どで使用される生コンクリートの余剰分やコンクリート
ローリーの洗浄の際に生成する生コンクリートスラッジ
を流動層炉の脱硫剤として使用することにより、上記本
発明の目的が有効に達成されることを見出したものであ
る。本発明はこのような知見に基づいてなし遂げられた
ものである。すなわち、本発明は、常圧流動層燃焼ボイ
ラー,流動層ガス化炉または流動層部分ガス化炉の炉内
で発生するガス中の硫黄分を除去する脱硫方法であっ
て、炉内脱硫剤として生コンクリートスラッジを用いる
ことを特徴とする脱硫方法を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, have found that the excess of ready-mixed concrete used in construction, civil engineering, etc. It has been found that the object of the present invention is effectively achieved by using the produced ready-mixed concrete sludge as a desulfurizing agent for a fluidized bed furnace. The present invention has been accomplished based on such findings. That is, the present invention is a desulfurization method for removing sulfur content in a gas generated in a furnace of a normal pressure fluidized bed combustion boiler, a fluidized bed gasifier, or a fluidized bed partial gasifier, wherein the desulfurizing agent is used as a furnace desulfurizing agent. It is intended to provide a desulfurization method characterized by using ready-mixed concrete sludge.

【0005】[0005]

【発明の実施の形態】以下に、本発明を更に詳細に説明
する。本発明は、常圧流動層燃焼ボイラー,流動層ガス
化炉または流動層部分ガス化炉の炉内脱硫剤として生コ
ンクリートスラッジを用いることを特徴としている。生
コンクリートスラッジは、通常、生コンクリートの余剰
分やコンクリートローリーの洗浄の際に生成する生コン
クリートから砂,骨材を湿式篩分離することにより生成
することができる。また、上記のようにして得られたこ
のような生コンクリートスラッジは、スラリー状の物質
であるため、通常、シックナー等による沈殿・濃縮工程
などを経て粘土状の固形物である脱水スラッジケーキと
上澄み水に分離される。このような脱水スラッジケーキ
は、現在そのほとんどが産業廃棄物として処理されてい
るものであり、また、上澄み水もpH調整した後に廃棄
されているものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention is characterized in that ready-mixed concrete sludge is used as a desulfurizing agent in a normal pressure fluidized bed combustion boiler, a fluidized bed gasifier or a fluidized bed partial gasifier. Fresh concrete sludge can be usually produced by wet-sieving sand and aggregates from surplus of ready-mixed concrete and fresh concrete generated when washing concrete lorries. In addition, since such a ready-mixed concrete sludge obtained as described above is a slurry-like substance, it is usually subjected to a settling / concentration step using a thickener or the like, and a dewatered sludge cake, which is a clay-like solid substance, and a supernatant. Separated by water. Most of such dewatered sludge cakes are currently treated as industrial waste, and the supernatant water is also discarded after pH adjustment.

【0006】本発明においては、上記生コンクリートス
ラッジ,脱水スラッジケーキ及び上澄み水のいずれもが
脱硫剤として使用可能である。従って、本発明において
これらを列挙することなく「生コンクリートスラッジ」
という場合は、「生コンクリートスラッジ」それ自体の
みならず、上記「脱水スラッジケーキ」及び「上澄み
水」をも包含するものとする。このような生コンクリー
トスラッジ,脱水スラッジケーキ及び上澄み水には、い
ずれも脱硫効果を奏するCa(カルシウム)分が含まれ
ている。本発明の脱硫方法は、上記生コンクリートスラ
ッジを炉内脱硫剤として使用するものであるが、その方
法としては、例えば(イ)上記生コンクリートスラッ
ジ,脱水スラッジケーキ及び上澄み水の少なくとも一つ
を直接炉内に投入する方法、(ロ)これらを燃料に適量
混合した後炉内に投入する方法、又は(ハ)上記生コン
クリートスラッジ及び/又は脱水スラッジケーキを乾燥
固化して炉内に投入する方法、が挙げられる。これらの
方法のうち、好ましくは、砂,砂利の混入が少ないため
炉内の伝熱管の消耗や灰発生量が少なく、また、Ca含
有量が多いため共存する水の顕熱持ち出しが少なく炉の
熱効率に優れる脱水スラッジケーキを乾燥固化して投入
する方法が用いられる。
In the present invention, any of the above ready-mixed concrete sludge, dewatered sludge cake and supernatant water can be used as a desulfurizing agent. Therefore, in the present invention, "fresh concrete sludge" is used without listing these.
In this case, not only the “fresh concrete sludge” itself but also the “dewatered sludge cake” and “supernatant water” are included. Such fresh concrete sludge, dewatered sludge cake, and supernatant water all contain Ca (calcium), which has a desulfurizing effect. The desulfurization method of the present invention uses the above-mentioned fresh concrete sludge as a desulfurizing agent in a furnace. For example, (a) at least one of the above-mentioned fresh concrete sludge, dewatered sludge cake and supernatant water is directly used. (B) a method in which these are mixed with fuel in an appropriate amount and then charged into the furnace, or (c) a method in which the above-mentioned fresh concrete sludge and / or dewatered sludge cake is dried and solidified and then charged into the furnace. , And the like. Among these methods, it is preferable to reduce the consumption of heat transfer tubes and the amount of ash generated in the furnace due to less mixing of sand and gravel, and to reduce the amount of sensible heat taken out of coexisting water due to the high Ca content. A method is used in which a dewatered sludge cake excellent in thermal efficiency is dried, solidified, and charged.

【0007】本発明の脱硫方法においては、流動層炉内
に上記生コンクリートスラッジを、燃料中の硫黄分に対
する生コンクリートスラッジ中のCa分がモル比で1〜
3となるように投入し炉内で脱硫を行うことが好まし
い。上記モル比が1より低い場合は十分な反応が得られ
ず、また3より高い場合は高い反応率が得られるものの
残渣の発生量が増加し灰処理量が増えてしまう場合があ
る。本発明の脱硫方法は、上記生コンクリートスラッジ
を流動層炉の炉内脱硫剤として用いることを特徴として
いるが、本発明において用いられる流動層炉は、脱硫効
率の大幅な向上が図れる点から、常圧流動層燃焼ボイラ
ー,流動層ガス化炉または流動層部分ガス化炉への適用
が効果的である。ここで、上記常圧流動層燃焼ボイラー
とは、その炉内圧力が2気圧以下のものをいう。
[0007] In the desulfurization method of the present invention, the ready-mixed concrete sludge is placed in a fluidized-bed furnace, and the Ca content of the ready-mixed concrete sludge to the sulfur content of the fuel is 1 to 1 in molar ratio.
It is preferable to charge the mixture so as to be 3 and perform desulfurization in a furnace. When the molar ratio is lower than 1, a sufficient reaction cannot be obtained. When the molar ratio is higher than 3, a high reaction rate can be obtained, but the amount of generated residues increases and the ash processing amount may increase. The desulfurization method of the present invention is characterized in that the ready-mixed concrete sludge is used as an in-furnace desulfurizing agent of a fluidized-bed furnace.However, the fluidized-bed furnace used in the present invention can significantly improve desulfurization efficiency. The application to a normal pressure fluidized bed combustion boiler, fluidized bed gasifier or fluidized bed partial gasifier is effective. Here, the normal pressure fluidized bed combustion boiler means a boiler whose furnace pressure is 2 atm or less.

【0008】本発明の脱硫方法は、上記常圧流動層燃焼
ボイラー,流動層ガス化炉または流動層部分ガス化炉に
生コンクリートスラッジを投入して、炉内で発生するガ
ス中の硫黄分を除去するものであるが、RDF(refuse
derived fuel)や練炭,豆炭,バイオコールなどの加工
された固形燃料やCWM(coal water mixture) などの
疑似流体燃料などの、脱硫剤と燃料を予め混合して用い
るシステムでの利用においては、上記生コンクリートス
ラッジを燃料中に混合した後投入することが好ましい。
この場合、その混合比は前述のように燃料中の硫黄分に
対する生コンクリートスラッジ中のCa分がモル比で1
〜3となるような割合であることが好ましい。
[0008] In the desulfurization method of the present invention, the ready-mixed concrete sludge is charged into the above-mentioned normal pressure fluidized bed combustion boiler, fluidized bed gasifier or fluidized bed partial gasifier, and the sulfur content in the gas generated in the furnace is reduced. RDF (refuse
For use in systems that use a pre-mixing of a desulfurizing agent and fuel, such as derived fuel), processed solid fuel such as briquettes, soybean coal, and bio-coal, and pseudo-fluid fuel such as CWM (coal water mixture), It is preferable that the ready-mixed concrete sludge is mixed with the fuel and then charged.
In this case, the mixing ratio is such that the Ca content in the ready-mixed concrete sludge to the sulfur content in the fuel is 1 in molar ratio as described above.
It is preferable that the ratio be such as to be 3.

【0009】上記の方法において燃焼またはガス化され
る燃料種としては硫黄分を含有するものが本発明の目的
からみて有用であり、例えば、石炭,石油コークス,オ
イルサンド,ピート等の固体燃料、石炭に水あるいは油
などを混合した疑似流体燃料、重油,灯油,アルコール
混合物などの液体燃料、LPG,LNG,工場排ガスな
どの気体燃料、ゴミ,汚泥,プラスチック,スラッジ,
タイヤなどの廃棄物、又はこれらから選ばれる少なくと
も2種の混合物が使用される。本発明の脱硫方法におい
ては、上記常圧流動層燃焼ボイラー,流動層ガス化炉ま
たは流動層部分ガス化炉における燃焼及びガス化は好ま
しくは500〜2000℃の範囲内の温度で行われる
が、更に脱硫効率を上げるためには750〜1000℃
の温度で行うことが反応率を向上させる点から好まし
い。
As the fuel species to be burned or gasified in the above-mentioned method, those containing sulfur are useful for the purpose of the present invention. For example, solid fuels such as coal, petroleum coke, oil sand, peat, etc. Pseudo-fluid fuel obtained by mixing water or oil with coal, liquid fuel such as heavy oil, kerosene, alcohol mixture, gaseous fuel such as LPG, LNG, factory exhaust gas, garbage, sludge, plastic, sludge,
Wastes such as tires or a mixture of at least two kinds selected from these are used. In the desulfurization method of the present invention, the combustion and gasification in the normal pressure fluidized bed combustion boiler, fluidized bed gasifier or fluidized bed partial gasifier are preferably performed at a temperature in the range of 500 to 2000 ° C. In order to further increase the desulfurization efficiency, 750-1000 ° C
The temperature is preferably from the viewpoint of improving the reaction rate.

【0010】[0010]

【実施例】以下に、本発明を実施例に基いてさらに具体
的に説明する。 実施例1 第1表に示す性状を有する生コンクリートスラッジ
(1)を乾燥後、2mm以下に粉砕し燃料となる石炭
(硫黄分:0.74%)と混合した。石炭中の硫黄分に対
し生コンクリートスラッジ(1)中のCa分がモル比
(Ca/S)で0,1,2,3,4,5となる6種の混
合物を調製した。得られた混合物を図1に示す常圧循環
流動層燃焼炉で燃焼させ、燃焼炉出口のSOx濃度を分
析し以下の計算方法により脱硫率を求めた。結果を図2
に示す。尚、この際、図1に示す2次サイクロンならび
にバグフィルターで灰の補集を行い、単位時間当たりの
灰の排出量の測定を行った。測定結果を図3に示す。 脱硫率(%)=(a/b)×100 a=〔石炭単味(Ca/S=0)燃焼時のSOx排出濃
度〕−(SOx排出濃度) b=石炭単味(Ca/S=0)燃焼時のSOx排出濃度 尚、上記試験の燃焼条件は、燃焼温度:850℃、燃焼
圧力:1atm、空気比1.2、石炭:下記第2表に示す
性状を有するA炭、石灰石:秩父産石灰石、燃料投入速
度:4kg/hであった。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. Example 1 Fresh concrete sludge (1) having the properties shown in Table 1 was dried, pulverized to 2 mm or less, and mixed with coal (sulfur content: 0.74%) as a fuel. Six types of mixtures were prepared in which the Ca content in the ready-mixed concrete sludge (1) was 0, 1, 2, 3, 4, 5 in molar ratio (Ca / S) with respect to the sulfur content in coal. The obtained mixture was burned in the atmospheric pressure circulating fluidized bed combustion furnace shown in FIG. 1, the SOx concentration at the combustion furnace outlet was analyzed, and the desulfurization rate was calculated by the following calculation method. Figure 2 shows the results.
Shown in At this time, ash was collected by the secondary cyclone and the bag filter shown in FIG. 1, and the amount of ash discharged per unit time was measured. FIG. 3 shows the measurement results. Desulfurization rate (%) = (a / b) × 100 a = [SOx emission concentration when burning only coal (Ca / S = 0)] − (SOx emission concentration) b = Simple coal (Ca / S = 0) ) SOx emission concentration during combustion The combustion conditions in the above test were as follows: combustion temperature: 850 ° C, combustion pressure: 1 atm, air ratio: 1.2, coal: coal A having properties shown in Table 2 below, limestone: Chichibu Limestone produced, fuel input speed: 4 kg / h.

【0011】実施例2 第1表に示す性状を有する生コンクリートスラッジ
(2)を乾燥後、2mm以下に粉砕し燃料となる石炭
(硫黄分:0.74%)と混合した。石炭中の硫黄分に対
し生コンクリートスラッジ(2)中のCa分がモル比
(Ca/S)で0,1,2,3,4,5となる6種の混
合物を調製した。得られた混合物を図1に示す流動層炉
で燃焼させ、燃焼炉出口のSOx濃度を分析し脱硫率を
求めた。試験条件、脱硫率の計算は実施例1と同様に行
った。結果を図2に示す。また、単位時間当たりの灰の
排出量の測定を実施例1と同様にして行い、その測定結
果を図3に示す。
Example 2 Fresh concrete sludge (2) having the properties shown in Table 1 was dried, pulverized to 2 mm or less, and mixed with coal (sulfur content: 0.74%) as fuel. Six types of mixtures were prepared in which the Ca content in the ready-mixed concrete sludge (2) was 0, 1, 2, 3, 4, and 5 in molar ratio (Ca / S) with respect to the sulfur content in the coal. The obtained mixture was burned in the fluidized-bed furnace shown in FIG. 1, and the SOx concentration at the outlet of the furnace was analyzed to determine the desulfurization rate. The test conditions and the calculation of the desulfurization rate were performed in the same manner as in Example 1. The results are shown in FIG. The measurement of the amount of ash discharged per unit time was performed in the same manner as in Example 1, and the measurement results are shown in FIG.

【0012】実施例3 図1に示す装置で石炭のみを燃焼させた。試験条件は実
施例1に準拠した。定常状態に達した後、未乾燥の生コ
ンクリートスラッジ(1)をポンプで炉内にフィードし
た。生コンクリートスラッジ(1)のフィード量は生コ
ンクリートスラッジ中のCa分と石炭中のS分の比がモ
ル比で2となるように調節した。定常運転に達した後の
炉の出口SOx濃度を測定し、石炭のみの燃焼の際のS
Ox濃度と比較して実施例1と同様に脱硫率を求めたと
ころ、この時の脱硫率は88%であった。
Example 3 Only coal was burned by the apparatus shown in FIG. The test conditions were based on Example 1. After reaching the steady state, the wet ready-mixed concrete sludge (1) was fed into the furnace by a pump. The feed amount of the ready-mixed concrete sludge (1) was adjusted so that the ratio of the Ca content in the ready-mixed concrete sludge to the S content in the coal was 2 in molar ratio. The SOx concentration at the outlet of the furnace after the steady operation was reached was measured.
When the desulfurization rate was determined in the same manner as in Example 1 in comparison with the Ox concentration, the desulfurization rate at this time was 88%.

【0013】比較例1 石灰石を乾燥後、2mm以下に粉砕し燃料となる石炭
(硫黄分:0.74%)と混合した。石炭中の硫黄分に対
し石灰石中のCa分がモル比(Ca/S)で0,1,
2,3,4,5となる6種の混合物を調製した。得られ
た混合物を図1に示す流動層炉で燃焼させ、燃焼炉出口
のSOx濃度を分析し脱硫率を求めた。試験条件、脱硫
率の計算は実施例1と同様に行った。結果を図2に示
す。また、脱硫率と灰の排出量の関係を図3に示す。
Comparative Example 1 Limestone was dried, pulverized to 2 mm or less, and mixed with coal (sulfur content: 0.74%) as a fuel. The Ca content in limestone is 0,1, in molar ratio (Ca / S) to the sulfur content in coal.
Six kinds of mixtures of 2, 3, 4, and 5 were prepared. The obtained mixture was burned in the fluidized-bed furnace shown in FIG. 1, and the SOx concentration at the outlet of the furnace was analyzed to determine the desulfurization rate. The test conditions and the calculation of the desulfurization rate were performed in the same manner as in Example 1. The results are shown in FIG. FIG. 3 shows the relationship between the desulfurization rate and the amount of discharged ash.

【0014】比較例2 ドロマイトを乾燥後、2mm以下に粉砕し燃料となる石
炭(硫黄分:0.74%)と混合した。石炭中の硫黄分に
対しドロマイト中のCa分がモル比(Ca/S)で0,
1,2,3,4,5となる6種の混合物を調製した。得
られた混合物を図1に示す流動層炉で燃焼させ、燃焼炉
出口のSOx濃度を分析し脱硫率を求めた。試験条件、
脱硫率の計算は実施例1と同様に行った。結果を図2に
示す。また、脱硫率と灰の排出量の関係を図3に示す。
Comparative Example 2 Dolomite was dried, pulverized to 2 mm or less, and mixed with coal (sulfur content: 0.74%) as a fuel. The Ca content in dolomite is 0, in molar ratio (Ca / S) to the sulfur content in coal,
Six kinds of mixtures of 1, 2, 3, 4, and 5 were prepared. The obtained mixture was burned in the fluidized-bed furnace shown in FIG. 1, and the SOx concentration at the outlet of the furnace was analyzed to determine the desulfurization rate. Test conditions,
The desulfurization rate was calculated in the same manner as in Example 1. The results are shown in FIG. FIG. 3 shows the relationship between the desulfurization rate and the amount of discharged ash.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】図2、図3に示される上記実施例、比較例
の結果によれば、生コンクリートスラッジを用いた脱硫
剤として用いた本発明の脱硫方法による実施例1,2
は、脱硫剤として石灰石又はドロマイトを用いた比較例
1,2に比べ、低いCs/S比で著しく高い脱硫性能を
示し、また、高い脱硫率においても灰の排出量が著しく
低いことが分かる。
According to the results of the above Examples and Comparative Examples shown in FIGS. 2 and 3, Examples 1 and 2 according to the desulfurization method of the present invention using desulfurizing agent using fresh concrete sludge were used.
Shows a significantly higher desulfurization performance at a lower Cs / S ratio than Comparative Examples 1 and 2 using limestone or dolomite as a desulfurizing agent, and also shows that the ash emission is extremely low even at a high desulfurization rate.

【0018】[0018]

【発明の効果】以上のように、本発明の脱硫方法の如
く、炉内脱硫剤として生コンクリートスラッジを用いる
ことにより、常圧流動層燃焼ボイラー,流動層ガス化炉
または流動層部分ガス化炉の炉内脱硫効率を著しく向上
することができ、また、脱硫剤の使用量を低減でき、さ
らに流動層炉などからの灰の排出量を著しく低減でき
る。
As described above, as in the desulfurization method of the present invention, by using ready-mixed concrete sludge as a desulfurizing agent in a furnace, a normal pressure fluidized bed combustion boiler, a fluidized bed gasifier or a fluidized bed partial gasifier is used. Can significantly improve the in-furnace desulfurization efficiency, reduce the amount of desulfurizing agent used, and significantly reduce the amount of ash discharged from a fluidized bed furnace or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例において用いた循環流動層燃
焼評価装置の概略工程図。
FIG. 1 is a schematic process diagram of a circulating fluidized bed combustion evaluation device used in Examples and Comparative Examples.

【図2】実施例1,2及び比較例1,2のCa/Sと脱
硫率の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between Ca / S and desulfurization rate in Examples 1 and 2 and Comparative Examples 1 and 2.

【図3】実施例1,2及び比較例1,2の脱硫率と灰の
排出量との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between desulfurization rates and ash emissions in Examples 1 and 2 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 石炭・石灰石ホッパー 2 フィーダ 3 空気 4 予熱器 5 一次空気 6 分散版 7 スラリーホッパー 8 2次空気 9 燃焼炉 10 一次サイクロン 11 粒子排出器 12 二次サイクロン 13 ビン 14 ガスメータ 15 ガス分析計 16 バグフィルター 17 ブロワー DESCRIPTION OF SYMBOLS 1 Coal / limestone hopper 2 Feeder 3 Air 4 Preheater 5 Primary air 6 Dispersion plate 7 Slurry hopper 8 Secondary air 9 Combustion furnace 10 Primary cyclone 11 Particle discharger 12 Secondary cyclone 13 Bin 14 Gas meter 15 Gas analyzer 16 Bag filter 17 Blower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23C 11/02 304 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FIF23C 11/02 304

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 常圧流動層燃焼ボイラー,流動層ガス化
炉または流動層部分ガス化炉の炉内で発生するガス中の
硫黄分を除去する脱硫方法であって、炉内脱硫剤として
生コンクリートスラッジを用いることを特徴とする脱硫
方法。
1. A desulfurization method for removing a sulfur content in a gas generated in a furnace of an atmospheric pressure fluidized bed combustion boiler, a fluidized bed gasifier or a fluidized bed partial gasifier, wherein the sulfur is used as a desulfurizing agent in the furnace. A desulfurization method characterized by using concrete sludge.
【請求項2】 炉内温度750〜1000℃の常圧流動
層燃焼ボイラー,流動層ガス化炉または流動層部分ガス
化炉に、燃料中の硫黄分に対する生コンクリートスラッ
ジ中のCa分がモル比で1〜3である生コンクリートス
ラッジを投入し、炉内で発生するガス中の硫黄分を除去
する脱硫方法。
2. In a normal-pressure fluidized-bed combustion boiler, fluidized-bed gasifier or fluidized-bed partial gasifier having a furnace temperature of 750 to 1000 ° C., the molar ratio of Ca in the ready-mixed concrete sludge to sulfur in the fuel is changed. A desulfurization method in which ready-mixed concrete sludge of 1 to 3 is added to remove sulfur content in gas generated in the furnace.
【請求項3】 炉内温度750〜1000℃の常圧流動
層燃焼ボイラー,流動層ガス化炉または流動層部分ガス
化炉に、燃料中の硫黄分に対する生コンクリートスラッ
ジ中のCa分がモル比で1〜3である生コンクリートス
ラッジを燃料中に混合して投入し、炉内で発生するガス
中の硫黄分を除去する脱硫方法。
3. A normal pressure fluidized bed combustion boiler, a fluidized bed gasifier or a fluidized bed partial gasifier having a furnace temperature of 750 to 1000 ° C. has a molar ratio of Ca in the ready-mixed concrete sludge to sulfur in the fuel. A desulfurization method in which ready-mixed concrete sludge as described in 1 to 3 above is mixed into a fuel and charged to remove sulfur content in gas generated in the furnace.
JP07691997A 1997-03-28 1997-03-28 Fluidized bed furnace exhaust gas desulfurization method Expired - Fee Related JP3384435B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07691997A JP3384435B2 (en) 1997-03-28 1997-03-28 Fluidized bed furnace exhaust gas desulfurization method
CNB981088260A CN1140321C (en) 1997-03-28 1998-03-28 Method for desulfurizing flue gas of fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07691997A JP3384435B2 (en) 1997-03-28 1997-03-28 Fluidized bed furnace exhaust gas desulfurization method

Publications (2)

Publication Number Publication Date
JPH10267221A true JPH10267221A (en) 1998-10-09
JP3384435B2 JP3384435B2 (en) 2003-03-10

Family

ID=13619117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07691997A Expired - Fee Related JP3384435B2 (en) 1997-03-28 1997-03-28 Fluidized bed furnace exhaust gas desulfurization method

Country Status (2)

Country Link
JP (1) JP3384435B2 (en)
CN (1) CN1140321C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108688A (en) * 2002-09-19 2004-04-08 Hitachi Zosen Corp Combustion method for waste containing organic phosphorus compound as main substance and its device
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment
JP2010236848A (en) * 2009-03-11 2010-10-21 Sumitomo Heavy Ind Ltd Combustion equipment
JP2016118325A (en) * 2014-12-19 2016-06-30 Jfeスチール株式会社 Treatment for reducing molecular weight of organic substance, and waste treatment method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625265B2 (en) * 2003-09-05 2011-02-02 出光興産株式会社 Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
JP5309745B2 (en) * 2008-07-15 2013-10-09 株式会社Ihi Method and apparatus for controlling bed height of fluidized bed gasifier in gasification facility
CN101797468B (en) * 2010-04-20 2012-06-27 杭州恩内泽科技有限公司 Method for desulfurating coal slime fluidized bed boiler by utilizing papermaking white mud and black liquor
CN101838574B (en) * 2010-05-13 2012-11-14 宜宾市蓝洁环保技术服务有限公司 Desulfuration agent and preparation method and application thereof
CN105327613B (en) * 2015-10-27 2017-09-29 西安建筑科技大学 A kind of desulfurizing agent and its application
CN108485750A (en) * 2018-03-30 2018-09-04 毕节双山开发区磐石建材有限公司 A kind of desulfurizing agent and preparation method thereof prepared as raw material using waste limestone powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108688A (en) * 2002-09-19 2004-04-08 Hitachi Zosen Corp Combustion method for waste containing organic phosphorus compound as main substance and its device
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment
JP2010236848A (en) * 2009-03-11 2010-10-21 Sumitomo Heavy Ind Ltd Combustion equipment
JP2016118325A (en) * 2014-12-19 2016-06-30 Jfeスチール株式会社 Treatment for reducing molecular weight of organic substance, and waste treatment method

Also Published As

Publication number Publication date
CN1140321C (en) 2004-03-03
JP3384435B2 (en) 2003-03-10
CN1224633A (en) 1999-08-04

Similar Documents

Publication Publication Date Title
KR101073780B1 (en) An apparatus for beneficiation of low ranking coal, and a method for beneficiation of low ranking coal by utilizing the bed ash from fluidized-bed combustor for using in the circulating fluidized-bed power plant
US5002741A (en) Method for SOX /NOX pollution control
JP4625265B2 (en) Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
CN105169943A (en) Integrated system for coke oven flue gas desulfurization and denitrification and waste heat recovery
JP3384435B2 (en) Fluidized bed furnace exhaust gas desulfurization method
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
Yan et al. An experimental study on the feasibility of in-situ desulfurization performance in a CFB combustor co-burning red mud and coal
EP0021558A1 (en) Method and apparatus for removing sulfur dioxide from gas
JPH0615297A (en) Dehydrating, drying and incinerating system for sludge
CN103776037A (en) High-concentration organic waste innocent treatment system and process
JP4215921B2 (en) Circulating fluidized bed boiler system and operating method thereof
JP2010008040A (en) Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
CN206232427U (en) The system of coke powder Treatment of Wastewater in Coking parallel connection producing steam
CA1261812A (en) Process for concentrating waste products arising during the manufacture of carbon electrodes, and an appropriate absorbent for this purpose
KR100387732B1 (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite
CN111514715A (en) In-furnace desulfurization method for circulating fluidized bed boiler
Takeda et al. Sewage sludge melting process by coke-bed furnace: System development and application
CN104531225B (en) Multielement duplex gas generating system
JP2000130742A (en) Combustion method, combustion system and cement manufacturing system
JP4957371B2 (en) Method for removing sulfur in fluidized bed combustor
KR20140016840A (en) Method for removing sulphur component in pulverized coal combustion apparatus, and desulphurizing agent
CN107083259A (en) Gas preparation method, the use system and combustion gas application method of combustion gas
CN217109537U (en) Solid waste circulation system suitable for high-ash-content fuel coal gasification power generation
Ivanovich et al. The Use of by-product Coal as Fuel on Boiler Plants of Small and Medium Power
CN106365241A (en) System for treating coke wastewater through coke powder and cogenerating steam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees