JPS5833876A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5833876A
JPS5833876A JP13318181A JP13318181A JPS5833876A JP S5833876 A JPS5833876 A JP S5833876A JP 13318181 A JP13318181 A JP 13318181A JP 13318181 A JP13318181 A JP 13318181A JP S5833876 A JPS5833876 A JP S5833876A
Authority
JP
Japan
Prior art keywords
schottky
region
junction
epitaxial layer
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13318181A
Other languages
Japanese (ja)
Inventor
Kaoru Nakagawa
中川 薫
Bunshiro Yamaki
八巻 文史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13318181A priority Critical patent/JPS5833876A/en
Publication of JPS5833876A publication Critical patent/JPS5833876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the overlay capacity of a bump electrode by forming an impurity region of the second conductive type formed to be disposed outside the end of a Schottky coupling at the inside end. CONSTITUTION:A P type region 33 is formed in an N type epitaxial layer 32 over the outside of the end of a bump electrode 36 from the outside of the end (a) of a Schottky junction 38. Accordingly, in this case, the capacity CPN of a P-N junction 39 between the region 33 and the layer 32 and an overlay capacity C0 becomes in series connection state, and the overlay capacity of a pellet 3 becomes smaller than the conventional overlay capacity. The manufacturing method includes the steps of growing an epitaxial layer 32 on a substrate 31, and frming a P type region 33 of, for example, ring shape over the outside of the end of a region to be formed with a bump electrode 36 from the outside from the end of the region to be formed with the junction 38 in the layer 32. Then, an nsulting film 34 is formed on the surface, a Schottky junction hole is formed at the film 34 by a photoengraving process, Schottky metal is bonded to the hole, and is etched in the prescribed shape.

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特にショットキ・バリヤ
・ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and more particularly to Schottky barrier diodes.

従来、ショットキ・バリヤ・ダイオードは例えば第1図
に示すような構造となっている。同図において、11は
N+型半導体(シリコン)基体、12はN型エピタキシ
ャル層、13は電極、16はオーミックコンタクト層で
ある。
Conventionally, a Schottky barrier diode has a structure as shown in FIG. 1, for example. In the figure, 11 is an N+ type semiconductor (silicon) substrate, 12 is an N-type epitaxial layer, 13 is an electrode, and 16 is an ohmic contact layer.

ところで、一般に、ショットキ・バリヤ・ダイオードは
小容量、低順方向電圧降下とスイ。
By the way, Schottky barrier diodes generally have small capacitance, low forward voltage drop, and high speed.

チング応答速度の速いことが要求される。このうち、低
順方向電圧降下とスイッチング応答速度はショットキ接
合であるため、適当な金属を選ぶことKより実現される
。しかしながら、このショットキ・バリヤ・ダイオード
の4レツトLを第2図に示すJEDEC(日本工業規格
)番号Do−35のようなガラス封止型の外囲器主に組
込むと全体の容i Cvを小さくすることが難しくなる
。以下、この点につき考察する。この場合、容量cyは
(し、ト工の容量CPと外囲器主のケース容量Ccとの
和と考えることができ、(し、ト工の容量CPはショッ
トキ接合17の容量CJと、バンプ電極150シ、、ト
キ接合17よシ外側にはみ出した部分と絶縁膜3を介し
てその真下のN型エピタキシャル層12との間のオーバ
レイ容量Coとの和と考えることができる。
A fast switching response speed is required. Among these, since the Schottky junction has low forward voltage drop and switching response speed, it can be achieved by selecting an appropriate metal. However, if the 4lets L of this Schottky barrier diode are mainly incorporated into a glass-sealed envelope such as JEDEC (Japanese Industrial Standards) No. Do-35 shown in Fig. 2, the overall capacitance iCv will be reduced. becomes difficult to do. This point will be discussed below. In this case, the capacitance cy can be considered to be the sum of the capacitance CP of the capacitor and the case capacitance Cc of the main envelope, and the capacitance CP of the capacitor is the capacitance CJ of the Schottky junction 17 and the bump It can be considered as the sum of the overlay capacitance Co between the electrode 150 and the portion protruding outward from the contact junction 17 and the N-type epitaxial layer 12 directly below it via the insulating film 3.

す危わち、Cy = CJ + Co + C(と表わ
せられる。
This can be expressed as Cy = CJ + Co + C.

経験的に、Do−35型の外囲器で第2図のような構造
を持つもののケース容量CcはJEDECTo−92の
エポキシ樹脂封止のケース容量と比較して大きい。また
、ショットキ・バリヤ・ダイオードの無印加電圧時の要
求される容量は、通常G (1,0νFである。従って
、小容量CTを実現させるためKは、このケース容量C
Cを減らすのが最も効果的である。
Empirically, the case capacitance Cc of a Do-35 type envelope having a structure as shown in FIG. 2 is larger than that of the JEDECT To-92 case sealed with epoxy resin. In addition, the required capacitance of a Schottky barrier diode when no voltage is applied is usually G (1.0 νF. Therefore, in order to realize a small capacitance CT, K is the case capacitance C
It is most effective to reduce C.

しかしながら、現在、DC−35の外囲器lはがラスダ
イオードの主流であるため、上記ペレ、トzicはこの
部品を共通部品とせざるを得ない。このため、従来、残
りのショットキ接合容量CJ又はバンブ電極16のオー
バレイ容量Coを減らす方法が要望されていた。
However, at present, the DC-35 envelope l is the main type of laser diode, so the above-mentioned Pele and Tozic have no choice but to use this part as a common part. For this reason, there has conventionally been a need for a method of reducing the remaining Schottky junction capacitance CJ or the overlay capacitance Co of the bump electrode 16.

この発明は上記実情に鑑みてなされたもので、その目的
は、バンブ電極のもつオーバレイ容量Coを小さくでき
、従って小容量Ctを実現できる半導体装置を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor device in which the overlay capacitance Co of the bump electrode can be reduced, and therefore a small capacitance Ct can be realized.

以下、図面を参照してこの発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図において、31はr型半導体(シリコン)基体、
32はN型エピタキシャル層、33はP型領域、34は
絶縁膜、35はこの絶縁膜S4の開孔部に設けられたシ
ョットキ金属、36はこのショットキ金属35を覆うよ
うに設けられたバンブ電極、37はオーミックコンタク
ト層である。
In FIG. 3, 31 is an r-type semiconductor (silicon) base;
32 is an N-type epitaxial layer, 33 is a P-type region, 34 is an insulating film, 35 is a Schottky metal provided in the opening of this insulating film S4, and 36 is a bump electrode provided to cover this Schottky metal 35. , 37 are ohmic contact layers.

ここで、バンブ電極36は通常その高さがh〉50 μ
m必要とされており、通電めっき法によれば第4図に示
すようにショットキ接合38の端部(図に■で示す)よ
り横方向外側にも50μm成長するため、オーバレイ容
量C。
Here, the height of the bump electrode 36 is usually h>50μ.
According to the current plating method, as shown in FIG. 4, the overlay capacitance C grows 50 μm laterally outward from the end of the Schottky junction 38 (indicated by ■ in the figure).

はショットキ接合38の端部■からこの距離(50μm
)までの金属(バンブ電極36)が対向電極としてなり
横方向の成長が大きい程オー・々レイ容量Coが大きく
なる。
is this distance (50 μm) from the end ■ of the Schottky junction 38
) up to (bump electrode 36) serves as a counter electrode, and the larger the lateral growth, the larger the overlay capacitance Co becomes.

しかして、このショットキ・バリヤ・ダイオードにおい
ては、ショットキ接合38の端部■の外側から、バンブ
電極36の端部(図に■で示す)の外側にわたってN型
エシタキシャル層32内にP属領域33が設けられてい
る。従って、この場合P型領域33とN型エピタキシャ
ル層32との間のP−N接合39による容量CP)lと
前記オーバレイ容量COとが直列接続された状態となシ
、(し、ト互のオー・々レイ容量Co′は、従来のオー
バレイ容量Coより小さくなる。一方、ショットキ接合
38の容量CJは従来と同じである丸め、全体の容量C
Tは小さくなる。
Therefore, in this Schottky barrier diode, a P region 33 is formed in the N-type epitaxial layer 32 from the outside of the end ■ of the Schottky junction 38 to the outside of the end of the bump electrode 36 (indicated by ■ in the figure). is provided. Therefore, in this case, the capacitance CP)l due to the P-N junction 39 between the P-type region 33 and the N-type epitaxial layer 32 and the overlay capacitance CO are connected in series. The overlay capacitance Co' is smaller than the conventional overlay capacitance Co. On the other hand, the capacitance CJ of the Schottky junction 38 is the same as the conventional one.
T becomes smaller.

次に1第3図を参照して上記シ11ツ)キ・ノ々リヤ・
ダイオードの製造方法を説明する。まず、N+型半導体
基体31にN型エピタキシャル層32を成長させ、この
エピタキシャル層32に、ショットキ接合38の形成予
定領域の端部より〜外側から、バンブ電極36の形成予
定領域の端部の外側にわたって例えばリング状のP型領
域3.3を形成する。しかる後、表面に絶縁膜34を形
成し、PEP (Photo Engraving P
roc@ms )によりこの絶縁膜34にショットキ接
合用の開孔を形成する。次に、との開孔部に所望のショ
ットキ金属35を蒸着あるいはツノ9ツタリング等によ
り付着し、PEPにより所定の形状にエツチングする。
Next, with reference to Figure 1, the above 11)
A method of manufacturing a diode will be explained. First, an N-type epitaxial layer 32 is grown on an N+-type semiconductor substrate 31, and the epitaxial layer 32 is coated from outside the end of the region where the Schottky junction 38 is planned to be formed, to the outside of the end of the region where the bump electrode 36 is planned to be formed. For example, a ring-shaped P-type region 3.3 is formed over the entire region. After that, an insulating film 34 is formed on the surface, and PEP (Photo Engraving P
An opening for a Schottky junction is formed in this insulating film 34 using a method (roc@ms). Next, a desired Schottky metal 35 is attached to the opening by vapor deposition or tucking, and then etched into a predetermined shape using PEP.

そして、このショットキ金属35を覆うように通電めっ
き法によシ・9ング電極36を形成する。一方、基体3
1の裏面には蒸着、め−)き等によりオーミックコンタ
クト層31を形成する。
Then, a cutting electrode 36 is formed by electroplating so as to cover this Schottky metal 35. On the other hand, the base 3
An ohmic contact layer 31 is formed on the back surface of 1 by vapor deposition, plating, or the like.

尚、上記実施例においては、P属領域33の外側端部の
位置をバンブ電極36の端部■より外側としたが、この
位置は・ヤング電極36の中心とその端部■との距離の
70Is位までの位置であれば前述の効果は得られると
考えられる。
In the above embodiment, the position of the outer end of the P region 33 was set outside of the end (2) of the bump electrode 36, but this position was determined by the distance between the center of the young electrode 36 and the end (2) It is thought that the above-mentioned effect can be obtained at a position up to about 70 Is.

以上のようにこの発明によれば、シ、ットキ接合の端部
から外儒にわたってエピタキシャル層内に該エピタキシ
ャル層と反対導電型の不純物でき、従って全体のオーバ
レイ容量を小さくできるため、小容量の半導体装置を実
現できる。
As described above, according to the present invention, an impurity of the conductivity type opposite to that of the epitaxial layer can be formed in the epitaxial layer from the end of the junction to the outside, and therefore the overall overlay capacitance can be reduced. The device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシ1.トキ・バリヤ・ダイオードの素子
構造を示す断面図、第2図はこのダイオードをガラス封
止型外囲器に組み込んだ場合の断面図、第3図はこの発
明の一実施例に係るショットキ・バリヤ・ダイオードの
断面図、第4図は第3図の部分拡大図である。 31・・・N+型半導体基体、32・・・N型エピタキ
シャル層、33・・・P型領域、J4−・・絶縁膜、3
6・・・ショットキ金属、36・・・バンプ電極、38
・・・シ、、トキ接合、39・・・PN接合。 出願人代理人  弁理士 鈴 江 武 彦第1図 (16 第2図 第3図 5
Figure 1 shows the conventional system 1. A cross-sectional view showing the element structure of a Schottky barrier diode, FIG. 2 is a cross-sectional view of this diode assembled into a glass-sealed envelope, and FIG. 3 is a Schottky barrier according to an embodiment of the present invention.・A cross-sectional view of the diode, FIG. 4 is a partially enlarged view of FIG. 3. 31...N+ type semiconductor substrate, 32...N type epitaxial layer, 33...P type region, J4-...insulating film, 3
6...Schottky metal, 36...bump electrode, 38
...Si, Toki junction, 39...PN junction. Applicant's agent Patent attorney Takehiko Suzue Figure 1 (16 Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 い)第一導電型半導体基体と、この半導体基体上に形成
された第一導電型のエピタキシャル層と、開口部を有し
前記エピタキシャル層上に形成された絶縁膜と、この絶
縁膜の開口部を介して前記エピタキシャル層とシ1!1
ットキ接合を形成するショットキ金属と、このショット
キ金属を覆うように形成されたノ々ンデ電極と、前記エ
ピタキシャル層内において、内側端部が前記ショットキ
結合の端部より外側に位置するように形成された第2導
電型の不純物領域とを具備し九ことを%徴とする半導体
装置。 (2)前記不純物領域の外側端部が、前記シ。 、トキ接合の中心から前記ノ々ング電極の中心と該パン
ダ電極の端部との距離の70−の位置より外側に位置し
ている特許請求の範囲第1項記載の半導体装置。
[Scope of Claims] b) a first conductivity type semiconductor substrate, a first conductivity type epitaxial layer formed on the semiconductor substrate, an insulating film having an opening and formed on the epitaxial layer, The epitaxial layer 1!1 is connected to the epitaxial layer through the opening of this insulating film.
a Schottky metal forming a Schottky junction, a non-contact electrode formed to cover the Schottky metal, and an inner end located outside the end of the Schottky bond in the epitaxial layer. 1. A semiconductor device comprising: a second conductivity type impurity region; (2) The outer end of the impurity region is located at the outer end of the impurity region. , the semiconductor device according to claim 1, wherein the semiconductor device is located outside a position of 70- of a distance from the center of the toki junction to the center of the expanding electrode and the end of the expanding electrode.
JP13318181A 1981-08-25 1981-08-25 Semiconductor device Pending JPS5833876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318181A JPS5833876A (en) 1981-08-25 1981-08-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318181A JPS5833876A (en) 1981-08-25 1981-08-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5833876A true JPS5833876A (en) 1983-02-28

Family

ID=15098571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318181A Pending JPS5833876A (en) 1981-08-25 1981-08-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5833876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418185A (en) * 1993-01-21 1995-05-23 Texas Instruments Incorporated Method of making schottky diode with guard ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120774A (en) * 1976-04-05 1977-10-11 Nec Corp Semiconductor device
JPS55151359A (en) * 1979-05-16 1980-11-25 Semiconductor Res Found Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120774A (en) * 1976-04-05 1977-10-11 Nec Corp Semiconductor device
JPS55151359A (en) * 1979-05-16 1980-11-25 Semiconductor Res Found Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418185A (en) * 1993-01-21 1995-05-23 Texas Instruments Incorporated Method of making schottky diode with guard ring
US5539237A (en) * 1993-01-21 1996-07-23 Texas Instruments Incorporated Schottky diode with guard ring

Similar Documents

Publication Publication Date Title
JP2008227495A (en) High-efficiency rectifier
JP2005537679A (en) Quasi-vertical power semiconductor device on composite substrate
JPS5833876A (en) Semiconductor device
JP2015029099A (en) Gallium nitride-based diode and method for manufacturing the same
JPH01253270A (en) Semiconductor device
US20060076639A1 (en) Schottky diodes and methods of making the same
US3267338A (en) Integrated circuit process and structure
JPH03185870A (en) Semiconductor device
US11271117B2 (en) Stacked high-blocking III-V power semiconductor diode
JP3144527B2 (en) Method for manufacturing semiconductor device having high concentration pn junction surface
JPS613469A (en) Bi-directional zener diode
JP2817307B2 (en) Semiconductor protection element
JPH0622998Y2 (en) Semiconductor device
JPS6126267A (en) Bidirectional zener diode
JP2007227711A (en) Semiconductor resistive element, and module having this semiconductor resistive element
JP3823826B2 (en) Manufacturing method of semiconductor device
JP2993084B2 (en) Voltage standard diode
JP4066886B2 (en) Semiconductor device having Schottky barrier and manufacturing method thereof
JPH0526745Y2 (en)
US6551911B1 (en) Method for producing Schottky diodes and Schottky diodes
JPS62229974A (en) Schottky diode and manufacture thereof
JPS5992575A (en) Schottky barrier diode in semiconductor integrated circuit device
JPH10117002A (en) Schottky barrier semiconductor device and its manufacturing method
JPH02253659A (en) Semiconductor device
JPH01227473A (en) Schottky barrier semiconductor device