JPS5833287B2 - Gutter for molten metal - Google Patents

Gutter for molten metal

Info

Publication number
JPS5833287B2
JPS5833287B2 JP54164749A JP16474979A JPS5833287B2 JP S5833287 B2 JPS5833287 B2 JP S5833287B2 JP 54164749 A JP54164749 A JP 54164749A JP 16474979 A JP16474979 A JP 16474979A JP S5833287 B2 JPS5833287 B2 JP S5833287B2
Authority
JP
Japan
Prior art keywords
gutter
molten metal
refractory
lining material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164749A
Other languages
Japanese (ja)
Other versions
JPS5687612A (en
Inventor
和輝 青山
健美 川口
竹弘 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Rutsubo KK
Original Assignee
Nippon Steel Corp
Nippon Rutsubo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Rutsubo KK filed Critical Nippon Steel Corp
Priority to JP54164749A priority Critical patent/JPS5833287B2/en
Publication of JPS5687612A publication Critical patent/JPS5687612A/en
Publication of JPS5833287B2 publication Critical patent/JPS5833287B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高炉出銑樋等の溶融金属用樋に関する。[Detailed description of the invention] The present invention relates to a molten metal gutter such as a blast furnace tap gutter.

近年の大型高炉操業は厖大なる粗鋼生産能力を有してい
る事と同時に生産に係る副資材消耗原単位が比較的小さ
くて経済的である事から、今日の著しい発展と戒ってい
る。
In recent years, large-scale blast furnace operations are expected to make significant progress today because they have a huge crude steel production capacity and are economical as the consumption of auxiliary materials related to production is relatively small.

然し、昨今の省エネルギー、省資源の呼びかけから更に
副資材消耗量の低減に対する要求が大きい。
However, with recent calls for energy and resource conservation, there is a growing demand for further reductions in the consumption of secondary materials.

上記、副資材の1つに耐火材料があり高炉操業において
は出銑樋材の占める割合が非常に大きい事は周知の通り
である。
It is well known that one of the above-mentioned auxiliary materials is a refractory material, and that the tap trough material occupies a very large proportion in blast furnace operation.

高炉出銑樋における耐火ライニング材の溶損状況は大樋
、中樋、ノロ樋等によってそれぞれ特徴を異にしている
が、就中大樋では溶銑温度が高い上にスラグも多量に含
んでいるので、その溶損は著しい。
The corrosion damage of the refractory lining material in the blast furnace tap trough differs depending on whether it is a large trough, a middle trough, a slag trough, etc., but in the middle trough, the temperature of the hot metal is high and it also contains a large amount of slag. Its erosion is significant.

使用後の大樋ライニング材の溶損断面は第1図の如きパ
ターンが一般的、である(図においてAは使用後の溶損
〜線、Bはスラグライン部を示す)。
The cross section of the gutter lining material after use generally has a pattern as shown in FIG. 1 (in the figure, A indicates the line showing the melt loss after use, and B indicates the slag line).

即ち溶損はほぼ上下2段で著しいが、上段は主にスラグ
によって、下段は主に溶銑によって起こると考えられて
いる。
That is, the melting loss is significant in the upper and lower stages, and it is thought that the upper stage is mainly caused by slag, and the lower stage is mainly caused by hot metal.

上記の如き溶損に対処すべく研究開発は日進月歩絶ゆま
さる所であるが、その主流はライニング材自身の耐食性
向上研究と施工方法の改善開発である。
Research and development to deal with the above-mentioned corrosion damage is progressing at an ever-increasing rate, but the main focus is on improving the corrosion resistance of the lining material itself and developing improved construction methods.

然し乍らこれらの研究開発は、一つには経済的要請から
耐火材厚単価をあまり上昇出来ない事と、今一つには炉
前補修を短時間でせねばならず施工精度にバラツキを生
じて所望の効果が得られないことから、現状の樋構造で
は高性能耐火材を使用し得なかった。
However, these research and developments have been difficult due to economic reasons, which prevents the unit price of refractory material from increasing much, and secondly, the furnace front has to be repaired in a short period of time, which causes variations in construction accuracy and makes it difficult to achieve the desired results. High-performance fireproofing materials could not be used in the current gutter structure because they were not effective.

なお出銑樋に水冷却構造が使用されていないのは、高温
溶銑の通過する樋に水を使用すると、もし漏水があり水
が溶銑にまき込まれた場合爆発の危険性があるためであ
る。
The reason why a water cooling structure is not used in the tap trough is because if water is used in the trough through which high-temperature hot metal passes, there is a risk of explosion if there is a leak and the water gets mixed into the molten pig iron. .

本発明は、かかる欠点を解消し、溶融金属流路を形成す
るワーキング・ライニング材の溶損速度を低減せしめ、
樋の耐久性向上、耐火材の節減、並びに安全、安定操業
を目的としてなされたものである。
The present invention eliminates such drawbacks, reduces the erosion rate of the working lining material forming the molten metal flow path, and
This was done to improve the durability of gutters, reduce the need for fireproof materials, and ensure safe and stable operations.

即ち本発明は溶融金属流路を形成するワーキング・ライ
ニング不定形耐火物と外鉄皮との間の一部又は全面に、
冷却用配管を内蔵した高熱伝導性耐火レンガを配設した
ことを特徴とする溶融金属用樋を要旨とするものである
That is, the present invention provides for a part or the entire surface between the working lining monolithic refractory that forms the molten metal flow path and the outer shell,
The gist of this invention is a gutter for molten metal that is characterized by being equipped with highly thermally conductive refractory bricks with built-in cooling piping.

以下本発明を実施例に基づき説明する。The present invention will be explained below based on examples.

まず、本発明者らは実験室的にあるいは実炉テスト的に
得た多数の資料をもとに、種々の高温溶融体による耐火
材の損耗現象を解析した結果、所定の熱間結合強度以上
を有する耐火材、つまり単純な流体摩耗に耐性のある耐
火材に関しては、損耗機構の最も重要な律速段階は温度
であるとの結論に達した。
First, the present inventors analyzed the wear and tear phenomena of refractory materials caused by various high-temperature melts based on a large number of materials obtained in the laboratory and in actual furnace tests. It was concluded that for refractories with , that is, refractories resistant to simple fluid wear, the most important rate-limiting step in the wear mechanism is temperature.

例えば、高温になれば耐火材構成物質は流路内溶融体へ
の溶解度が増したり、それ自身が液化したりして溶出す
る。
For example, when the temperature rises, the refractory material constituent substances increase their solubility in the molten material in the channel, or they themselves liquefy and elute.

又、反応速度や反応量が増加して低融点化合物を生成す
る。
In addition, the reaction rate and reaction amount increase to produce a low melting point compound.

又、耐火材内部への溶融物の浸透を助長し、反応生成物
を構成して構造的スポーリングを惹起する、等々の現象
はすべて温度律速である。
Further, phenomena such as promoting penetration of the melt into the interior of the refractory material, forming reaction products and causing structural spalling, etc., are all temperature-limited.

従って何らかの手段で外部から耐火材を冷却せしめるこ
とによって、その損耗速度を遅延させ更に停止させる事
が※可能であるとの確信を得た。
Therefore, we are confident that by cooling the refractory material from the outside by some means, it is possible to slow down and even stop its wear and tear.

本発明はかかる知見に基づき種々研究の結果完成したも
のであり、以下第2〜5図に示した高炉出銑大樋への実
施例に基づき説明する。
The present invention was completed as a result of various studies based on this knowledge, and will be explained below based on an embodiment of the blast furnace tapping trough shown in FIGS. 2 to 5.

第2図a、bは本発明の一実施例を示す正面図及び斜視
図である。
FIGS. 2a and 2b are a front view and a perspective view showing an embodiment of the present invention.

図中1は溶融金属の流路となるワーキング・ライニング
材でスタンプ材、吹付材、流動鋳込材あるいは振動成形
材等不定形耐火物で構成され、流路として耐用性のある
合目的なライニング材であればいずれでも良く、又これ
らが比較的熱伝導率が高い材質(例えば、5kcal/
m、hr−℃以上)であれば、本発明が主張する冷却効
果の発現を助長するので好ましい。
In the figure, 1 is a working lining material that serves as a flow path for molten metal, and is made of a monolithic refractory material such as stamping material, sprayed material, flow casting material, or vibration molding material, and is a purpose-built lining that is durable as a flow path. Any material may be used as long as it is a material with relatively high thermal conductivity (for example, 5 kcal/
m, hr-°C or higher) is preferable because it facilitates the expression of the cooling effect claimed by the present invention.

出銑樋としてのワーキング・ライニング材の材質例を第
1表に示す。
Table 1 shows examples of materials for working lining materials for tap troughs.

2は冷却用耐火構造体で、空気、蒸気、水等の冷却用熱
媒体配管3を高熱伝導性耐火材4で鋳ぐるんだレンガ構
造体である。
Reference numeral 2 denotes a cooling fireproof structure, which is a brick structure in which a heat medium pipe 3 for cooling such as air, steam, water, etc. is surrounded by a highly thermally conductive fireproof material 4.

この耐火材4を高熱伝導性とするのは、この材料が十分
なる冷却機能を発揮する必要性の他、万一操業中に起こ
るかも知れない前記ワーキング・ライニング材1の異常
本損傷に対処すべきセイフテイー・ライニング材として
の使命をも果たさんが為である。
The reason why this refractory material 4 is made to have high thermal conductivity is that it not only needs to exhibit sufficient cooling function, but also to deal with abnormal damage to the working lining material 1 that may occur during operation. This is because it fulfills its mission as a safety lining material.

従ってこの耐火材4はセイフテイー・ライニング材とし
て耐用性がある事と、少なくとも10 kca# 7m
−h r −degC以上の熱伝導率を有している事が
特に望ましく、その材質例を第2表に示した。
Therefore, this refractory material 4 must be durable as a safety lining material and must be at least 10 kca# 7m.
It is particularly desirable that the material has a thermal conductivity of -hr -degC or more, and examples of such materials are shown in Table 2.

5は従来のセイフテイー・ライニング材で主にカーボン
質レンガを用いる。
5 is a conventional safety lining material that mainly uses carbon bricks.

6は通常のシャモツト質やアルミナ質等の耐火材を敷設
し、セイフテイー・ライニング材5から伝達される熱を
遮断して鉄皮7を保護する。
6 is laid with a fireproof material such as ordinary chamots or alumina to block heat transmitted from the safety lining material 5 and protect the steel skin 7.

以上第2図の実施例は、ワーキング・ライニング材1の
局部溶損部の背面に冷却管内蔵耐火構造体2を配置し、
ワーキング・ライニング材全体の溶損バランスをとるよ
うにしたものである。
In the embodiment shown in FIG. 2 above, the fireproof structure 2 with a built-in cooling pipe is arranged on the back side of the locally eroded part of the working lining material 1,
This is designed to balance the erosion and loss of the entire working lining material.

第3〜4図は本発明の他の実施例を示し、うち第3図は
ワーキング・ライニング材1の背面全体に冷却管内蔵耐
火構造体2を配置し、ワーキング・ライニング材全体の
溶損抑制を図ったものである。
Figures 3 and 4 show other embodiments of the present invention, in which Figure 3 shows a structure in which a fireproof structure 2 with a built-in cooling pipe is placed over the entire back surface of the working lining material 1, thereby suppressing erosion and loss of the entire working lining material. The aim is to

また第4図はワーキング・ライニング材1の局部溶損部
の背面に冷却管内蔵耐火構造体2を、かつその外側にセ
フティ−・ライニング材6、例えばシャモツト質レンガ
を配した例であり、冷却管内蔵耐火構造体2が万一異常
溶損しても鉄皮の溶損を防止することができる。
FIG. 4 shows an example in which a fireproof structure 2 with a built-in cooling tube is placed on the back side of the locally eroded part of the working lining material 1, and a safety lining material 6, such as chamots brick, is placed on the outside. Even if the refractory structure with a built-in tube 2 were to be abnormally damaged, the iron skin can be prevented from being damaged.

本発明は、上記のような構成とすることにより、耐火材
1及び4の熱伝導率が高く、冷却管による冷却力が強い
から、これら耐火材の耐食性が著るしく向上する。
In the present invention, by having the above-described configuration, the refractory materials 1 and 4 have high thermal conductivity and the cooling power of the cooling pipes is strong, so that the corrosion resistance of these refractory materials is significantly improved.

しかも耐火材4自体に耐食性の高い材質を使用するから
、たとえワーキング・ライニング材1が損耗しても長期
使用に充分耐えることができ、漏水の危険性を回避し得
る。
Furthermore, since the refractory material 4 itself is made of a material with high corrosion resistance, even if the working lining material 1 is worn out, it can withstand long-term use, and the risk of water leakage can be avoided.

従って樋の寿命を大幅に延長せしめて安全、安定操業を
可能ならしめ、耐火材消耗量も著るしく節減できる。
Therefore, the life of the gutter can be greatly extended, safe and stable operation can be achieved, and the consumption of refractory materials can be significantly reduced.

なお本発明は出銑樋に限らず各種の溶融金属樋に適用可
能である。
It should be noted that the present invention is applicable not only to the tap trough but also to various types of molten metal troughs.

実施例 4000m級高炉の貯銑式大樋において、出銑口から2
〜6m部のいわゆる湯当り部を含んだ箇所に、本発明第
2図と同一構造の樋を設置し実操業に供した。
Example 4 In the large piglet storage trough of a 4000 m class blast furnace, 2
A gutter having the same structure as the one shown in FIG. 2 of the present invention was installed in a part including a so-called hot water contact part of ~6 m, and was used for actual operation.

これに用いた各耐火材の材質を第3表に示す。Table 3 shows the materials of each refractory material used.

なお樋の冷却管に1m3/−・の送水を行なうと共に、
側壁部には稼動面から50.50,100゜100mm
間隔に熱電対a、b、c、dを埋設して温度を測定した
In addition to sending 1m3/- of water to the gutter cooling pipe,
50.50, 100°100mm from the operating surface on the side wall.
Thermocouples a, b, c, and d were embedded in the intervals to measure the temperature.

この態様で約3万t(40tap)受銑した後、出銑口
から4m地点での溶損状態を第5図左半分に示す。
After receiving approximately 30,000 tons (40 taps) of pig iron in this manner, the left half of Fig. 5 shows the state of erosion at a point 4 m from the tap hole.

また比較のため、第3表記載のものと同一の組成及び熱
伝導率のワーキングライニング材からなる従来の大樋で
、予め同一の場所及び受銑量による溶損状態を調査した
ので、これを第5図右手分に示す。
For comparison, we previously investigated the state of erosion in a conventional large trough made of a working lining material with the same composition and thermal conductivity as those listed in Table 3, at the same location and with the amount of pig iron received. Shown on the right hand side of Figure 5.

この従来樋における熱電対a、b’。C/ 、 d/の
埋設位置は本発明実施例の位置と同じである。
Thermocouples a and b' in this conventional gutter. The buried positions of C/ and d/ are the same as those of the embodiment of the present invention.

図においてCは溶損部を示す。この結果、樋側壁部の受
銑量(tap数)による温度変化は、第6図に記載の如
く本発明実施例の実線a、b、c、dと、従来樋の破線
a’、b’、c’。
In the figure, C indicates the melted part. As a result, the temperature change due to the amount of pig iron received (the number of taps) on the side wall of the gutter is as shown in FIG. , c'.

d′とでかなりの差異が認められた。A considerable difference was observed between d' and d'.

以上の結果により通銑量i、ooot当りの平均溶損速
度で比較すると、従来樋はスラグ部が6.5朋溶銑部が
3.5關であったのに対し、本発明実施例では夫々3.
1 mm、 2.6 mmとなり、本発明により樋の
溶損を著るしく低減し得ることが実証された。
Based on the above results, when comparing the average erosion rate per iron passing amount i and ooot, in the conventional gutter, the slag part was 6.5 m and the hot pig iron part was 3.5 m, whereas in the example of the present invention, each 3.
1 mm and 2.6 mm, demonstrating that the present invention can significantly reduce gutter erosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高炉の貯銑式大樋における一般的な溶損断面図
、第2〜4図は本発明の実施例であり、うち第2図aは
正面図、bは斜視図、第5図は本発明と従来例との溶損
断面比較図、第6図は同じく側壁部温度比較図である。 1・・・・・・ワーキング・ライニング材、2・・・・
・・冷却管内蔵耐火構造体、3・・・・・・冷却用配管
、4・・・・・・高熱伝導性耐火材、5・・・・・・セ
フティ−・ライニング材、6・・・・・・断熱性耐火材
、7・・・・・・鉄皮。
Fig. 1 is a general cross-sectional view of a blast furnace pig iron storage type large trough, and Figs. 2 to 4 are examples of the present invention, of which Fig. 2 a is a front view, b is a perspective view, and Fig. 5 6 is a comparison diagram of the melting damage cross section of the present invention and the conventional example, and FIG. 6 is a comparison diagram of the side wall temperature. 1... Working lining material, 2...
... Fireproof structure with built-in cooling pipe, 3 ... Cooling pipe, 4 ... High thermal conductivity fireproof material, 5 ... Safety lining material, 6 ... ...Insulating refractory material, 7...Iron skin.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属流路を形成するワーキング・ライニング不
定形耐火物と外鉄皮との間の一部又は全面に、冷却用配
管を内蔵した高熱伝導性耐火レンガを配設したことを特
徴とする溶融金属用樋。
1. A molten metal melting system characterized in that a highly thermally conductive refractory brick with built-in cooling piping is disposed partially or entirely between the working lining monolithic refractory that forms the molten metal flow path and the outer shell. metal gutter.
JP54164749A 1979-12-20 1979-12-20 Gutter for molten metal Expired JPS5833287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54164749A JPS5833287B2 (en) 1979-12-20 1979-12-20 Gutter for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54164749A JPS5833287B2 (en) 1979-12-20 1979-12-20 Gutter for molten metal

Publications (2)

Publication Number Publication Date
JPS5687612A JPS5687612A (en) 1981-07-16
JPS5833287B2 true JPS5833287B2 (en) 1983-07-19

Family

ID=15799180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54164749A Expired JPS5833287B2 (en) 1979-12-20 1979-12-20 Gutter for molten metal

Country Status (1)

Country Link
JP (1) JPS5833287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510537A (en) * 2017-03-08 2020-04-09 サウスワイヤー・カンパニー、エルエルシー Grain refinement using direct vibration coupling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1007881C2 (en) * 1997-12-23 1999-06-24 Hoogovens Tech Services Gutter for conducting a flow of liquid metal.
JP5546874B2 (en) * 2010-01-13 2014-07-09 東京窯業株式会社 Hot metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116504U (en) * 1978-02-06 1979-08-15
JPS5731135Y2 (en) * 1978-03-02 1982-07-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510537A (en) * 2017-03-08 2020-04-09 サウスワイヤー・カンパニー、エルエルシー Grain refinement using direct vibration coupling

Also Published As

Publication number Publication date
JPS5687612A (en) 1981-07-16

Similar Documents

Publication Publication Date Title
WO2021189680A1 (en) Water-cooled iron storage type molten iron trough structure and method for reducing temperature of side wall of molten iron trough
CN106319118A (en) Method for prolonging service life of copper cooling wall of blast furnace
JPS5833287B2 (en) Gutter for molten metal
CN209740966U (en) Hot-melting slag mineral wool electric furnace with condensing furnace lining
CN212720899U (en) Furnace body structure of ore-smelting electric furnace
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
EP0040440B2 (en) A shaft furnace, particularly the refractory construction of the bottom thereof
Geyer et al. Blast furnace tapping practice at arcelor mittal South Africa, vanderbijlpark works
CN203550585U (en) Furnace bottom refractory material structure for liquid deslagging step-type heating furnace
RU2617071C2 (en) Method of cooling melting unit housing and melting unit for its implementation
CA1177640A (en) Water cooled refractory lined furnaces
US3820770A (en) Sub hearth construction for metallurgical furnaces
Van Larr et al. Blast furnace refractories and cooling systems-the Hoogovens solution
JP3007264B2 (en) Blast furnace taphole brick structure
EP1064410B1 (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
CN210892723U (en) Novel water cooling structure of metallurgical furnace
KR880002277B1 (en) Blast furnace
NO771583L (en) ELECTRIC OVEN.
CN217973264U (en) Intelligent cooling iron runner structure
CN201770678U (en) Coal gasifier water cooling wall
JPH0357161B2 (en)
JP2004052038A (en) Apparatus for forming inner wall of lower part of shaft kiln
CN207537472U (en) A kind of ferronickel small furnace furnace lining structure
CN207793314U (en) A kind of six pipe eave tile copper cooling walls of variable cooling ability
JPH0520433Y2 (en)