JPS5832567A - Manufacture of metallic shot - Google Patents

Manufacture of metallic shot

Info

Publication number
JPS5832567A
JPS5832567A JP12869581A JP12869581A JPS5832567A JP S5832567 A JPS5832567 A JP S5832567A JP 12869581 A JP12869581 A JP 12869581A JP 12869581 A JP12869581 A JP 12869581A JP S5832567 A JPS5832567 A JP S5832567A
Authority
JP
Japan
Prior art keywords
nozzle
water
shot
molten metal
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12869581A
Other languages
Japanese (ja)
Other versions
JPS633706B2 (en
Inventor
Kosuke Yoshikawa
吉川 浩助
Susumu Akagi
赤木 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP12869581A priority Critical patent/JPS5832567A/en
Publication of JPS5832567A publication Critical patent/JPS5832567A/en
Publication of JPS633706B2 publication Critical patent/JPS633706B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain metallic shot of desired uniform grain sizes by placing the tip of a nozzle on or blow the water surface and dropping molten metal through the nozzle thereby solidifying the same. CONSTITUTION:Metal of 300-600 deg.C m.p., for example, Zn, Cu, Ag, Sn, Pb, Al or their allot is melted by using a nozzle receiver 1 made of refractories. The molten metal is dropped through a nozzle 4 of which the tip is placed on or below the water surface 8 of the water 10 stored in a water tank 7 into the water 10. The temp. of the water 10 is kept at 60-70 deg.C by replenishing cold water therein. The molten metal cools and solidifies to form shot 12. The formed shot 12 is captured with a removing cage 9 in the bottom part of the tank 7. The yield is 93-98%.

Description

【発明の詳細な説明】 本発明は、金属ショットの新規製造方法に関する。[Detailed description of the invention] The present invention relates to a novel method for manufacturing metal shot.

電気メッキにおいてイオン供給源としての金属、例えば
亜鉛、或いは亜鉛−鉄合金等の亜鉛基合金等比較的低融
点の金属を酸に溶解する場合、一定粒径で、かつ、例え
ば粒径2〜3闘φ程度の細かいショットが望まれる。
When dissolving a metal as an ion source in electroplating, for example, a metal with a relatively low melting point such as zinc or a zinc-based alloy such as a zinc-iron alloy, a metal with a constant particle size and, for example, a particle size of 2 to 3 A detailed shot of the same level as the φ is desired.

金属ショットを製造するための従来法は、例えば特開昭
55−158875号公報に開示された如く、金属の溶
湯を下端に滴下ノズルを配した溶湯溜めから、滴下ノズ
ル端を水面上の適当な高さ(二保持して、水中(二部下
し水冷する方法を基本としている。
A conventional method for manufacturing metal shot, for example, as disclosed in JP-A-55-158875, involves pouring molten metal from a molten metal reservoir with a dripping nozzle at the bottom end, and placing the end of the dripping nozzle at an appropriate point above the water surface. The basic method is to hold it at a height (2) and cool it under water (2).

しかし、従来の方法では、球状の一定粒径のショットを
得ることは困難であり、粗大径、シツボのついた細長い
もの、偏平なもの等が多数出来たりするという問題があ
った。
However, with the conventional method, it is difficult to obtain spherical shots with a constant particle size, and there is a problem in that many shots with coarse diameters, elongated grains, and flat grains are produced.

本発明は上述の従来法の欠点を除去し、本発明者は、既
述の如き一定粒径の細かいシ□ヨツトを提供することを
目的とする。即ち、本発明者は、金属溶湯な、ノズルを
通して水中(三路下凝固せしめて金属ショット塊を製造
する方法においてニノズル先端を水面または水面下に設
置しそ金属溶湯を、水中に落下凝固せしめることにより
上記目的を達成する。
The present invention obviates the above-mentioned disadvantages of the conventional method, and the inventor's object is to provide a fine shot having a constant particle size as described above. That is, the present inventor has proposed a method for manufacturing a metal shot lump by passing a molten metal through a nozzle and solidifying it underwater (three ways), by setting the tip of the nozzle at or below the water surface and letting the molten metal fall into the water and solidify. Achieve the above objectives.

以下本発明について実施例に即して詳述する。The present invention will be described in detail below with reference to Examples.

本発明の金属ショットは、所定温度に加熱溶融した金属
溶湯を、下端に所定口径の滴下用ノズルを配した溶湯溜
めに、適宜の湯圧を生ずるような高さく二注湯し、適温
に保持された冷却水の液面十−にノズルを浸漬して、水
中に滴下させ、水冷することにより得られる。
In the metal shot of the present invention, molten metal heated to a predetermined temperature is poured into a molten metal reservoir with a dripping nozzle of a predetermined diameter at the lower end at two heights to generate an appropriate pressure, and the molten metal is maintained at an appropriate temperature. It is obtained by immersing a nozzle in the liquid level of the cooled water, letting it drop into the water, and cooling it with water.

本発明に特に適した金属は亜鉛又は亜鉛基鉄合金等の亜
鉛基合金であり、銅、銀、錫、鉛、アルミニウム又はこ
れらの合金等にも本発明は適用されうる。一般的に融点
が凡そ300〜600’C程度の金属は、本発明の方法
によりショット化可能である。
Metals particularly suitable for the present invention are zinc or zinc-based alloys such as zinc-based iron alloys, and the present invention may also be applied to copper, silver, tin, lead, aluminum, or alloys thereof. Generally, metals having a melting point of about 300 to 600'C can be made into shots by the method of the present invention.

金属溶湯の加熱温度は夫々の金属に応じて適宜選択され
、ノズル口径は主として目的とする均一粒径範囲に応じ
て定まり、その他冷却水の水温、ノズルの水面下浸漬深
さ、ノズル材質等のファクターを設定することにより、
所望均一粒径の金属ショットが得られる。
The heating temperature of the molten metal is selected appropriately according to each metal, and the nozzle diameter is determined mainly according to the target uniform particle size range, and other factors such as the temperature of the cooling water, the depth of immersion of the nozzle below the water surface, and the nozzle material are determined. By setting the factor,
Metal shot with the desired uniform particle size is obtained.

以下亜鉛ショットを製造する場合に基づいてより詳細に
説明する。
A more detailed explanation will be given below based on the case of manufacturing zinc shot.

冒頭に記載した通り、2〜3絹程度の均一粒径の亜鉛シ
ョットが望まれており、その製造例は次の通りである。
As described at the beginning, zinc shot having a uniform particle size of about 2 to 3 grains is desired, and an example of its production is as follows.

ノズルとしては口径0.5〜2.5N、好ましくは1.
0〜2.0111のもので材質としては熱伝導率の小さ
いもの、例えばセラミックノズルを用いることが、ノズ
ルの閉塞防止のために好ましい。セラミックノズルとし
ては、水中に浸漬する関係で、好ましくは耐熱衝撃性を
有する耐熱性セラミック材を用い、例えば700℃以上
の結晶化温度を有する耐熱性結晶化ガラス、アルミナ質
(好ましくはハイアルミナ質)セラミック材、ジルコン
質、チタン酸アルミニウム質等を用いることができる。
The nozzle has a diameter of 0.5 to 2.5N, preferably 1.5N.
It is preferable to use a material with a low thermal conductivity of 0 to 2.0111, such as a ceramic nozzle, in order to prevent nozzle clogging. As the ceramic nozzle is immersed in water, a heat-resistant ceramic material having thermal shock resistance is preferably used, such as heat-resistant crystallized glass having a crystallization temperature of 700°C or higher, alumina material (preferably high alumina material), etc. ) Ceramic materials, zircon materials, aluminum titanate materials, etc. can be used.

結晶化ガラスとしては、合成雲母の微結晶を結晶相とし
好ましくは機械加工性のいわゆるマシーナブル・ガラス
セラミックスがあり、その他コージライトを結晶相とす
るものがある。一般的にセラミックノズル材としては熱
伝導率0.01c、14/at・see ’C以下のも
のを用いることが、溶湯のノズル孔内での閉塞を防止す
る上で有利である。
Examples of crystallized glass include so-called machinable glass ceramics, which have synthetic mica microcrystals as a crystal phase and are preferably machinable, and others have cordierite as a crystal phase. Generally, it is advantageous to use a ceramic nozzle material with a thermal conductivity of 0.01c, 14/at·see'C or less in order to prevent the molten metal from clogging in the nozzle hole.

ノズルの水面下浸漬深さは少なくとも液面接触状態を必
要とし、その他ノズル及び装置の形状等から定まるもの
で、必須の限定ではないが通例O〜50111程度、好
ましくは2〜20寵程度とする。
The immersion depth of the nozzle under the water surface requires at least a state of contact with the liquid surface, and is determined by the shape of the nozzle and the device, etc., and is generally about 0 to 50,111 degrees, preferably about 2 to 20 degrees, although it is not an essential limitation. .

但し余り深く浸漬する必要は特になく、溶湯溜め及びノ
ズルの不必要な冷却が生じなければよい。
However, it is not necessary to immerse the molten metal too deeply, and it is sufficient to avoid unnecessary cooling of the molten metal reservoir and nozzle.

水温は、球状かつ均一粒度のショットを得るために規定
の温度に保持することが必要であり、一般に溶湯の温度
、金属種類等C二依存して定められる。亜鉛の場合凡そ
50〜80℃、好ましくは60〜70℃であるが、但し
、ノズル口径に対応して最適水温はある程度変化する。
The water temperature needs to be maintained at a specified temperature in order to obtain shots with a spherical shape and uniform particle size, and is generally determined depending on the temperature of the molten metal, the type of metal, etc. In the case of zinc, the temperature is approximately 50 to 80°C, preferably 60 to 70°C, but the optimum water temperature varies to some extent depending on the nozzle diameter.

なおここ(:亜鉛とは蒸留亜鉛地金以上の純度の亜鉛地
金を言う。この水温に関しては、例えば、亜鉛基鉄合金
(Fe〈2.5%、残部蒸留亜鉛地金の程度以上の純度
の亜鉛地金)の場合に、最適冷却水温度は鉄含有量に応
じて下降し、Fe1%で15〜60℃、Fe2.5%で
10〜40℃となる。ノズル口径は所望粒径によっても
異なるが、均一粒径の球状ショットを得るためには、一
定の範囲とする必要がある。亜鉛の場合、凡そ1.0〜
2.5M、好ましくは1.0〜2.OW程度である。な
お、亜鉛基鉄合金の場合にも、はり同様のノズル口径で
よい。
Note that here (: Zinc refers to zinc ingot with a purity higher than that of distilled zinc ingot. Regarding this water temperature, for example, zinc-based iron alloy (Fe < 2.5%, the balance has a purity higher than that of distilled zinc ingot). In the case of (zinc metal), the optimum cooling water temperature decreases depending on the iron content, and is 15 to 60 °C for 1% Fe and 10 to 40 °C for 2.5% Fe.The nozzle diameter is determined depending on the desired particle size. Although the particle diameter varies, it needs to be within a certain range in order to obtain spherical shot with a uniform particle size.In the case of zinc, it is approximately 1.0 to
2.5M, preferably 1.0-2. It is about OW. In addition, in the case of a zinc-based iron alloy, the nozzle diameter may be the same as that of the beam.

次に溶湯温度は、基本的に各金属に応じて定まるが、亜
鉛では凡そ475〜550℃、好ましくは485〜53
0℃であり、亜鉛基鉄合金(前掲組成)では、融点プラ
ス約10℃以上、融点プラス約130℃以下かつ約70
0℃以下が好ましい。
Next, the temperature of the molten metal is basically determined depending on each metal, but for zinc it is approximately 475-550℃, preferably 485-53℃.
0°C, and for zinc-based iron alloys (composition listed above), the melting point plus about 10°C or more, the melting point plus about 130°C or less, and about 70°C.
The temperature is preferably 0°C or lower.

以上の条件の下(二実施すると、本発明により例えば亜
鉛ショットについて粒径+2H〜−41’lのものが8
0〜90チ以上、適当条件では93チ以上、最適条件で
は98%以上の均一さて得られ、かっ溶湯温度の許容温
度幅が475〜550℃と広くまた許容水温幅も広いの
で操作が極めて容易であり、ノズルの閉塞も生じない。
Under the above conditions (when carried out twice), according to the present invention, for example, zinc shot with a particle size of +2H to -41'l is
A uniformity of 0 to 90 degrees or more, 93 degrees or more under suitable conditions, and 98% or more under optimal conditions can be obtained, and the allowable molten metal temperature range is wide from 475 to 550 degrees Celsius, and the allowable water temperature range is also wide, making operation extremely easy. Therefore, no nozzle clogging occurs.

亜鉛基鉄合金(既述)1一ついてもはゾ同様の均一粒径
のものが得られる。
Even if one zinc-based iron alloy (mentioned above) is used, particles with a uniform particle size similar to ZO can be obtained.

亜鉛等の金属は、予備的に溶融され、vIJ2図に例示
する如きノズル4(口径d)を底部C二有しドロス除去
板3を溶湯注湯口2と貯湯部11との間に配した溶湯溜
め容器(ノズル受け)1中に所定温度(−保持される。
A metal such as zinc is preliminarily melted, and the molten metal has a nozzle 4 (diameter d) at the bottom C2 as illustrated in FIG. A predetermined temperature (-) is maintained in the reservoir (nozzle receiver) 1.

通例ノズル4の先端だけが水面下C:所定高さくh)だ
け浸漬されるようCニノズル受け1は水面上に保持され
かつ必要に応じ公知の加熱手段により温度保持される。
Usually, the nozzle receiver 1 is held above the water surface so that only the tip of the nozzle 4 is submerged a predetermined height h) below the water surface, and the temperature is maintained by known heating means as necessary.

第1図に例示する水槽7は、水温調節機構(図示せず)
を備え、必要に応じ攪拌装置(図示せず)、ショット取
出手段(カゴ9等)を備える。水深はショットが一様に
冷却されるに適した深さに適宜室められる(通例O14
〜2m程度)。
The water tank 7 illustrated in FIG. 1 has a water temperature adjustment mechanism (not shown).
and a stirring device (not shown) and shot extraction means (basket 9, etc.) as necessary. The water depth is adjusted to a depth suitable for uniformly cooling the shot (usually O14
~2m).

以下実施例について説明する(%は重量%を示す)。Examples will be described below (% indicates weight %).

実施例1 最純亜鉛地金(Zn 99.99%、 Pb O,00
12%。
Example 1 Pure zinc ingot (Zn 99.99%, Pb O,00
12%.

Cd O,0007%、 Fe O,0007〜0.0
01 % )を用い、第2図に図示の耐火物製ノズル受
け1を用い、予め溶融した亜鉛溶湯な注湯口2に注湯し
、第1図に示すようなガスバーナー6を用いて、溶湯温
度(ノズル受け1内)を475〜550℃の各温度(:
定温保持し、ノズル材質をマシーナブル・ガラスセラミ
ックス(熱伝導率0.004 cal/see −ax
 −’Cat25℃2重量組成5i0246 L AJ
20.16 %。
CdO, 0007%, FeO, 0007~0.0
01%), pour the molten zinc into the spout 2 using the refractory nozzle receiver 1 shown in FIG. Temperature (inside nozzle receiver 1) at each temperature of 475 to 550℃ (:
Maintains constant temperature and uses machinable glass-ceramic nozzle material (thermal conductivity 0.004 cal/see -ax)
-'Cat25℃2 Weight composition 5i0246 L AJ
20.16%.

MfO17チ、 K、010チ、F4剣、B2037チ
)とし、ノズル口径1〜2. Off、ノズル先端と冷
却水水面との浸漬深さh=51EIに保持し、冷却水の
水温な50〜80°Cに10℃毎に段階変化させて、溶
湯5を貯湯部11の底面のノズル4から冷却水10の中
へと連続滴下した(5〜20分間)。
MfO17chi, K, 010chi, F4 sword, B2037chi), and the nozzle diameter is 1 to 2. Off, the immersion depth between the nozzle tip and the cooling water surface is maintained at h = 51EI, the temperature of the cooling water is changed from 50 to 80°C in steps of 10°C, and the molten metal 5 is poured into the nozzle on the bottom of the hot water storage section 11. 4 into the cooling water 10 (for 5 to 20 minutes).

冷却水槽7は、第1図に例示する如く、深さ1mで下部
にショット取出しカゴ9を配し、水温は冷水の補給と、
加温装置(図示せず)とによってその都度所定温度に保
持した。
As illustrated in FIG. 1, the cooling water tank 7 has a depth of 1 m and has a shot extraction basket 9 at the bottom, and the water temperature is controlled by replenishing cold water.
A predetermined temperature was maintained in each case by a heating device (not shown).

ノズル口径d=1.offでは、溶湯温度500〜55
0℃、水温60〜70℃でショット径+2〜−4nの製
品歩留り80〜90チのものかえられ、−4ffは10
0チであった。
Nozzle diameter d=1. In off, the molten metal temperature is 500-55
0℃, water temperature 60~70℃, shot diameter +2~-4n, product yield 80~90 inches, -4ff is 10
It was 0chi.

ノズル口径d=1.51111では表1(二示す結果が
得られ、前記粒度歩留りはゾ93〜98チを示した。
When the nozzle diameter d=1.51111, the results shown in Table 1 were obtained, and the particle size yield was 93 to 98 inches.

ノズル口径d=2.0111では条件を厳密に設定する
こと(二より表2に示す通り84〜93チの歩留りかえ
られた。
When the nozzle diameter d=2.0111, the conditions were set strictly (as shown in Table 2, the yield was changed from 84 to 93 inches).

なお、どれらのショットはいずれも球状であつ、1ま た。Note that all shots are spherical and have a spherical shape. Ta.

実施例2 ノズル先端を水面(二接触させて、その他実施例1と同
様な実験を繰返した結果、はゾ同様な結果を得た。
Example 2 The same experiment as in Example 1 was repeated with the tip of the nozzle brought into contact with the water surface (two times), and similar results were obtained.

実施例3 実施例1で用いたものと)同じ最純亜鉛地金を用いFe
O,88〜1.07%の亜鉛基鉄合金を得た。その溶湯
な460〜480℃の温度にて50〜70℃の水中にノ
ズル口径d=1.0IINとして滴下した。
Example 3 Using the same purest zinc metal (as used in Example 1), Fe
A zinc-based iron alloy containing O, 88-1.07% was obtained. The molten metal was dropped into water at a temperature of 50 to 70°C at a temperature of 460 to 480°C with a nozzle diameter d=1.0IIN.

その他の条件は実施例1と同様である。その結果、前記
歩留り85〜95チの均一な球状ショット12を得た。
Other conditions are the same as in Example 1. As a result, uniform spherical shots 12 with a yield of 85 to 95 inches were obtained.

比較例 実施例1と同一の亜鉛地金を用い、ノズルを従来法に従
い水面上5〜301?ll+に保持して、その他の条件
を実施例1と同様にして、水中に滴下した結果、得られ
たショットは球状にならず、偏平なものやしっぽのある
細長いもの、粗大粒を含み、また前記製品歩留りは50
チ〜70%であった。
Comparative Example Using the same zinc metal as in Example 1, the nozzle was installed above the water surface according to the conventional method. As a result of dropping the shot into water under the same conditions as in Example 1, the resulting shot did not have a spherical shape, but contained flat, elongated, and coarse particles with tails. The product yield is 50
It was ~70%.

なお、特別に本発明者の設定した条件として、ノズル端
と水面の距離を8WMとした場合、ノズル口径1.0〜
1.5mm+、水温70〜80℃、溶湯温度450〜5
50℃にて77〜87チの前記製品歩留りかえられたが
、−4mm歩留りは80〜94チに止まり、粗大粒及び
微細粒が生じた。
In addition, as a condition specially set by the present inventor, when the distance between the nozzle end and the water surface is 8WM, the nozzle diameter is 1.0~
1.5mm+, water temperature 70-80℃, molten metal temperature 450-5
At 50 DEG C., the yield of the product was changed to 77 to 87 inches, but the -4 mm yield remained at 80 to 94 inches, and coarse grains and fine grains were produced.

以  下  余  白Below, remaining white

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施するための装置概略、第
2図は、ノズル受けの断面図、を夫々示す。 1・・・ノズル受け     2・・・注湯口3・・・
ドロス除去板    4・・・ノズル5・・・溶湯  
      7・・・水槽8・・・水面       
10・・・水12・・・ショット 特許出願人 日本鉱業株式会社 代理人弁理士加藤朝道 第1因
FIG. 1 shows a schematic view of an apparatus for carrying out the method of the present invention, and FIG. 2 shows a cross-sectional view of a nozzle receiver. 1... Nozzle receiver 2... Pouring spout 3...
Dross removal plate 4... Nozzle 5... Molten metal
7...Aquarium 8...Water surface
10...Wed 12...Schott patent applicant Asamichi Kato, representative patent attorney for Nippon Mining Co., Ltd. 1st cause

Claims (1)

【特許請求の範囲】[Claims] 1)金属溶湯を、ノズルを通して水中に落下凝固せしめ
て金属ショットを製造する方法において、ノズル先端が
水面また1マ水面下に存することを特徴とする金属ショ
ットの製造方法。
1) A method for producing metal shot by dropping and solidifying molten metal into water through a nozzle, characterized in that the tip of the nozzle is located at the water surface or one inch below the water surface.
JP12869581A 1981-08-19 1981-08-19 Manufacture of metallic shot Granted JPS5832567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12869581A JPS5832567A (en) 1981-08-19 1981-08-19 Manufacture of metallic shot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12869581A JPS5832567A (en) 1981-08-19 1981-08-19 Manufacture of metallic shot

Publications (2)

Publication Number Publication Date
JPS5832567A true JPS5832567A (en) 1983-02-25
JPS633706B2 JPS633706B2 (en) 1988-01-25

Family

ID=14991128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12869581A Granted JPS5832567A (en) 1981-08-19 1981-08-19 Manufacture of metallic shot

Country Status (1)

Country Link
JP (1) JPS5832567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198949U (en) * 1986-06-11 1987-12-18
JPS6397354A (en) * 1986-10-14 1988-04-28 Mitsubishi Metal Corp Production of spherical low melting metallic grain
JP2009160654A (en) * 2007-12-28 2009-07-23 Chang Chun Petrochemical Co Ltd System and method for manufacturing copper material with high specific surface area
KR101340569B1 (en) * 2012-02-27 2013-12-11 (주)에스엔엔씨 Spray head and casting-tank for shot-making using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198949U (en) * 1986-06-11 1987-12-18
JPH0438696Y2 (en) * 1986-06-11 1992-09-10
JPS6397354A (en) * 1986-10-14 1988-04-28 Mitsubishi Metal Corp Production of spherical low melting metallic grain
JP2009160654A (en) * 2007-12-28 2009-07-23 Chang Chun Petrochemical Co Ltd System and method for manufacturing copper material with high specific surface area
KR101340569B1 (en) * 2012-02-27 2013-12-11 (주)에스엔엔씨 Spray head and casting-tank for shot-making using the same

Also Published As

Publication number Publication date
JPS633706B2 (en) 1988-01-25

Similar Documents

Publication Publication Date Title
Ohno Continuous casting of single crystal ingots by the OCC process
US4140494A (en) Method for rapid cooling molten alumina abrasives
CA1267768A (en) Process for continuous casting of metal ribbon
EP0248960A1 (en) Hydrogen producing material
JP2007204812A (en) Method for producing metallic glass alloy and method for producing metallic glass alloy product
CN104148620B (en) The crystal fining method of a kind of brass alloys and device thereof
JPS5832567A (en) Manufacture of metallic shot
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
CN1629353B (en) Hot spraying aluminium-zinc alloy wire rod and method for making same
GB2211920A (en) Metal shot for sporting pellets
JP3281019B2 (en) Method and apparatus for producing zinc particles
JPS5914083B2 (en) Manufacturing method for zinc or zinc alloy shot balls
US3360366A (en) Method of grain refining zinc
US5236033A (en) Method for producing a body from a material susceptible to thermal cracking and casting mold for executing the method
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JPS5914082B2 (en) Zinc shot ball manufacturing equipment
US6235109B1 (en) Method of preparing crystalline or amorphose material from melt
US2856659A (en) Method of making ingot of non-ferrous metals and alloys thereof
JP4000389B2 (en) Metal grain manufacturing method and manufacturing apparatus
US3662810A (en) Method of internal nucleation of a casting
US1290011A (en) Process of making castings of rare-earth metals and their alloys.
KR100593680B1 (en) Manufacturing method of gold-tin eutectic strip for solder
JPS62153108A (en) Fusion synthesis method
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
JPS61209758A (en) Continuous casting method for copper or copper alloy