JPS6397354A - Production of spherical low melting metallic grain - Google Patents

Production of spherical low melting metallic grain

Info

Publication number
JPS6397354A
JPS6397354A JP24213986A JP24213986A JPS6397354A JP S6397354 A JPS6397354 A JP S6397354A JP 24213986 A JP24213986 A JP 24213986A JP 24213986 A JP24213986 A JP 24213986A JP S6397354 A JPS6397354 A JP S6397354A
Authority
JP
Japan
Prior art keywords
water
molten metal
nozzle
metal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24213986A
Other languages
Japanese (ja)
Inventor
Akira Katai
片井 彰
Kazumasa Ikeda
池田 一征
Masakatsu Abe
阿部 政克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP24213986A priority Critical patent/JPS6397354A/en
Publication of JPS6397354A publication Critical patent/JPS6397354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily and inexpensively obtain fine spherical particles by bringing a nozzle for guiding a molten metal into contact with a water surface or inserting the nozzle into the water and pouring the molten metal continuously into the water without dropping the same, thereby dispersing the molten metal into the water. CONSTITUTION:A device 10 has a vessel 12 for storing the molten metal 11 which is a low melting metal and a water tank 3 for cooling the molten metal 11. The nozzle 14 of a prescribed length is provided in the base of the vessel 12 and the front end of the nozzle 14 is brought into contact with the water surface. A heating means 15 for preventing the solidification of the molten metal 11 is provided to the outside periphery of the vessel 12 and cooling water is stored in a water tank 13 installed below the vessel 12. The water tank 13 is freely vertically movably imposed on a supporting base 18 so that the height of the water surface with respect to the nozzle 14 can be adjusted. The molten metal 11 is continuously poured into the water and dispersed therein without dropping the same, by which the molten metal is spheroidized.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、亜鉛、カドミニウム等の低融点金属を球状化
する球状金属粒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing spherical metal particles by spheroidizing a low melting point metal such as zinc or cadmium.

〔従来技術と問題点〕[Prior art and problems]

金属まだは合金の溶解工程においては9表面積の太きい
ものが溶解し易いことから金属2合金は粉末や小粒の形
状で使用される場合が多い。また小粒形状のものは搬送
や秤量の自動化も容易であるため、溶解工程に限らず種
々の金属処理工種において広汎に用いられている。この
他、金属表面を清浄化する方法の1つとしてプラストシ
ョット法が知られており、投射用金属として金属粒が用
いられる。
In the process of melting metal alloys, metals with a large surface area are easily melted, so metal 2 alloys are often used in the form of powder or small particles. In addition, since small particles are easy to automate transportation and weighing, they are widely used not only in melting processes but also in various metal processing industries. In addition, the plasto shot method is known as one of the methods for cleaning metal surfaces, and metal particles are used as the projection metal.

従来、金属粒を製造する一般的な方法として。Traditionally, as a common method of producing metal grains.

機械的粉砕法、液体噴霧法9滴下法、気化凝縮法。Mechanical crushing method, liquid spraying method, 9-drop method, vaporization condensation method.

転造法、電解法などが実用化され目的に応じて夫々利用
されている。上記方法の中で2滴下法は。
Rolling methods, electrolytic methods, etc. have been put into practical use and are used depending on the purpose. Among the above methods, the 2-drop method is.

金属の溶湯を容器の小孔ないしノズルから水中に滴下さ
せて粒状化する方法であり、比較的粒径の大きい金属粒
を製造するのに適している。
This is a method in which molten metal is dropped into water through a small hole or nozzle in a container to form particles, and is suitable for producing metal particles with a relatively large particle size.

ところで従来の滴下法によって得られる金属粒の粒径は
2〜10+u+φであり、Q、1〜2mm程度の粒径を
有する金属粒を得るのが困惟である。また容器のノズル
等から溶湯を1滴づつ落下させるため製造効率が低く、
得られる粒子も表面に凹部が生じ、或いは先端が突出し
だ形状になるなど不定形になり易い。一方、液体噴霧法
、気化凝縮法は微細粒子を製造するのに適するが、これ
らの方法によって得られる粒子の大きさは数100ミク
ロンであり、微細に過ぎる。機械的粉砕法によって製造
される粒子は異形であシ球状粒子を得ることが出来ず、
また表面が酸化され易い欠点がある。
By the way, the particle size of metal particles obtained by the conventional dropping method is 2 to 10+u+φ, and it is difficult to obtain metal particles having a particle size of about Q, 1 to 2 mm. In addition, the production efficiency is low because the molten metal is dropped drop by drop from the nozzle of the container, etc.
The resulting particles also tend to have irregular shapes, such as depressions on the surface or protruding tips. On the other hand, the liquid spray method and vaporization condensation method are suitable for producing fine particles, but the particles obtained by these methods have a size of several hundred microns, which is too fine. Particles produced by mechanical pulverization have irregular shapes, making it impossible to obtain spherical particles.
Another disadvantage is that the surface is easily oxidized.

〔間顕解決についての知見〕[Knowledge about the resolution of inter-sensitivity]

本発明者等は滴下法の改良を試み、金属溶湯を滴下せず
に水中に注入すると、注入された金属湯がそのまま棒状
に冷却する場合の他に、金属湯が注入直後に水中で球状
に分散される場合のあることを見出した。更に検討を進
めたところ得られる粒子径はノズル径よりやや大きく2
球状であり。
The present inventors attempted to improve the dripping method, and found that when molten metal is injected into water without dripping, in addition to cases in which the injected metal molten metal cools into a rod shape, it also cools into a spherical shape in water immediately after pouring. It was found that there are cases where it is dispersed. Further investigation revealed that the particle size obtained was slightly larger than the nozzle diameter2.
It is spherical.

溶融亜鉛について0.3〜6朋φの粒子が得られ。Particles of 0.3 to 6 mm diameter were obtained for molten zinc.

従来の問題を解決しうろことを見出した。I found a solution to a conventional problem.

〔発明の構成〕[Structure of the invention]

本発明によれば、金属の溶湯を水中に落下させて金属粒
を製造する際、溶湯を導くノズルを水面に接触させるか
、あるいは該ノズルを水中に挿入し、溶湯を滴下せずに
連続して水中に注入して分散させることによシ球状化す
る球状低融点金属粒の製造方法が提供される。更にその
好適な実施態様として亜鉛カドミニウムまたはインジウ
ムの溶湯を用い、容器のノズル径が0.1〜4mmφ好
1しくは0.6〜3mmφ、水面から溶湯底までの高さ
か10〜200m7に、水温10〜80’Cである上記
製造方法が提供される。
According to the present invention, when producing metal particles by dropping molten metal into water, the nozzle that guides the molten metal is brought into contact with the water surface or the nozzle is inserted into the water, and the molten metal is continuously flowed without dripping. Provided is a method for producing spherical low melting point metal particles which are made into spheroids by being injected into water and dispersed. Further, in a preferred embodiment, a molten metal of zinc cadmium or indium is used, the nozzle diameter of the container is 0.1 to 4 mmφ, preferably 0.6 to 3 mmφ, the height from the water surface to the bottom of the molten metal is 10 to 200 m7, and the water temperature is 10-80'C is provided.

図は本発明の方法を実施する装置構成の一例を概略的に
示すものであシ、該装置1oは低融点金属の溶湯11を
貯留する容器12と該溶湯11を冷却する水槽13とを
有している。容器12の底面には所定長さのノズル14
が設けられておシ。
The figure schematically shows an example of the configuration of an apparatus for carrying out the method of the present invention. are doing. A nozzle 14 of a predetermined length is provided on the bottom of the container 12.
It is provided.

該ノズル14の先端は下方の水面に接触している。The tip of the nozzle 14 is in contact with the water surface below.

容器12の外周には金属湯11の凝固を防止するだめの
加熱手段15が設けられる。容器12の下方に設置され
た水槽16には冷却水が計留されている。該水槽16の
下部には給水口16が設けられる一方、水槽上部には排
水口17が設けられ。
A heating means 15 is provided around the outer periphery of the container 12 to prevent the metal hot water 11 from solidifying. Cooling water is stored in a water tank 16 installed below the container 12. A water supply port 16 is provided at the bottom of the tank 16, and a drain port 17 is provided at the top of the tank.

水槽内部の冷却水が流出入することによシ一定水温が保
たれる。水槽16はノズル14に対する水面の高さを調
整できるように上下動自在に支持台18に載置されてい
る。
A constant water temperature is maintained by the inflow and outflow of cooling water inside the tank. The water tank 16 is mounted on a support stand 18 so as to be movable up and down so that the height of the water surface relative to the nozzle 14 can be adjusted.

図示するように本発明の方法は、亜鉛、カドミニウムな
どの低融点金属あるいはこれらの合金の溶湯を水中に落
下させて金属粒を製造する際、溶湯を導くノズルを水面
に接触させるか、あるいは該ノズルを水中に挿入し、溶
湯を滴下せずに連続して水中に注入して分散させること
により球状化する。連続的に水中に流下した溶湯が球状
に微細粒子に形成される理由は必ずしも明確ではないが
As shown in the figure, the method of the present invention involves dropping a molten metal of a low melting point metal such as zinc or cadmium or an alloy thereof into water to produce metal particles, by bringing a nozzle that guides the molten metal into contact with the water surface or A nozzle is inserted into the water, and the molten metal is continuously injected into the water without dripping and dispersed to form spheres. The reason why molten metal that continuously flows down into water forms fine spherical particles is not necessarily clear.

ノズル先端から水中に流出する溶湯が、その表面張力に
より水中でノズル先端に支えられてノズル直径より僅か
に大きい直径の微細な球に膨らみ。
The molten metal flowing from the nozzle tip into the water is supported by the nozzle tip due to its surface tension and expands into a fine sphere with a diameter slightly larger than the nozzle diameter.

これが水の圧力によりノズル先端から切離されて。This is separated from the nozzle tip by the water pressure.

水中を沈下する間に冷却されて球状に固化し、これを順
次繰返すことにより微細な球状の粒子が形成されるもの
と推察される。この場合、溶湯は直接水中で球状に形成
されるので従来のように水面への衝突による衝撃を受け
ることが無く直ちに球状の=!ま冷却固化され、変形し
ない良好な球状となる。従来の方法においては、ノズル
先端は水面よシ離して所定の高さに設置されている。こ
のためノズル先端から滴下される湯滴は溶融状態のまま
水面に衝突して変形し易い問題があるが2本発明の方法
においてはこのような問題を生じない。
It is presumed that while sinking in water, it is cooled and solidified into a spherical shape, and by repeating this process sequentially, fine spherical particles are formed. In this case, since the molten metal is formed into a spherical shape directly in water, it does not receive the impact of collision with the water surface as in the conventional case, and immediately becomes spherical =! It is then cooled and solidified into a good spherical shape that does not deform. In conventional methods, the nozzle tip is placed at a predetermined height away from the water surface. For this reason, there is a problem in that the hot water droplets dripped from the tip of the nozzle collide with the water surface in a molten state and are easily deformed, but the method of the present invention does not have this problem.

また本発明の方法においては球状粒子の粒径が小さく、
かつ形成速度が速い。これはノズル先端が水面に接し、
あるいは水中に挿入されているためノズル先端に形成さ
れる溶湯の球が水圧を受け。
Furthermore, in the method of the present invention, the particle size of the spherical particles is small;
And the formation speed is fast. This means that the nozzle tip touches the water surface,
Alternatively, since the nozzle is inserted into water, the molten metal ball that forms at the tip of the nozzle is subject to water pressure.

空気中の場合よυも大きな圧力を受けて球状になるので
粒径が小さく、また迅速にノズルから切離されるためで
あると考えられる。
This is thought to be because when in air, υ is also subjected to large pressure and becomes spherical, so the particle size is small and it is quickly separated from the nozzle.

本発明の方法には、ノズルの径、水面からの湯の高さ、
溶湯の金属種や温度、および冷却水の温度などが関係す
る。特にノズル径は重要でちシ。
The method of the present invention includes the diameter of the nozzle, the height of the hot water from the water surface,
The metal type and temperature of the molten metal, the temperature of the cooling water, etc. are related. The nozzle diameter is especially important.

細過ぎると溶湯の目詰まシを生じ、また太過ぎると溶湯
が水中に流下した場合に球状に分散せず。
If it is too thin, the molten metal will become clogged, and if it is too thick, the molten metal will not be dispersed in a spherical shape when it flows down into the water.

棒状の!、ま固化する。最適なノズル径の範囲は溶湯の
融点、粘性および目標粒径によって異なるが。
Stick-shaped! , hardens. The optimal nozzle diameter range varies depending on the melting point, viscosity, and target particle size of the molten metal.

例えば亜鉛カドミニウム、インジウムについて通常0.
1〜4mmφ好ましくは0.3〜3mmφの範囲が好適
である。溶湯の水面からの高さは金属の融点やノズル径
に関係するが、亜鉛ないしカドミニウムの場合には10
〜200mmの高さであれば上記ノズル径に対して好適
である。溶湯の位置が高過ぎるとノズル下端の溶湯に加
わる圧力が高くなり球状化し難くなる。溶湯の温度は金
属の融点および粘性、ノズル径、目標粒径などにより異
なる。一般に温度が高過ぎると粘性が低下し、細いノズ
ルを用いることが出来るが、冷却が不充分になり変形を
生じ易くなる。他方、溶湯の温度が低過ぎると粘性が大
きく、ノズル径を太くしなければならず1球径の小さな
微細粒子を得るのが困難になる。
For example, zinc cadmium and indium are usually 0.
A range of 1 to 4 mmφ, preferably 0.3 to 3 mmφ is suitable. The height of the molten metal from the water surface is related to the melting point of the metal and the nozzle diameter, but in the case of zinc or cadmium, it is
A height of ~200 mm is suitable for the above nozzle diameter. If the position of the molten metal is too high, the pressure applied to the molten metal at the lower end of the nozzle will be high, making it difficult to form a ball. The temperature of the molten metal varies depending on the melting point and viscosity of the metal, nozzle diameter, target particle size, etc. Generally, if the temperature is too high, the viscosity decreases and a narrow nozzle can be used, but cooling becomes insufficient and deformation tends to occur. On the other hand, if the temperature of the molten metal is too low, the viscosity is high and the nozzle diameter must be increased, making it difficult to obtain fine particles with a small diameter of one sphere.

次に冷却水の温度は10〜80℃が好適である。Next, the temperature of the cooling water is preferably 10 to 80°C.

80℃を越えると球状溶湯の冷却が不充分になり。If the temperature exceeds 80°C, cooling of the spherical molten metal will be insufficient.

変形し易くなる。60〜80℃であれば粒子表面に光沢
が生じ仕上りが奇麗になる。また60〜40℃であれば
表面が艶消しの状態になる。10℃より低いとノズル先
端で溶湯が球状にならずに冷却され、目詰まり等の不都
合を生じる。
It becomes easier to deform. If the temperature is 60 to 80°C, the particle surface will become glossy and the finish will be beautiful. Further, if the temperature is 60 to 40°C, the surface becomes matte. If the temperature is lower than 10°C, the molten metal will cool at the tip of the nozzle without becoming spherical, causing problems such as clogging.

溶湯は種々の金属を用いることが出来7例えば。Various metals can be used as the molten metal, for example.

亜鉛、カドミニウム、インジウムについて良好な結果を
得ている。また該亜鉛地金、カドミニウム地金の他に亜
鉛基合金や錫あるいはその他の低融点金属合金について
も好適に実施出来る。
Good results have been obtained for zinc, cadmium, and indium. In addition to the zinc base metal and cadmium base metal, zinc-based alloys, tin, or other low-melting point metal alloys can also be suitably used.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、微細な球状粒子を容易に、かつ
安価に製造することが出来る。従来の滴下法では粒径の
下限は約2龍φであり、これより微細な粒子を製造する
のは困難である。ところが本発明の方法:/こよれば0
.6〜6朋φの粒子を容易に製造することが出来る。し
かもノズルを水中に挿入して実施できるので、従来のよ
うな水面からのノズル位置の調整に煩わされることが無
く、実施が極めて容易である。
According to the method of the present invention, fine spherical particles can be produced easily and at low cost. In the conventional dropping method, the lower limit of the particle size is about 2 φ, and it is difficult to produce particles finer than this. However, according to the method of the present invention: 0
.. Particles with a diameter of 6 to 6 mm can be easily produced. Furthermore, since the nozzle can be inserted into the water, there is no need to worry about adjusting the position of the nozzle from the water surface as in the conventional method, and the process is extremely easy.

更に2本発明の方法は微細粒子の形成速度が速く、大量
製造に適する実用上火きな利点を有する。
Furthermore, the method of the present invention has a practical advantage in that the formation rate of fine particles is fast and is suitable for mass production.

また実施装置の構成も簡略である。Furthermore, the configuration of the implementation device is also simple.

〔実施例〕〔Example〕

実施例1 亜鉛純度9999係以−ヒの最純亜鉛地金を用い。 Example 1 Uses the purest zinc metal with a zinc purity of 9999.

予めルツボで溶融した亜鉛溶湯を用い、耐火物製容器の
底面に内径07朋φの磁性管を底面から5mmの長さに
取付けた容器に、注湯して、湯の深さを100〜120
 mmに保ちつつ、ガスバーナ等による外部加熱により
溶湯温度を490〜510℃に保ち、ノズル先端と冷却
水面との間隔を5朋に保持し、70〜80℃の冷却水に
溶湯をノズルから連続で流出させ水冷固化して球形亜鉛
粒を製造した。
Using molten zinc melted in advance in a crucible, pour the molten metal into a refractory container with a magnetic tube with an inner diameter of 07 mm attached to the bottom at a length of 5 mm from the bottom to a depth of 100 to 120 mm.
The temperature of the molten metal was maintained at 490 to 510°C by external heating using a gas burner, etc., and the distance between the nozzle tip and the cooling water surface was maintained at 5 mm, and the molten metal was continuously poured from the nozzle into the cooling water at 70 to 80°C. It was poured out and solidified by water cooling to produce spherical zinc particles.

その結果球状の均一形状で粒径1.41〜2.L+mm
の球形亜鉛法が得らJ[た。
The result is a uniform spherical shape with a particle size of 1.41-2. L+mm
The spherical zinc method was obtained.

粒径分布を表−1に示す。The particle size distribution is shown in Table-1.

表−1 万また溶湯の流出時においては、ノズルの閉塞は認めら
れなかった。
Table 1: No clogging of the nozzle was observed when the molten metal flowed out.

実施例2 実施例1と同様な装置でノズル内径1.5龍φに亜鉛溶
湯を注湯し湯の高さを30〜45朋に保ちつつ、ガスバ
ーナーによる外部加熱で溶湯の温度を560〜540℃
に保持し、60〜40℃の冷却水中に連続流出し同様に
球形亜鉛粒を製造した。この条件で得た球状亜鉛の粒径
分布を表2に示した。
Example 2 Molten zinc was poured into a nozzle with an inner diameter of 1.5 mm using the same device as in Example 1, and while maintaining the height of the molten metal at 30 to 45 mm, the temperature of the molten metal was raised to 560 mm by external heating with a gas burner. 540℃
Spherical zinc particles were produced in the same manner by maintaining the temperature at 60 to 40° C. and continuously flowing out into cooling water at a temperature of 60 to 40°C. Table 2 shows the particle size distribution of the spherical zinc obtained under these conditions.

実施例6 実施例1と同様の装置を用い、カドミニウム地金(Cd
99.995%)を予めルツボで溶融した溶湯を注湯し
、ノズル0.13mmφ冷却水温60〜40℃以外は実
施例1と同一条件で球状カドミニウム粒を製造した。
Example 6 Using the same apparatus as in Example 1, cadmium ingot (Cd
Spherical cadmium particles were produced under the same conditions as in Example 1 except that the nozzle had a diameter of 0.13 mm and the cooling water temperature was 60 to 40°C.

得られたカドミニウム粒の粒径分布を:&−6に示(−
だ。亜鉛と同じく溶湯流出時にはノズルの閉塞は認めら
れなかった。
The particle size distribution of the obtained cadmium particles is shown in: &-6 (-
is. As with zinc, no nozzle clogging was observed when the molten metal flowed out.

表−3Table-3

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施する装置構成の一例を示す慨略
図2図面中、1〇−装置、11−溶湯。 12−容器、16−水槽、14−ノズル。 15−加熱手段、16−給水口、17−排水口。 18−支持台
The figure is a schematic diagram showing an example of the configuration of an apparatus for carrying out the method of the present invention. In the drawing, 10-apparatus, 11-molten metal. 12-container, 16-water tank, 14-nozzle. 15-heating means, 16-water supply port, 17-drainage port. 18-Support stand

Claims (1)

【特許請求の範囲】 1 金属の溶湯を水中に落下させて金属粒を製造する際
、溶湯を導くノズルを水面に接触させるか、あるいは該
ノズルを水中に挿入し、溶湯を滴下せずに連続して水中
に注入して分散させることにより球状化する球状低融点
金属粒の製造方法。 2 亜鉛、カドミニウムまたはインジウムの溶湯を用い
、ノズル径が0.1〜4mmφ好ましくは0.3〜3m
mφ水面から溶湯底までの高さが10〜200mm、水
温10〜80℃である特許請求の範囲第1項の製造方法
[Claims] 1. When producing metal particles by dropping molten metal into water, a nozzle that guides the molten metal is brought into contact with the water surface, or the nozzle is inserted into the water so that the molten metal can be continuously flowed without dripping. A method for producing spherical low-melting point metal particles, which are made into spheroidal particles by injecting them into water and dispersing them. 2 Using molten metal of zinc, cadmium or indium, the nozzle diameter is 0.1 to 4 mmφ, preferably 0.3 to 3 m
The manufacturing method according to claim 1, wherein the height from the mφ water surface to the bottom of the molten metal is 10 to 200 mm, and the water temperature is 10 to 80°C.
JP24213986A 1986-10-14 1986-10-14 Production of spherical low melting metallic grain Pending JPS6397354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24213986A JPS6397354A (en) 1986-10-14 1986-10-14 Production of spherical low melting metallic grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24213986A JPS6397354A (en) 1986-10-14 1986-10-14 Production of spherical low melting metallic grain

Publications (1)

Publication Number Publication Date
JPS6397354A true JPS6397354A (en) 1988-04-28

Family

ID=17084891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24213986A Pending JPS6397354A (en) 1986-10-14 1986-10-14 Production of spherical low melting metallic grain

Country Status (1)

Country Link
JP (1) JPS6397354A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832567A (en) * 1981-08-19 1983-02-25 Nippon Mining Co Ltd Manufacture of metallic shot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832567A (en) * 1981-08-19 1983-02-25 Nippon Mining Co Ltd Manufacture of metallic shot

Similar Documents

Publication Publication Date Title
CN209157077U (en) Vertical casting crystallization apparatus and vertical continuous casting equipment with liquid storage room
US3845805A (en) Liquid quenching of free jet spun metal filaments
US5183493A (en) Method for manufacturing spherical particles out of liquid phase
US5310165A (en) Atomization of electroslag refined metal
US5381847A (en) Vertical casting process
KR102074861B1 (en) Apparatus and Method for Manufacturing Minute Powder
US4897111A (en) Method for the manufacture of powders from molten materials
US4515204A (en) Continuous metal casting
Joly et al. Complex alloy powders produced by different atomization techniques: relationship between heat flow and structure
Chun et al. Droplet-based manufacturing
US4971133A (en) Method to reduce porosity in a spray cast deposit
EP0200424B1 (en) Metal forming
US4168967A (en) Nickel and cobalt irregularly shaped granulates
JPS6397354A (en) Production of spherical low melting metallic grain
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
CN103111626B (en) Miniature alloy steel shot preparation method
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JPS60190503A (en) Production of metallic powder
US4060430A (en) Production of filaments of hexagonal close-packed metals and alloys thereof
JP4000389B2 (en) Metal grain manufacturing method and manufacturing apparatus
JPS6244508A (en) Apparatus for producing powder
JPS5832567A (en) Manufacture of metallic shot
Inoue et al. Production of Large Amorphous Spheres by Melt Ejection Into Stirred Water of Pd--Ni--P--B, Pd--Ni--Si--B and Pd--Cu--Si--B Alloys and Their Thermal Stability
JP2938215B2 (en) Continuous dissolution and outflow of materials
JPS58204104A (en) Manufacture of spherical metallic granule