JP2009160654A - System and method for manufacturing copper material with high specific surface area - Google Patents

System and method for manufacturing copper material with high specific surface area Download PDF

Info

Publication number
JP2009160654A
JP2009160654A JP2008179635A JP2008179635A JP2009160654A JP 2009160654 A JP2009160654 A JP 2009160654A JP 2008179635 A JP2008179635 A JP 2008179635A JP 2008179635 A JP2008179635 A JP 2008179635A JP 2009160654 A JP2009160654 A JP 2009160654A
Authority
JP
Japan
Prior art keywords
copper
copper material
water tank
surface area
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179635A
Other languages
Japanese (ja)
Inventor
Shoko Rin
書鴻 林
Chau-Shing Chen
朝興 陳
Eishin Cho
永森 張
Meisei Ka
明政 何
Zuisho Shu
瑞昌 周
Shundan O
俊男 汪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chang Chun Petrochemical Co Ltd
Original Assignee
Chang Chun Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chun Petrochemical Co Ltd filed Critical Chang Chun Petrochemical Co Ltd
Publication of JP2009160654A publication Critical patent/JP2009160654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0872Cooling after atomisation by water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a method for manufacturing a copper material with a high specific surface area. <P>SOLUTION: The system for manufacturing the copper material with the high specific surface area includes: a heating device 110 for heating and melting a solid copper material; a drainage device 120 enabling a copper molten liquid to flow out through an opening at the bottom by the gravity; and a cooling device 130 for cooling and solidifying the copper molten liquid flown out through the opening at the bottom of the drainage device to form the copper material with the high specific surface area. The manufacturing method therefor includes: a step of forming a copper molten liquid by heating and melting a solid copper material; a step of passing the copper molten liquid through an opening at the bottom of a drainage device by the gravity; and a step of cooling and solidifying the copper molten liquid flowing out through the opening at the bottom of the drainage device to be formed into the copper material with the high specific surface area. The copper material with the high specific surface area has an excellent solubility in a copper sulfate solution, is suitable for application of a copper plating process as a supply origin of copper ions, and can improve a copper plating effect in the overall plating system. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅材を製造するシステムおよび方法に関し、特に、高比表面積の銅材を製造するシステムおよび方法に関する。   The present invention relates to a system and method for manufacturing a copper material, and more particularly to a system and method for manufacturing a copper material having a high specific surface area.

銅めっきは、主に電気化学の作用により電解液中の銅イオンが還元されて金属銅になリ、更にその金属銅は陰極基材の表面を被覆する。その化学反応式は下記の通りである。
陽極:HO → 1/2 O + 2H + 2e-
陰極:CuSO + 2e- → Cu + SO 2-
In the copper plating, copper ions in the electrolytic solution are reduced to metal copper mainly due to electrochemical action, and the metal copper coats the surface of the cathode base material. The chemical reaction formula is as follows.
Anode: H 2 O → 1/2 O 2 + 2H + + 2e
Cathode: CuSO 4 + 2e → Cu + SO 4 2−

金属銅の被覆性能を確保するために、電解液における銅イオンの濃度安定性を維持することが必要である。一般に、業者は強酸で金属銅を溶解し、純粋な酸素又は空気を導入することにより、溶解した銅を酸化させ、電解液に存在する銅イオンの濃度を維持する。その化学反応式は下記の通りである。
Cu + HSO+ 1/2 O → CuSO + HO
In order to ensure the covering performance of metallic copper, it is necessary to maintain the concentration stability of copper ions in the electrolytic solution. In general, a trader dissolves metallic copper with a strong acid and introduces pure oxygen or air to oxidize the dissolved copper and maintain the concentration of copper ions present in the electrolyte. The chemical reaction formula is as follows.
Cu + H 2 SO 4 + 1/2 O 2 → CuSO 4 + H 2 O

従って、金属銅を素早く効率的に溶解させて、銅イオンになるようにすることは、電解液中の銅イオン濃度を安定した状態で供給する要件になる。   Therefore, it is a requirement to supply the copper ion concentration in the electrolytic solution in a stable state in order to dissolve the copper metal quickly and efficiently so as to become copper ions.

銅イオンを形成するための金属銅の種類及び形状は、溶解速度と直接の関連性がある。一般には、金属銅板の塊を強酸で溶解して酸化反応を行ない、電解銅箔の銅イオン源を提供する場合、金属銅板は強酸溶液との接触面積が限られているため、溶解効率は好ましくない。故に、従来は通常直径10mm以下の裸銅線を使用する。裸銅線は、電線・ケーブル製品の主な原料であり、銅錠、電解銅板、或いは、純銅を溶融モールドし、8.0mmまたは2.6mmなど、各々の線径になるように引き伸ばして製造される。   The type and shape of metallic copper for forming copper ions is directly related to the dissolution rate. In general, when an oxidation reaction is performed by dissolving a lump of a metal copper plate with a strong acid to provide a copper ion source for an electrolytic copper foil, the metal copper plate has a limited contact area with a strong acid solution, so the dissolution efficiency is preferable. Absent. Therefore, conventionally, a bare copper wire having a diameter of 10 mm or less is usually used. Bare copper wire is the main raw material for electric wires and cable products, and is manufactured by melting copper tablets, electrolytic copper plates, or pure copper, and stretching them to 8.0 mm or 2.6 mm. Is done.

特許文献1では、銅線の伝統的な製造方法として、分離された独立な機構で加熱溶融して、モールドおよび熱間圧延より直径7.94mm銅棒を製造する方法が提案されている。該銅棒は、更に、冷間引き抜き(cold drawing)と定期的アニーリング(annealing)との操作を経て銅線に仕上げられる。ところで、上記の方法は、極めて大量なエネルギーを消耗し、また、多くの労働力およびコストを必要とする。更に、特許文献2によると、製品は、溶融モールドおよび熱間成形(hot forming)作業により、過度に酸化されたり、材料によって潜在的に汚染される問題があった。   Patent Document 1 proposes a method of manufacturing a copper rod having a diameter of 7.94 mm by mold and hot rolling as a traditional method for manufacturing a copper wire by heating and melting by a separate independent mechanism. The copper rod is further finished into a copper wire through operations of cold drawing and periodic annealing. By the way, the above method consumes a very large amount of energy, and requires a lot of labor and cost. Further, according to Patent Document 2, there is a problem that the product is excessively oxidized or potentially contaminated by the material due to the melt molding and hot forming operation.

銅線は、同一重量の銅板に比べて、より大きな反応表面積を有し、電解めっき液の銅イオン元として適しているが、銅板に比べて、銅線はコストが高い。従って、銅板を網状に加工したエキスパンドメタルを銅イオン元の原料として、金属銅の溶解効率を高める方法が提案されているが、網状にした銅のエキスパンドメタルも高価でその供給源も限られているので、その方法も実用的でない。したがって、低コストで迅速且つ効率的に強酸溶液に溶解されて銅イオンを形成し得る電解めっき用高比表面積の銅材を製造する方法が期待されている。
中華民国特許第438909号 中華民国特許第242654号
A copper wire has a larger reaction surface area than a copper plate of the same weight and is suitable as a copper ion source of an electrolytic plating solution, but a copper wire is higher in cost than a copper plate. Therefore, a method has been proposed in which expanded metal obtained by processing a copper plate into a net shape is used as a raw material for copper ions, and a method for increasing the dissolution efficiency of metallic copper has been proposed. The method is also not practical. Therefore, a method for producing a copper material having a high specific surface area for electrolytic plating that can be rapidly and efficiently dissolved in a strong acid solution to form copper ions at low cost is expected.
Taiwan Patent No. 438909 Chinese Patent No. 242654

本発明の目的は、低コストで高比表面積の銅材を、製造するシステムおよび製造する方法を提供することにある。
本発明の他の目的は、廃棄物となったリサイクル可能な固体銅材を回収して、高比表面積の銅材を、製造するシステムおよび製造する方法を提供することにある。
本発明のさらに他の目的は、電解液に溶解され易い高比表面積の銅材を、製造するシステム、および製造する方法を提供することにある。
又、本発明のさらに他の目的は電解めっき用銅系の銅イオン元とする高比表面積の銅材を製造するシステムおよび方法を提供することにある。
An object of the present invention is to provide a system and a method for manufacturing a copper material having a high specific surface area at a low cost.
Another object of the present invention is to provide a system and a method for manufacturing a copper material having a high specific surface area by collecting a recyclable solid copper material that has become waste.
Still another object of the present invention is to provide a system and a method for manufacturing a copper material having a high specific surface area that is easily dissolved in an electrolytic solution.
Still another object of the present invention is to provide a system and method for producing a copper material having a high specific surface area based on a copper ion source for electrolytic plating.

上記の目的を達成するため、本発明は、
固体銅材を加熱溶融して銅の溶融液を形成するための加熱装置と、
上記加熱装置により形成された銅の溶融液を収容し、重力により銅の溶融液が底にある開口部を通って流出させることができる排流装置と、
上記排流装置の底にある開口部を通って流出する銅の溶融液を冷却固化し、高比表面積の銅材を形成する冷却装置と、
を備える高比表面積の銅材を製造するシステムを提供する。
In order to achieve the above object, the present invention provides:
A heating device for heating and melting a solid copper material to form a copper melt;
A drainage device that contains the copper melt formed by the heating device and allows the copper melt to flow out through the opening at the bottom by gravity;
A cooling device that cools and solidifies the molten copper that flows out through the opening at the bottom of the drainage device to form a copper material with a high specific surface area;
A system for producing a copper material having a high specific surface area is provided.

また、本発明は、
固体銅材を加熱溶融して銅の溶融液を形成する工程と、
重力により銅の溶融液を、排流装置の底にある開口部を通過させる工程と、
上記排流装置の底にある開口部を通過して流出する銅の溶融液を高比表面積の銅材に形成する冷却固化工程と、
を含む高比表面積の銅材を製造する方法を提供する。
The present invention also provides:
A step of heating and melting a solid copper material to form a copper melt;
Passing the copper melt by gravity through an opening in the bottom of the drainage device;
A cooling and solidifying step of forming a copper melt that flows out through the opening at the bottom of the exhaust device into a high specific surface area copper material;
A method for producing a copper material having a high specific surface area is provided.

本発明のシステムおよび製造方法により製造された高比表面積の銅材は、硫酸銅溶液中に優れた溶解性を具備するものであり、銅めっき工程の利用に適用し、また、銅イオンの供給源として全体的なめっきシステムでは、銅めっき効果を向上させることが可能である。   The copper material having a high specific surface area produced by the system and the production method of the present invention has excellent solubility in a copper sulfate solution, and is applied to use of a copper plating process, and also supplies copper ions. The overall plating system as a source can improve the copper plating effect.

図1は、本発明中で高比表面積の銅材を製造するシステムのブロック図である。
本発明におけるシステムは、固体銅材を加熱溶融して銅の溶融液を形成するための加熱装置110と、上記加熱装置110により形成された銅の溶融液を収容し、重力により銅の溶融液が底にある開口部を通って流出することができる排流装置120と、上記排流装置120の底にある開口部を通って流出する銅の溶融液を冷却固化し、高比表面積の銅材を形成する冷却装置130と、を含む。
FIG. 1 is a block diagram of a system for producing a copper material having a high specific surface area in the present invention.
The system in the present invention contains a heating device 110 for heating and melting a solid copper material to form a copper melt, and a copper melt formed by the heating device 110, and the copper melt by gravity. A drainage device 120 capable of flowing out through an opening in the bottom, and a copper melt flowing out through the opening in the bottom of the drainage device 120 is cooled and solidified to produce a high specific surface area copper And a cooling device 130 for forming the material.

本発明のシステムで使用される固体銅材の実例は、銅の塊、銅錠、電解銅板、板状の銅、銅線、廃棄された銅材またはそれらの混合物に加えて、例えば、不純物を含まない一級廃棄銅箔、不純物含有量が3%以下の二級廃棄銅箔、およびバインダーなどの不純物を含んだ三級廃棄銅箔が挙げられる。それらの固体銅材は、加熱溶融によって、大部分の油成分および有機不純物を除去され得、銅の溶融液を形成する。該銅の溶融液が排流装置に注入されると、重力により排流装置の底にある開口部を通って流出し、且つ真下に排流装置の下方に設けられた冷却装置に流れ込み、冷却装置で固化されて、仮比重1.6〜4.0(好ましくは1.8〜3.5、より好ましくは1.8〜2.6)の高比表面積の銅材(例えば、糸状、線状、粒状、片状またはランダム状;好ましくは茶葉のような形)を形成する。   Examples of solid copper materials used in the system of the present invention include, for example, impurities in addition to copper lumps, copper tablets, electrolytic copper plates, plate copper, copper wire, discarded copper materials or mixtures thereof. First-class waste copper foil not containing, second-grade waste copper foil having an impurity content of 3% or less, and third-grade waste copper foil containing impurities such as a binder. These solid copper materials can be removed of most oil components and organic impurities by heat melting to form a copper melt. When the copper melt is injected into the drainage device, it flows out through an opening at the bottom of the drainage device by gravity and flows into a cooling device provided directly below the drainage device. A copper material (for example, thread-like, wire) having a high specific surface area having a temporary specific gravity of 1.6 to 4.0 (preferably 1.8 to 3.5, more preferably 1.8 to 2.6) solidified by an apparatus. Shaped, granular, flakes or random; preferably shaped like tea leaves).

図2は、本発明のシステムにおける第一の具体的な態様を示す。
該具体的な態様においては、本発明のシステムには加熱装置として坩堝210を用い、固体銅材が加熱され、溶融状態となって、少なくとも約1180℃〜1300℃(好ましくは1200℃〜1250℃)の銅の溶融液を形成する。銅の溶融液の温度が1150℃より低いと、銅の溶融液は表面に凝固が発生して膜を形成し、流出が困難となったり、金型の孔を塞ぎ易くなる。
また、排流装置として桶状の金型220を用い、坩堝210の中にある銅の溶融液を収容する。図2aに示すように、該桶状の金型220の底には、複数の開口部222が設けられ、桶状の金型220中の銅の溶融液が重力により底にある開口部を通って桶状の金型から流出する。全般的には、該桶状の金型220の底にある開口部の直径Φは、2.5mm〜20mm(好ましくは3mm〜15mm、より好ましくは5mm〜10mm)の範囲内にある。開口部の直径が小さすぎると、塞ぎが起き易い、桶状の金型220の中にある銅の溶融液が重力により開口部を通って流出することが困難になり、逆に、開口部の直径が大きすぎると、高比表面積の銅材を形成するのに不利である。一般に、開口部の直径が3mmより小さいと、塞ぎが起き易い。該桶状の金型220の底にある開口部の間の距離および開口部の数量を調整することにより、開口部の塞ぎの減少にも役立つ。例えば、該桶状の金型220の底にある開口部の間隔は、10mm〜50mm(好ましくは15mm〜40mm、より好ましくは20mm〜30mm)の範囲内にする。
FIG. 2 shows a first specific embodiment of the system of the present invention.
In this specific embodiment, the system of the present invention uses a crucible 210 as a heating device, and the solid copper material is heated to a molten state to at least about 1180 ° C to 1300 ° C (preferably 1200 ° C to 1250 ° C). ) To form a copper melt. When the temperature of the copper melt is lower than 1150 ° C., the copper melt is solidified on the surface to form a film, making it difficult to flow out or easily closing the mold hole.
Further, a bowl-shaped mold 220 is used as a drainage device, and the molten copper in the crucible 210 is accommodated. As shown in FIG. 2a, a plurality of openings 222 are provided at the bottom of the bowl-shaped mold 220, and the molten copper in the bowl-shaped mold 220 passes through the opening at the bottom by gravity. Out of the bowl-shaped mold. Generally, the diameter Φ of the opening at the bottom of the bowl-shaped mold 220 is in the range of 2.5 mm to 20 mm (preferably 3 mm to 15 mm, more preferably 5 mm to 10 mm). If the diameter of the opening is too small, it becomes difficult for the copper melt in the bowl-shaped mold 220 to easily close up to flow out through the opening due to gravity. If the diameter is too large, it is disadvantageous for forming a copper material having a high specific surface area. In general, if the diameter of the opening is smaller than 3 mm, blockage is likely to occur. Adjusting the distance between the openings at the bottom of the bowl-shaped mold 220 and the number of openings helps to reduce the blocking of the openings. For example, the interval between the openings at the bottom of the bowl-shaped mold 220 is set in the range of 10 mm to 50 mm (preferably 15 mm to 40 mm, more preferably 20 mm to 30 mm).

更に、桶状の金型を高温に保持することにより、例えば、電熱で800℃の温度を保持することで、塞ぎを防止することができる。一方、桶状の金型の内部を高温被覆材で被覆して離型効果を高め、粘着を防止する。
図2に示すように、該具体的な態様においては、冷却装置として冷却水槽230を使用する。該冷却水槽230は該桶状の金型220の下方に設けられる。桶状の金型220の中には銅の溶融液が重力により底にある開口部を通って流出し、真下に設置された水の深さが約200mm〜1500mmの冷却水槽230に流れ込み、冷却固化して、糸状、線状、粒状、片状またはランダム状の銅材を形成する。冷却水槽の水温は通常10℃〜35℃(好ましくは28℃〜35℃、より好ましくは29℃〜33℃)の範囲内にある。
Furthermore, by holding the bowl-shaped mold at a high temperature, for example, by holding a temperature of 800 ° C. with electric heat, blockage can be prevented. On the other hand, the inside of the bowl-shaped mold is covered with a high-temperature coating material to enhance the release effect and prevent sticking.
As shown in FIG. 2, in this specific embodiment, a cooling water tank 230 is used as a cooling device. The cooling water tank 230 is provided below the bowl-shaped mold 220. In the bowl-shaped mold 220, the copper melt flows out through the opening at the bottom by gravity, flows into the cooling water tank 230 having a depth of about 200 mm to 1500 mm, and is cooled down. Solidify to form a thread-like, linear, granular, piece-like or random copper material. The water temperature of the cooling water tank is usually in the range of 10 ° C to 35 ° C (preferably 28 ° C to 35 ° C, more preferably 29 ° C to 33 ° C).

該具体的な態様では、本発明のシステムにおける冷却水槽の水の表面と該排流装置の底部との距離(高さ)をhとすると、通常、hは500mm〜4500mm(好ましくは1000mm〜4000mm、より好ましくは2000mm〜3500mm)の範囲内にある。一般に、高さの差(例え、1000mm以上)を適宜に保持すると、銅の溶融液が冷却水槽230に流れ込むときに溶融体が跳ね飛ぶのを避けることができる。一方、hが大き過ぎると、仮比重(bulk density)の高すぎる細粒状銅材を形成するようになる。図2bに示すように、本発明のシステムにおいては、冷却水槽230の底部に、更に水を汲み上げるための給水口232が設けられている。よって、水槽における冷却水の波動性を高めることで、高比表面積の銅材を形成することに役立つ。
図3は、本発明のシステムでの第二の具体的な態様を示す。第一の具体的な態様と同じように、本発明の具体的な態様においては、加熱装置として坩堝310を用い、固体銅材を加熱し、溶融状態として、銅の溶融液を形成する。底に複数の開口部が設けられた桶状の金型320に、坩堝310中の銅の溶融液を収容し、桶状の金型320中の銅の溶融液が重力により底にある開口部を通して流出して真下に該桶状の金型320の下方にある冷却水槽330に流れ込む。
In the specific embodiment, h is usually 500 mm to 4500 mm (preferably 1000 mm to 4000 mm), where h is the distance (height) between the surface of the water in the cooling water tank and the bottom of the drainage device in the system of the present invention. , More preferably in the range of 2000 mm to 3500 mm). In general, when the difference in height (for example, 1000 mm or more) is appropriately maintained, the molten material can be prevented from splashing when the copper melt flows into the cooling water tank 230. On the other hand, if h is too large, a fine-grained copper material having a too high bulk density is formed. As shown in FIG. 2 b, in the system of the present invention, a water supply port 232 for further pumping water is provided at the bottom of the cooling water tank 230. Therefore, it is useful for forming a copper material having a high specific surface area by increasing the wave nature of the cooling water in the water tank.
FIG. 3 shows a second specific embodiment in the system of the present invention. As in the first specific embodiment, in the specific embodiment of the present invention, the crucible 310 is used as a heating device, the solid copper material is heated, and a molten copper is formed in a molten state. A bowl-shaped mold 320 provided with a plurality of openings in the bottom contains the copper melt in the crucible 310, and the copper melt in the bowl-shaped mold 320 is open at the bottom by gravity. And flows into the cooling water tank 330 below the bowl-shaped mold 320 just below.

本発明の具体的な態様においては、該桶状の金型320の底部と冷却水槽330の水平面との間にhの高さの差を設けている。桶状の金型320の底部と冷却水槽330の水平面の間には、更に送風管340が設けられ、銅の溶融液が桶状の金型320から流出する方向に対して垂直方向より冷風を送り出し、桶状の金型320の底部から流出する銅の溶融液を冷風により初期的に降温させ、更に、冷却水槽330に流れ込ませ、固化させて、高比表面積の銅材を形成する。   In a specific aspect of the present invention, a height difference of h is provided between the bottom of the bowl-shaped mold 320 and the horizontal surface of the cooling water tank 330. A blower pipe 340 is further provided between the bottom of the bowl-shaped mold 320 and the horizontal surface of the cooling water tank 330, and cool air is blown from a direction perpendicular to the direction in which the copper melt flows out of the bowl-shaped mold 320. The copper melt that is fed out and flows out from the bottom of the bowl-shaped mold 320 is initially cooled by cold air, and further flows into the cooling water tank 330 and solidifies to form a copper material having a high specific surface area.

図3に示すように、桶状の金型320の底部と冷却水槽330との間にある送風管340は、更に複数の送風口340a、340b、340cを備え、銅の溶融液が該桶状の金型320から流出する方向に対し垂直方向より60℃〜100℃の熱風、20℃〜30℃の常温風および15℃〜20℃の冷風を送り出し、桶状の金型320の底部から流出する銅の溶融液は徐々に温度を下げていき、冷却水槽330に流れ込んで固化されて、高比表面積の銅材が形成される。   As shown in FIG. 3, the blower pipe 340 between the bottom of the bowl-shaped mold 320 and the cooling water tank 330 further includes a plurality of blower openings 340a, 340b, and 340c, and the copper melt is in the bowl-like shape. 60 ° C-100 ° C hot air, 20 ° C-30 ° C room temperature air, and 15 ° C-20 ° C cold air are sent out from the bottom of the bowl-shaped mold 320 from the direction perpendicular to the direction of flowing out of the mold 320. The copper melt is gradually lowered in temperature and flows into the cooling water tank 330 to be solidified to form a copper material having a high specific surface area.

図4は、本発明のシステムでの第三の具体的な態様を示す。第一の具体的な態様と同じように、本発明の具体的な態様においては、加熱装置として坩堝410を用い、これに固体銅材を入れて加熱し、固体銅材を溶融状態として、銅の溶融液を形成する。底に複数の開口部が設けられた桶状の金型420に坩堝410中の銅の溶融液を収容し、桶状の金型420中の銅の溶融液が重力により底にある開口部を通って流出し、該桶状の金型420の下方にある冷却水槽430に流れ込む。   FIG. 4 shows a third specific embodiment in the system of the present invention. As in the first specific embodiment, in the specific embodiment of the present invention, a crucible 410 is used as a heating device, a solid copper material is put into the heating device, the solid copper material is melted, and the copper is melted. To form a melt. The bowl-shaped mold 420 provided with a plurality of openings at the bottom contains the copper melt in the crucible 410, and the copper melt in the bowl-shaped mold 420 has an opening at the bottom due to gravity. It flows out and flows into the cooling water tank 430 below the bowl-shaped mold 420.

本発明の具体的な態様においては、該桶状の金型420の底部と冷却水槽430の水平面との間に所定の高さがあり、冷却水槽430の一側面近傍に複数のノズル440を有する水管を立てて、銅の溶融液が該桶状の金型420から流出する方向と直交する方向から連続的に霧化された水を噴出させ、それによって、桶状の金型420の底部から流出する銅の溶融液が、該霧化された水によって冷却される。該溶融液は、冷却水槽430に流れ込んで固化し、高比表面積の銅材が形成される。   In a specific embodiment of the present invention, there is a predetermined height between the bottom of the bowl-shaped mold 420 and the horizontal surface of the cooling water tank 430, and a plurality of nozzles 440 are provided near one side surface of the cooling water tank 430. A water pipe is erected to eject water that is continuously atomized from a direction perpendicular to the direction in which the copper melt flows out of the bowl-shaped mold 420, and thereby, from the bottom of the bowl-shaped mold 420. The flowing copper melt is cooled by the atomized water. The molten liquid flows into the cooling water tank 430 and solidifies to form a copper material having a high specific surface area.

図5は、本発明のシステムでの第四の具体的な態様を示す。本発明の第4の実施態様のシステムにおいては、加熱装置として坩堝510を用いており、固体銅材が加熱され、溶融状態となって、銅の溶融液を形成する。底部に複数の開口部522が設けられたシュート状の金型520が、排流装置として用いられ、水平面に対して90度以下の傾斜角で冷却水槽530の水面の上に設けられる。坩堝510中の銅の溶融液を該傾斜金型520に流すと、銅の溶融液がシュート状の金型520に沿って流れると同時に、重力により該傾斜金型520の底部にある開口部522を通って、図5に示すように、柱状になって下方の冷却水槽530に流れ込み、固化して高比表面積の銅材が形成される。   FIG. 5 shows a fourth specific embodiment in the system of the present invention. In the system of the fourth embodiment of the present invention, a crucible 510 is used as a heating device, and the solid copper material is heated to be in a molten state to form a copper melt. A chute-shaped mold 520 provided with a plurality of openings 522 at the bottom is used as a drainage device, and is provided on the water surface of the cooling water tank 530 at an inclination angle of 90 degrees or less with respect to the horizontal plane. When the molten copper in the crucible 510 flows into the inclined mold 520, the molten copper flows along the chute-shaped mold 520, and at the same time, the opening 522 at the bottom of the inclined mold 520 is caused by gravity. As shown in FIG. 5, it passes through the cooling water tank 530 below and solidifies to form a copper material having a high specific surface area.

本発明は、高比表面積の銅材を製造する方法も提供する。図6に示すように、本発明の方法は、固体銅材を加熱溶融して銅の溶融液を形成する加熱工程S610と、重力により銅の溶融液を排流装置の底にある開口部に通させる排流工程S620と、上記排流装置の底にある開口部を通って流出する銅の溶融液を高比表面積の銅材を形成するように冷却固化する冷却工程S630とを含む。   The present invention also provides a method for producing a copper material having a high specific surface area. As shown in FIG. 6, the method of the present invention includes a heating step S <b> 610 in which a solid copper material is heated and melted to form a copper melt, and the copper melt is applied to the opening at the bottom of the drainage device by gravity. And a cooling step S630 for cooling and solidifying the copper melt flowing out through the opening at the bottom of the draining device so as to form a copper material having a high specific surface area.

具体的な実施形態においては、固体銅材を坩堝中にて加熱工程を行ない、加熱溶融して、銅の溶融液を形成させる。更に、必要におうじて1分〜4分程度静置し、再度坩堝中にある銅の溶融液を底に複数の開口部が設けられた該排流装置に注入し、或いは、坩堝中にある銅の溶融液を直接に該排流装置に注入する。次いで、該排流装置にある銅の溶融液が重力により底にある開口部を通って流出して、該排流装置の下方に設置された冷却装置に流れ込み、更に、冷却装置中にある冷却水で固化し、糸状、線状、粒状、片状またはランダム状の高比表面積の銅材が形成される。一方、該排流装置の底にある開口部から流出する銅の溶融液を、先ず、冷風で第一次に降温させた後、更に冷却水槽および/または先に霧化された水にて降温させ、更に冷却水槽に流れ込ませ固化させて、高比表面積の銅材を形成することができる。   In a specific embodiment, a solid copper material is heated in a crucible and melted by heating to form a copper melt. Further, if necessary, leave still for about 1 to 4 minutes, and again inject the molten copper in the crucible into the drainage device provided with a plurality of openings at the bottom, or in the crucible. A molten copper is poured directly into the drainage device. Next, the copper melt in the drainage device flows out by gravity through the opening at the bottom, flows into the cooling device installed below the drainage device, and further cools in the cooling device. Solidified with water, a copper material having a high specific surface area in the form of thread, line, grain, piece or random is formed. On the other hand, the copper melt flowing out from the opening at the bottom of the drainage device is first cooled first with cold air and then cooled with a cooling water tank and / or previously atomized water. Then, it is allowed to flow into a cooling water tank and solidify to form a copper material having a high specific surface area.

以下に、具体的な実施例により本発明の特徴および効果をさらに詳しく説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the features and effects of the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

実施例1
銅の塊6.5kg重を坩堝の中に入れ、加熱して溶融状態にして、約1200℃の銅の溶融液を形成した。銅の溶融液を底に6個の直径5mmの開口部が設けられた桶状の金型に注ぎ込み、重力により桶状の金型の底にある開口部を通して該桶状の金型から流出させた。桶状の金型の下方に冷却水槽を設け、水槽の水の深さ1300mm、水温28.7℃、底部には水を供給するための給水口を設けた。水面と桶状の金型の底部との距離を2600mmとした。該桶状の金型より流出した銅の溶融液が、重力により複数の柱状になって真下の冷却水槽に流れ込み、冷却固化されて、重さ6.3kg、仮比重約2.5の銅材試料が形成された。
Example 1
A 6.5 kg weight of copper mass was placed in a crucible and heated to a molten state to form a copper melt at about 1200 ° C. The molten copper is poured into a bowl-shaped mold having six openings of 5 mm in diameter at the bottom, and is allowed to flow out of the bowl-shaped mold through an opening at the bottom of the bowl-shaped mold by gravity. It was. A cooling water tank was provided below the bowl-shaped mold, the water depth of the water tank was 1300 mm, the water temperature was 28.7 ° C., and the water supply port for supplying water was provided at the bottom. The distance between the water surface and the bottom of the bowl-shaped mold was 2600 mm. The copper melt that has flowed out of the bowl-shaped mold flows into a cooling water tank directly under the shape of a plurality of columns by gravity, and is cooled and solidified to be a copper material having a weight of 6.3 kg and a provisional specific gravity of about 2.5. A sample was formed.

実施例2〜5
表1の内容により、実施例1の工程を行ない、出来上がった銅材試料の仮比重を表1に記入した。
Examples 2-5
According to the contents of Table 1, the process of Example 1 was performed, and the temporary specific gravity of the finished copper material sample was entered in Table 1.

実施例6〜12
表1の内容により、桶状の金型の底にある開口部の数を変更し、実施例1の工程を行ない、出来上がった銅材試料の仮比重を表1に記入した。
Examples 6-12
According to the contents of Table 1, the number of openings at the bottom of the bowl-shaped mold was changed, the process of Example 1 was performed, and the temporary specific gravity of the finished copper material sample was entered in Table 1.

実施例13〜14
表1の内容により、冷却水の水温を変更し、実施例1の工程を行ない、出来上がった銅材試料の仮比重を表1に記入した。
Examples 13-14
The water temperature of the cooling water was changed according to the contents of Table 1, the process of Example 1 was performed, and the temporary specific gravity of the finished copper material sample was entered in Table 1.

Figure 2009160654
Figure 2009160654

実施例13(Lot 69)
銅の塊6.5kg重を坩堝の中に入れ、加熱して溶融状態にして、約1200℃の銅の溶融液を形成した。銅の溶融液を、底に13個の直径5mmの開口部が設けられた桶状の金型に注ぎ込み、重力により桶状の金型の底にある開口部を通って該桶状の金型から流出させた。該桶状の金型の下方に冷却水槽を設け、水槽の水の深さを1300mm、水温31.0℃とし、底部には給水するための供水口を設け、水面と桶状の金型の底部との距離を3700mmとした。複数のノズルを有する水管を桶状の金型の下方に金型の底部と500mm離れる所に立て、桶状の金型より流出する銅の溶融液を霧化された水より初期的に冷却し、重力により真下にある冷却水槽に流して、冷却固化して重さ6.3kg、仮比重約3.0の銅材試料を形成した。
Example 13 (Lot 69)
A 6.5 kg weight of copper mass was placed in a crucible and heated to a molten state to form a copper melt at about 1200 ° C. The molten copper is poured into a bowl-shaped mold having 13 openings of 5 mm in diameter at the bottom, and the bowl-shaped mold is passed through the opening at the bottom of the bowl-shaped mold by gravity. Spilled from. A cooling water tank is provided below the bowl-shaped mold, the depth of the water in the tank is 1300 mm, the water temperature is 31.0 ° C., and a water supply port is provided at the bottom to supply water. The distance from the bottom was 3700 mm. A water pipe having a plurality of nozzles is placed below the bowl-shaped mold at a position 500 mm away from the bottom of the mold, and the copper melt flowing out from the bowl-shaped mold is cooled initially from the atomized water. The sample was poured into a cooling water bath directly under the force of gravity and solidified by cooling to form a copper material sample having a weight of 6.3 kg and a provisional specific gravity of about 3.0.

実施例14(Lot 71)
銅の塊6.5kg重を坩堝の中に入れ、加熱して溶融状態にし、約1200℃の銅の溶融液を形成した。銅の溶融液を、底に13個の直径5の開口部が設けられた桶状の金型に注ぎ込み、重力により桶状の金型の底にある開口部を通して該桶状の金型から流出させた。該桶状の金型の下方に冷却水槽を設け、水槽の水の深さを1300mm、水温を31.0℃とし、底部には給水するための給水口を設け、水面を桶状の金型の底部との距離を700mmとした。該桶状の金型より流出した銅の溶融液を、重力により真下にある冷却水槽に流し、冷却固化して、重さ6.0kg、仮比重約3.5の銅材試料を形成した。
Example 14 (Lot 71)
A 6.5 kg weight of copper mass was placed in a crucible and heated to a molten state to form a copper melt at about 1200 ° C. The molten copper is poured into a bowl-shaped mold having 13 diameter 5 openings at the bottom, and flows out of the bowl-shaped mold by gravity through the opening at the bottom of the bowl-shaped mold. I let you. A cooling water tank is provided below the bowl-shaped mold, the depth of the water in the tank is 1300 mm, the water temperature is 31.0 ° C., a water supply port is provided at the bottom, and the water surface is a bowl-shaped mold. The distance from the bottom of this was 700 mm. The copper melt that flowed out of the bowl-shaped mold was poured into a cooling water bath directly under the force of gravity and solidified by cooling to form a copper material sample having a weight of 6.0 kg and a provisional specific gravity of about 3.5.

試験例1
仮比重約2.3の60kgの銅材試料1と、仮比重0.8の長さ2.6mmの銅線とを、それぞれに硫酸銅電解液(硫酸の濃度は130g/L)の中に置き、94時間溶解試験を行った。実験終了後、残った銅線及び銅材試料1を取出し、脱イオン水で洗浄した。更にオーブンで乾燥させ、水分を除いて、重さを測り、溶解速度を計算して、それらの結果を表2に記入した。
Test example 1
A 60 kg copper material sample 1 with a temporary specific gravity of about 2.3 and a copper wire with a temporary specific gravity of 0.8 mm and a length of 2.6 mm are placed in a copper sulfate electrolyte (the concentration of sulfuric acid is 130 g / L). The dissolution test was conducted for 94 hours. After the experiment was completed, the remaining copper wire and copper material sample 1 were taken out and washed with deionized water. Further, it was dried in an oven, moisture was removed, weighed, the dissolution rate was calculated, and the results were entered in Table 2.

試験例2
仮比重約1.6の30kgの銅材試料2と、仮比重3.5の8mm長さの銅線をそれぞれに硫酸銅電解液(硫酸の濃度は130g/L)の中に置き、19.5時間溶解試験を行った。実験終了後、残った銅線及び銅材試料2を取出し、脱イオン水で洗浄した。更にオーブンで乾燥させ、水分を除いて、重さを測り、溶解速度を計算して、それらの結果を表2に記入した。
Test example 2
18. Place a 30 kg copper material sample 2 with a temporary specific gravity of about 1.6 and an 8 mm long copper wire with a temporary specific gravity of 3.5 in a copper sulfate electrolyte (the concentration of sulfuric acid is 130 g / L). The dissolution test was conducted for 5 hours. After the experiment was completed, the remaining copper wire and copper material sample 2 were taken out and washed with deionized water. Further, it was dried in an oven, moisture was removed, weighed, the dissolution rate was calculated, and the results were entered in Table 2.

Figure 2009160654
Figure 2009160654

表2の結果によると、本発明によって作られた高比表面積の銅材は、より良い溶解率を備え、銅イオンの供給源として銅めっき工程の応用に適し、全体的なめっきシステムにおける銅めっき効果を向上させることができたことが分かる。   According to the results in Table 2, the high specific surface area copper material made according to the present invention has better dissolution rate, suitable for copper plating process application as a source of copper ions, copper plating in the overall plating system It turns out that the effect was able to be improved.

図1は、本発明中で高比表面積の銅材を製造するシステムのブロック図である。FIG. 1 is a block diagram of a system for producing a copper material having a high specific surface area in the present invention. 図2は、本発明のシステムにおける第一の具体的な態様を示す。FIG. 2 shows a first specific embodiment of the system of the present invention. 図2aは、本発明の第一の具体的な態様における桶状の金型を示す。FIG. 2a shows a bowl-shaped mold in the first specific embodiment of the present invention. 図2bは、本発明の第一の具体的な態様における冷却水槽を示す。FIG. 2b shows the cooling water tank in the first specific embodiment of the present invention. 図3は、本発明のシステムにおける第二の具体的な態様を示す。FIG. 3 shows a second specific embodiment of the system of the present invention. 図4は、本発明のシステムにおける第三の具体的な態様を示す。FIG. 4 shows a third specific embodiment of the system of the present invention. 図5は、本発明のシステムにおける第四の具体的な態様を示す。FIG. 5 shows a fourth specific embodiment in the system of the present invention. 図6は、本発明中で高比表面積の銅材を製造する方法のフルーチャートである。FIG. 6 is a flow chart of a method for producing a copper material having a high specific surface area in the present invention.

符号の説明Explanation of symbols

110 加熱装置
120 排流装置
130 冷却装置
210、310、410、510 坩堝
220、320、420、520 排流装置とする金型
222、522 開口部
230、330、430、530 冷却水槽
232 給水口
340 送風管
340a、340b、340c 送風口
440 ノズル
DESCRIPTION OF SYMBOLS 110 Heating device 120 Drainage device 130 Cooling device 210,310,410,510 Crucible 220,320,420,520 Mold 222 used as a drainage device 222,522 Opening part 230,330,430,530 Cooling water tank 232 Water supply port 340 Air duct 340a, 340b, 340c Air outlet 440 Nozzle

Claims (20)

固体銅材を加熱溶融して銅の溶融液を形成するための加熱装置と、
上記加熱装置により形成された銅の溶融液を収容し、重力により銅の溶融液が底にある開口部を通って流出することができる排流装置と、
上記排流装置の底にある開口部を通って流出する銅の溶融液を冷却固化し、高比表面積の銅材を形成するための冷却装置と、
を備えることを特徴とする、高比表面積の銅材を製造するシステム。
A heating device for heating and melting a solid copper material to form a copper melt;
A drainage device that accommodates the copper melt formed by the heating device and allows the copper melt to flow out through the opening at the bottom by gravity;
A cooling device for cooling and solidifying a copper melt flowing out through the opening at the bottom of the exhaust device to form a copper material having a high specific surface area;
A system for producing a copper material having a high specific surface area.
上記固体銅材が、銅の塊、銅錠、電解銅板、板状銅、銅線、廃棄された銅材、および/または、それらの混合物からなる群より選択されるものである、請求項1に記載のシステム。   The solid copper material is selected from the group consisting of a lump of copper, a copper tablet, an electrolytic copper plate, plate copper, a copper wire, a discarded copper material, and / or a mixture thereof. The system described in. 上記排流装置の底にある開口部の直径Φが2.5mm〜20mmの範囲内にある、請求項1に記載のシステム。   The system according to claim 1, wherein the diameter Φ of the opening at the bottom of the drainage device is in the range of 2.5 mm to 20 mm. 上記冷却装置が水を入れた冷却水槽である、請求項1に記載のシステム。   The system according to claim 1, wherein the cooling device is a cooling water tank containing water. 上記冷却水槽が上記排流装置の下方に設けられている、請求項4に記載のシステム。   The system according to claim 4, wherein the cooling water tank is provided below the drainage device. 上記冷却水槽内の水の表面から上記排流装置の底部までの距離が、500mm〜4500mmである、請求項5に記載のシステム。   The system according to claim 5, wherein a distance from a surface of water in the cooling water tank to a bottom of the drainage device is 500 mm to 4500 mm. 上記冷却水槽内の水の深さが200mm〜1500mmである、請求項5に記載のシステム。   The system according to claim 5, wherein a depth of water in the cooling water tank is 200 mm to 1500 mm. 上記冷却水槽の底部には、給水するための給水口が設けられている、請求項5に記載のシステム。   The system according to claim 5, wherein a water supply port for supplying water is provided at the bottom of the cooling water tank. 上記冷却装置が、更に、上記冷却水槽と上記排流装置の間に設けられた送風管を含む、請求項5に記載のシステム。   The system according to claim 5, wherein the cooling device further includes a blow pipe provided between the cooling water tank and the drainage device. 上記冷却装置が、更に、上記冷却水槽と上記排流装置の間に設けられた複数のノズルを有する水管を含む、請求項5に記載のシステム。   The system according to claim 5, wherein the cooling device further includes a water pipe having a plurality of nozzles provided between the cooling water tank and the drainage device. 固体銅材を加熱溶融して銅の溶融液を形成する工程と、
重力により銅の溶融液を、排流装置の底にある開口部を通過させる工程と、
上記排流装置の底にある開口部を通過して流出する銅の溶融液を、高比表面積の銅材に形成するように冷却固化する工程と、
を含むことを特徴とする、高比表面積の銅材を製造する方法。
A step of heating and melting a solid copper material to form a copper melt;
Passing the copper melt by gravity through an opening in the bottom of the drainage device;
A step of cooling and solidifying the copper melt flowing out through the opening at the bottom of the exhaust device to form a copper material having a high specific surface area;
A method for producing a copper material having a high specific surface area.
上記固体銅材が、銅の塊、銅錠、電解銅板、板状銅、銅線、廃棄された銅材、および、それらの混合物からなる群より選択されるものである、請求項11に記載の方法。   The said solid copper material is what is selected from the group which consists of a lump of copper, a copper tablet, an electrolytic copper plate, plate copper, a copper wire, a discarded copper material, and mixtures thereof. the method of. 上記排流装置の底にある開口部の直径Φが2.5mm〜20mmの範囲内にある、請求項11に記載の方法。   The method according to claim 11, wherein the diameter Φ of the opening at the bottom of the drainage device is in the range of 2.5 mm to 20 mm. 上記排流装置の底にある開口部を通って流出する銅の溶融液を冷却装置で冷却固化して、高比表面積の銅材を製造する、請求項11に記載の方法。   The method according to claim 11, wherein a copper material having a high specific surface area is manufactured by cooling and solidifying a molten copper solution flowing out through an opening at a bottom of the exhaust device with a cooling device. 上記冷却水槽が上記排流装置の下方に設けられた、請求項14に記載の方法。   The method according to claim 14, wherein the cooling water tank is provided below the drainage device. 上記冷却水槽内の水の表面から上記排流装置の底部までの距離が500mm〜4500mmである、請求項15に記載の方法。   The method of Claim 15 that the distance from the surface of the water in the said cooling water tank to the bottom part of the said exhaust apparatus is 500 mm-4500 mm. 上記冷却水槽の水の深さが200mm〜1500mmである、請求項15に記載の方法。   The method according to claim 15, wherein the water depth of the cooling water tank is 200 mm to 1500 mm. 上記冷却水槽の底部には、給水のための給水口が設けられている、請求項15に記載の方法。   The method according to claim 15, wherein a water supply port for supplying water is provided at the bottom of the cooling water tank. 上記排流装置の底にある開口部を通って流出する銅の溶融液を、先ず、冷風で初期的に降温させた後、更に、上記冷却水槽に流し込んで固化させ、高比表面積の銅材を形成する、請求項15に記載の方法。   The copper melt flowing out through the opening at the bottom of the drainage device is first cooled down with cold air first, then poured into the cooling water tank and solidified to obtain a copper material having a high specific surface area. The method of claim 15, wherein: 上記排流装置の底にある開口部を通って流出する銅の溶融液に、先ず、霧化にした水を噴射することにより、初期的に銅の溶融液を降温させた後、更に、上記冷却水槽に流し込んで固化させて、高比表面積の銅材を形成する、請求項15に記載の方法。   First, the temperature of the copper melt is lowered by first spraying atomized water into the copper melt that flows out through the opening at the bottom of the exhaust device, and The method according to claim 15, wherein the copper material is poured into a cooling water tank and solidified to form a copper material having a high specific surface area.
JP2008179635A 2007-12-28 2008-07-09 System and method for manufacturing copper material with high specific surface area Pending JP2009160654A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150716A TW200928007A (en) 2007-12-28 2007-12-28 System and method for manufacturing high specific surface area copper material

Publications (1)

Publication Number Publication Date
JP2009160654A true JP2009160654A (en) 2009-07-23

Family

ID=40963855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179635A Pending JP2009160654A (en) 2007-12-28 2008-07-09 System and method for manufacturing copper material with high specific surface area

Country Status (4)

Country Link
JP (1) JP2009160654A (en)
KR (1) KR20090072973A (en)
MY (1) MY143327A (en)
TW (1) TW200928007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798077B1 (en) * 2016-03-17 2017-11-16 서울시립대학교 산학협력단 Apparatus for manufacturing metal having increased specific surface area and method using thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158875A (en) * 1979-05-30 1980-12-10 Matsushita Electric Ind Co Ltd Production of metal globule
JPS57192201A (en) * 1981-05-20 1982-11-26 Nippon Mining Co Ltd Flaky metal
JPS5832567A (en) * 1981-08-19 1983-02-25 Nippon Mining Co Ltd Manufacture of metallic shot
JPS61117205A (en) * 1984-11-13 1986-06-04 Mitsubishi Heavy Ind Ltd Production of metallic shot
JPS62110861A (en) * 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd Method and apparatus for pulverizing melt flow by liquid injection
JPH04193901A (en) * 1990-11-28 1992-07-14 Nikko Aen Kk Manufacture of spherical metal particles
JPH0920902A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Production of granular iron
JPH1121725A (en) * 1997-07-04 1999-01-26 Tokyo Seiko Co Ltd Production of copper-iron alloy staple fiber and copper-iron alloy staple fiber for friction material
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158875A (en) * 1979-05-30 1980-12-10 Matsushita Electric Ind Co Ltd Production of metal globule
JPS57192201A (en) * 1981-05-20 1982-11-26 Nippon Mining Co Ltd Flaky metal
JPS5832567A (en) * 1981-08-19 1983-02-25 Nippon Mining Co Ltd Manufacture of metallic shot
JPS61117205A (en) * 1984-11-13 1986-06-04 Mitsubishi Heavy Ind Ltd Production of metallic shot
JPS62110861A (en) * 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd Method and apparatus for pulverizing melt flow by liquid injection
JPH04193901A (en) * 1990-11-28 1992-07-14 Nikko Aen Kk Manufacture of spherical metal particles
JPH0920902A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Production of granular iron
JPH1121725A (en) * 1997-07-04 1999-01-26 Tokyo Seiko Co Ltd Production of copper-iron alloy staple fiber and copper-iron alloy staple fiber for friction material
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798077B1 (en) * 2016-03-17 2017-11-16 서울시립대학교 산학협력단 Apparatus for manufacturing metal having increased specific surface area and method using thereof

Also Published As

Publication number Publication date
MY143327A (en) 2011-04-29
TW200928007A (en) 2009-07-01
KR20090072973A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
CN106498180B (en) A kind of process units and method of high-purity oxygen-free copper ingot blank
CN104328316B (en) A kind of production method of the aluminium alloy round cast ingot base of major diameter 6063
CN102312184A (en) Method for producing bright and oxygen-free copper rod
CN103691912B (en) Gold base alloy casting blank melting and casting integrated device and utilization method thereof
CN103820686B (en) Electric conductivity is aldural line of 55%IACS and preparation method thereof
CN103820685A (en) Medium strength aluminium alloy wire with conductivity of 60% IACS, and preparation method thereof
KR20180090850A (en) Method and apparatus for producing reaction slurry
CN104550960B (en) The metal increasing material manufacturing method of application cold hearth melting and metal parts and application
CN101491825A (en) High-purify upper oxygen-free copper rod production method
CN103740957A (en) Casting method of aluminum alloy sacrificial anode
CN105057688B (en) A kind of production method of ultra-fine Pb-free coating glass putty
CN104451178A (en) Electroslag remelting method of large-size, super-pure and high-property nickel base alloy 690
CN102133629A (en) Light-alloy electromagnetic suspension casting device and method
CN102489510A (en) Casting method of oxygen-free copper rod
JP2009148825A (en) Process for manufacturing copper alloy product and equipment therefor
CN105112746B (en) High-strength Al-Zn-Mg-Cu-Ce-Y-Er-La-Sc wrought aluminum alloy and manufacturing method thereof
SE514649C2 (en) Process for making molded copper articles
CN102418010B (en) Cast aluminum alloy with pinholes removed and smelting method thereof
US20140161712A1 (en) Low-temperature method and system of manufacturing spheroidal graphite
CN102476177B (en) Upward drawing method for copper alloy wire blank
JP2009160654A (en) System and method for manufacturing copper material with high specific surface area
CN100469913C (en) Liquid state hydrogen-replacing thinning solidifying tissue method in Ti-6Al-4V alloy induction shell smelting process
CN105624442A (en) Method for producing 6063 aluminum alloy bar by rapid silicon dissolving method
CN110129635A (en) The casting technique of Motorcycle Aluminum Alloy plate not easy to break
CN104451185B (en) From silver-colored nickel leftover pieces, silver-colored method is reclaimed in melting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106