JPS583248A - Manufacture of bipolar semiconductor device - Google Patents

Manufacture of bipolar semiconductor device

Info

Publication number
JPS583248A
JPS583248A JP10160481A JP10160481A JPS583248A JP S583248 A JPS583248 A JP S583248A JP 10160481 A JP10160481 A JP 10160481A JP 10160481 A JP10160481 A JP 10160481A JP S583248 A JPS583248 A JP S583248A
Authority
JP
Japan
Prior art keywords
semiconductor layer
groove
insulating film
trench
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10160481A
Other languages
Japanese (ja)
Inventor
Shuichi Kameyama
亀山 周一
Satoshi Shinozaki
篠崎 慧
Hiroshi Iwai
洋 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10160481A priority Critical patent/JPS583248A/en
Publication of JPS583248A publication Critical patent/JPS583248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to form an ultrafine isolating region by self-aligning by forming an insulating film of the prescribed thickness on the overall surface including the groove in the vicinity of vertical part formed on a semiconductor substrate having a buried layer and etching until the surface of the substrate is exposed. CONSTITUTION:Grooves 105 (105a, 105b) in the vicinity of vertical part are formed by anisotropic ion etching by utilizing a resist pattern formed on an Si substrate having a buried layer 102, and an SiO2 film 107 is formed by a CVD method including the groove 105 sufficiently thickly as compared with a half (approx. 5,000Angstrom ) of the width of the groove. Subsequently, the surface is formed substantially flat, is then etched until the surface of the substrate is exposed, thereby forming isolation insulating regions 107a, 107b buried in the substrate, an element is thereafter formed in the prescribed steps, and a bipolar semiconductor device is formed. In this manner, the ultrafine isolation structure can be formed by self-aligning, thereby facilitating high integration and performance.

Description

【発明の詳細な説明】 本発明は、バイポーラ型半導体装置の製造方法に関し、
特にバイポーラI!IC,LIIIなどの素子間分離技
術t&嵐した製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bipolar semiconductor device,
Especially bipolar I! It relates to isolation technology and advanced manufacturing methods for IC, LIII, etc.

従来、半導体装置特にバイポーラI Co11造工程で
の素子間分離方法としては、PNN接合分離1択択酸化
法一般的に用いられている。この方法を、バイポーラ縦
形NPN)ランジスタを例にして以下に説明する。
Conventionally, a PNN junction isolation single selective oxidation method has been generally used as a method for isolating elements in the manufacturing process of semiconductor devices, particularly bipolar ICo11. This method will be explained below using a bipolar vertical NPN transistor as an example.

まず、第1 (a)図に示す如<pHシリコyj板l°
に高濃度のallの埋込み領域2を選択的に形成し、次
いで、1111の半導体層1tエピタキシヤル成長させ
、選択酸化のための約toooX@変のシリコン酸化膜
を形成し、その上に厚さ約1ooo1の耐酸化性のVリ
コン窒化膜を堆積する0つづいて、シリコン酸化膜4と
シリコン窒化膜JYc写真蝕刻法に1リパターエングし
てVリコン酸化膜パターンdm、4b、シリコン窒化膜
パターン1m、lbt形成する。ひきつづき1このシリ
コン酸化IAAターン4m、4b。
First, as shown in Figure 1(a), <pH silico yj plate l°
A high concentration all buried region 2 is selectively formed, and then a semiconductor layer 1t of 1111 is epitaxially grown, a silicon oxide film of approximately too Deposit an oxidation-resistant V recon nitride film of about 1ooo1.0 Subsequently, silicon oxide film 4 and silicon nitride film JYc are photolithographically etched by 1 repattern to form V recon oxide film patterns dm, 4b, silicon nitride film pattern 1m, form lbt. Continued 1 This silicon oxide IAA turn 4m, 4b.

Vリコン窒化膜パターンis、lbtマスクとして、a
llの半導体層Jt#5oooλ糧度レリプンエツテし
、さらに同パターンdm、4b。
V silicon nitride film pattern is, as a lbt mask, a
The semiconductor layer Jt#5oooλ of ll is applied, and the same pattern dm and 4b are formed.

l*、lbtマスクとして、ボロンのイオン・インプラ
ンテイシ冒ン法にて、PIlの領域ε1゜tbt形成し
た(第1図(c)図示)0次いで、スチームあるいはウ
ェットの雰囲気で熱酸化上行ない、選択的に約1a@j
loi/9コン酸化膜Fa〜1@を成長させた(第1図
(d)図示)0つづいて、Vリコン窒化膜パターンja
、jbt。
As a l*, lbt mask, a region of PIl ε1°tbt was formed by boron ion implantation (as shown in Fig. 1(c)).Next, thermal oxidation was performed in a steam or wet atmosphere. , selectively about 1a@j
A loi/9 silicon oxide film Fa~1@ was grown (as shown in FIG. 1(d)), followed by a V silicon nitride film pattern ja.
, jbt.

例えば、熱リン酸にて除去しVリコン電化膜パターンJ
a直下の領域に、ボロンOイオン・インプランティV冒
ンを行ない、ペース領域#管形成し、さらに1擢ツタと
なる**1)領域tとコレクタの電極引き出しのためO
m ml領域1゜等をヒ素のイオン自インブランティV
冒ンで形成し、あらかじめ形成されているv1コン酸化
膜パターン1mにコンタクトOat開口した後、スミツ
クー電極11.ペース電極12お1びコレクタ電極13
を形成して縦形11 トランジスタ管造った(第1図(
・)図示)0この場会、NPN)ランジスタの素子分離
は、約1#0厚みのフィールド酸化膜Fa、r@とPI
l領域1m、1b@とt併用する事に1って実現してい
るが5nWiの半導体層#O厚みが約1〜2J程度であ
れば、選択酸化法KLるフィールド酸化を直111!P
IIO基fllFc談触させ、素子分離することが出来
る。又、フィールド酸化膜で直接素子分離する場会でも
、素子間のり−タ電流防止のために% pW1a@xと
フィールド酸化膜との間に、チャンネル・ストップ用の
PI!の不純物のイオン・インプラテイシランを行なっ
ておくことが好ましい。
For example, remove with hot phosphoric acid V recon electrified film pattern J
Boron O ion implantation V is performed in the area directly under a to form a pace area #tube and further form a vine.
m ml area 1°, etc., of arsenic ion self-imburantity V
After forming a contact Oat in the previously formed v1 oxide film pattern 1m, a Sumitomo electrode 11. Pace electrode 12 and collector electrode 13
A vertical 11 transistor tube was constructed by forming a transistor tube (Fig. 1 (
・) In this case, the element isolation of the NPN) transistor is performed using field oxide films Fa, r@ and PI with a thickness of approximately 1#0.
It has been realized by using the l region 1m, 1b@ and t together, but if the thickness of the 5nWi semiconductor layer #O is about 1 to 2J, field oxidation using the selective oxidation method KL can be performed directly! P
The IIO group fllFc can be brought into contact and the elements can be separated. In addition, even when devices are directly isolated using a field oxide film, a channel stop PI! It is preferable to carry out ion implantation silane to remove impurities.

しかしながら、上述した従来の選択酸化法を用いてバイ
ポーラ1C1−製造する方法にあっては次に示す1うな
種々の欠点があった。
However, the method of manufacturing bipolar 1C1 using the conventional selective oxidation method described above has various drawbacks as shown below.

第2図はall、)j、パターy#a、jbt−fJり
Kしてフィールド酸化膜Fa、Fk+を形成した時O断
面構造を詳しく袖いたものである。危だし、第2図では
、半導体層3のνシランエッチングは、行なっていない
。一般に選択酸化法ではフィールド酸化膜ybが818
1’i、パターン5aの下の領域に喰い込んで成長する
ことが知られている(同第2図のF領域)0これはフィ
ールド酸化中に酸化剤が81.N4パターン11下の薄
い8101膜41を通して拡散していくために酸化膜が
形成される部分D1いわゆるバードビークとフィールド
酸化膜rbの厚い部分が横方向にも回り込んだ部分Σと
からなるoFの長さはたとえばBlmb、パターン51
の厚さが10001、その下の1!11011X4 m
が10001の東件で1−mの膜厚のフィールド酸化膜
Fbl−成長させた場合約IJml’(達する0このた
め、フィールド領域の巾Cは81.N、パターン5aと
5b間の距離At2声mとすると、Fがl gl であ
るから4−帛以下に小さくできずL8!0集積化にとっ
て大きな妨げとなる。このようなことから、最近、81
、N、バターyja、Jbt−厚くし、コノ下のSIO
,膜を薄くしてバードビーク(図中00部分)を抑制す
る方法やフィールド酸化NF hO成長属厚を薄くしフ
ィールド酸化膜の喰い込みFt抑制する方法が試みられ
ている。しかし、前者ではフィールド端部におけるスト
レスが大きくなり、欠陥が生じ易くなり、後者ではフィ
ールド反転電圧低下およびフィールド部での配線容量の
増大などの問題があり、選択酸化法にする高集積化には
限界がある。
FIG. 2 is a detailed view of the O cross-sectional structure when field oxide films Fa and Fk+ are formed by forming all, )j, patterns y#a, and jbt-fJ. Unfortunately, in FIG. 2, v-silane etching of the semiconductor layer 3 is not performed. Generally, in the selective oxidation method, the field oxide film yb is 818
1'i, it is known that the oxidizing agent grows into the area under the pattern 5a (region F in FIG. 2). N4 Length of oF consisting of a portion D1 where an oxide film is formed due to diffusion through the thin 8101 film 41 under the pattern 11, a so-called bird's beak, and a portion Σ where the thick portion of the field oxide film rb wraps around in the lateral direction. For example, Blmb, pattern 51
The thickness of is 10001, and the thickness below it is 1!11011
When the field oxide film Fbl- is grown with a thickness of 1-m in the case of 10001, the width of the field region C is 81.N, and the distance between patterns 5a and 5b is 2mm. m, since F is l gl , it cannot be made smaller than 4-fold, which is a big hindrance to L8!0 integration.For this reason, recently, 81
, N, butter yja, Jbt-thicken, SIO under Kono
Attempts have been made to reduce the thickness of the film to suppress bird's beak (00 in the figure) and to reduce the thickness of the field oxidized NF hO growth layer to suppress the field oxide film's encroachment Ft. However, in the former case, the stress at the edge of the field increases and defects are more likely to occur, and in the latter case, there are problems such as a drop in field inversion voltage and an increase in wiring capacitance in the field part. There is a limit.

上述したバーズビーク郷が生じると、次OXうな問題点
が起きる。これを第3(a)図、第3(b)図に示す従
来の選択酸化法にぶるバイポーラ・トランジスタの製造
工1にエリ説明する0第3(a)図の様pc1mlli
のプレタグ領域となる半導体層110表面に、従来の選
択酸化法にて、シリコン酸化膜11m、Ilbを形成し
、この酸化膜をマスクとして、ボロンのイオン・インプ
ランテイレ盲ン法にて、!IIIのペース領域IIjt
形成し曳O次いで、第3(b)図の様に、allのエミ
ツクー領域を拡散法ある髪1は、イオン−インブランテ
ィy w y法にて1形成したOここにシリコン酸化8
24は電極取1ノ出しのための絶縁膜であゐ0この様な
従来の選択酸イヒ法による製造方法の問題点は、主に、
形成されたシリコン酸化膜11m、Ilb等の、b)わ
ゆるバード・ピークの形状とバード・ピーク近傍の半導
体領域ストレスとそれにする欠−の発生に工っているo
iずペース領域IJの形状におt)ては、ポロンOイオ
ンーインブランティvwンによるベース接金の半導体主
表面力1らO深さt(、ハ)”・ピーク直下Oペース接
金の深さtDとすると、CK比べて、ノ(−ド・ピーク
の酸化膜の厚みだけ、Dの値が小さくなるOさらに、製
造行程中のエツテング処理にて、シリコン酸化膜の表面
がエツテングされるため、Dの値昏まさらに小さくなる
Oこのため、この)毫−ド・ピークの先端部にペース取
り出し用のU電極を形成すると、aとVリコンとの反応
にて、Atがペース領域を貫通し、素子の不良の1因と
なる。又、半導体主表面の直下のトランジスタのベース
幅tA、バード・ピーク直下のベース幅tBとすると、
先述の様にノ(−ド・ピーク部のペースの深さが浅い事
と、製造中のエツテング処理に工ってバード・ピークの
先端p里後退し、バード・ピーク先端からのエミッター
の深さが、他の部分に比べて深くなる事と、選択酸化法
にLるストレスと欠陥の発生にふってエミッタの異常拡
散が生じ、エイツタ−の接金の深さがエリ深くなり、正
常なペース幅AK比べて、バード・ピーク直下のベース
幅Bが小さくな1)、NPN )ランジスタのコレクタ
エミッタ耐圧の不良を発生させ好ましくない。この様に
1選択酸化法をバイポーラICに適用した場合、種々の
素子不良の原因となりやすい。
When the above-mentioned Bird's Beak Village occurs, the following problems occur. This will be explained to the manufacturing process 1 of a bipolar transistor using the conventional selective oxidation method shown in FIGS. 3(a) and 3(b).
A silicon oxide film 11m, Ilb is formed on the surface of the semiconductor layer 110, which will become a pre-tag region, by a conventional selective oxidation method, and using this oxide film as a mask, a boron ion implantation blind method is performed. III pace area IIjt
Then, as shown in FIG. 3(b), all the emitsuku regions are formed using the diffusion method.
Reference numeral 24 is an insulating film for forming the electrode 1. The main problems with the conventional manufacturing method using the selective acid hydration method are as follows.
The shape of the formed silicon oxide film 11m, Ilb, etc. is designed to reduce stress and the occurrence of defects in the semiconductor region near the bird peak and the shape of the so-called bird peak.
Regarding the shape of the paste region IJ, the main surface force of the semiconductor of the base weld due to the poron O ions and implantation vwn is 1 to the depth t(,c)'' of the O paste weld directly below the peak. If the depth is tD, the value of D will be smaller than CK by the thickness of the oxide film at the node peak.Furthermore, the surface of the silicon oxide film is etched during the etching process during the manufacturing process. Therefore, if a U electrode for pace extraction is formed at the tip of this (contact) peak, At will reach the pace area due to the reaction between a and V recon. The base width of the transistor directly below the main surface of the semiconductor is tA, and the base width immediately below the bird's peak is tB.
As mentioned earlier, the depth of the pace at the Node Peak part is shallow, and the depth of the emitter from the tip of Bird Peak is reduced due to the etching treatment during manufacturing. However, due to the fact that the emitter becomes deeper than other parts, and due to stress and defects generated in the selective oxidation method, abnormal diffusion of the emitter occurs, and the depth of the welding of the emitter becomes deeper, causing the normal pace. 1) The base width B directly below the bird peak is smaller than the width AK, which is undesirable as it causes a failure in the collector-emitter withstand voltage of the NPN transistor. When the one-selective oxidation method is applied to bipolar ICs in this way, it is likely to cause various device defects.

本発明は上記問題点を解消するためになされたもので、
新規な素子分離方式の確立により高集積化と高性能化を
達成し次バイポーラ厘半導体装置の製造方法を提供しょ
うとするものである0 以下、本発明の詳細な説明する0 まず、半導体層上に溝部形成予定部が除去され九マスク
材、例えばレジストパターンを形成しに後、該マスク材
から露出する基板部分を所望深さ選択エツチングして溝
部taける0この場合、エツチング手段として反応性イ
オンエツチング又はり1クテイプイオンエツデングを用
いれば、側面が略論直な溝部を設けることが可能となる
0但し、その他のエツチング手段で逆テーパ状011面
を有すゐ溝部を設けてもLいO溝部の数は、基板中に1
つ或いは2つ以上設けても1く、溝部osst変えても
よい0つづいて、マスタ材の除去後、溝部を含む半導体
層上に絶縁材料を少なくとも1つの溝部の開口部の短い
幅の半分以上の厚さとなる工うに堆積して少なくとも1
つの溝部の開口部まで絶縁材料で埋める。かかる絶縁材
料としては、例えば810. 、81.N、或いはムt
toa#を挙げることができ、場合に工ってはリン硫化
ガラス、ボロン硅化ガラス等の低溶融性絶縁材料を用い
てもよい。この絶縁材料の堆積手段としてはCVD法、
スパッタ法などのPVD法等を挙げることができる0ま
た、この堆積時において、絶縁材料ft111部の開口
部の短い巾の半分エリ小さい厚さで堆積すると、溝部内
に埋め込まれた絶縁材料に開口部と連通する凹状穴が形
成され、エツチングに際し、凹状穴を介して溝部内の絶
縁材料がエツチングされるとい)不都合さを生じる。
The present invention was made to solve the above problems, and
This invention aims to achieve high integration and high performance by establishing a new element isolation method, and to provide a method for manufacturing a bipolar semiconductor device.The present invention will be described in detail below. After the portion where the groove is to be formed is removed and a mask material, for example, a resist pattern is formed, the portion of the substrate exposed from the mask material is selectively etched to a desired depth to form the groove. In this case, reactive ions are used as the etching means. If etching or one-cut ion etching is used, it is possible to provide a groove with substantially straight side surfaces. The number of O grooves is 1 in the board.
1 or 2 or more grooves may be provided, and the groove osst may be changed.Continuously, after removing the master material, an insulating material is applied on the semiconductor layer including the groove so that it is at least half the short width of the opening of at least one groove. be deposited on the surface to a thickness of at least 1
Fill the two grooves up to the opening with insulating material. Examples of such insulating materials include 810. , 81. N or Mut
In some cases, low-melting insulating materials such as phosphorus sulfide glass and boron silicide glass may be used. As a method for depositing this insulating material, CVD method,
In addition, during this deposition, if the insulating material is deposited to a thickness that is half as small as the short width of the opening in the ft111 section, the insulating material buried in the groove will have an opening. A recessed hole communicating with the groove is formed, and during etching, the insulating material in the groove is etched through the recessed hole.

なお、絶縁材料の堆積に先立って溝部を有する半導体層
全体、もしくは溝部の少なくとも一部tll化又は窒化
処理して溝部が烏かれないS度の酸化膜又は窒化膜を成
長させても1い0この1うな方V&を併用することにL
って、得られたフィールド領域は一部の半導体層KII
ILL板密性OI!れた酸化膜又は窒化膜と堆積により
形成された絶縁材料とから構成され、絶縁材料のみから
なるもOK比べて素子分離性能を著しく向上でIk、!
1o更に絶縁材料の堆積後、その絶縁膜の全体もしくは
一部の表層に低溶融化物質、例えばボロン、リン、砒素
等管ドーピングし、熱熟理して餓絶縁膜0ドーピング層
を溶融するか、或いは前記絶縁膜0食体もしくは一部O
上に低溶融性絶縁材料、例えばボcyy@化ガラス(B
IG)、リン硫化ガラス(PIG)、或いは砒素硫化ガ
ラス(ム$IG)等會堆積し、この低溶融性絶縁膜を溶
融すゐか、いずれかの処理を施しても1い0このような
手段を採用することにLつて、絶縁材料の堆積条件に1
って溝部に対応する部分が目状となった場合、その凹状
部を壌めて平坦化でき、その#果全面エッデングに際し
て一部K11l存した絶縁材料がその開口部のレベルぷ
り下になるという不都合さを防止できる勢の効果を有す
る。
Note that prior to the deposition of the insulating material, the entire semiconductor layer having the groove, or at least a portion of the groove, may be treated with tll or nitrided to grow an oxide film or nitride film of degree S that does not scratch the groove. I decided to use this one together with Unakata V&.
Therefore, the obtained field region is a part of the semiconductor layer KII.
ILL board density OI! It is composed of an oxide film or nitride film and an insulating material formed by deposition, and has significantly improved element isolation performance compared to a film made of only an insulating material.
1o After the insulating material is further deposited, the whole or part of the surface layer of the insulating film is doped with a low-melting substance such as boron, phosphorus, arsenic, etc., and the insulating film is heated to melt the doped layer. , or the insulating film is partially O
A low-melting insulating material, such as bocyy@chemical glass (B
IG), phosphorus sulfide glass (PIG), or arsenic sulfide glass (IG), etc. are deposited, and this low-melting insulating film is melted. In adopting this method, the deposition conditions of the insulating material are
If the part corresponding to the groove becomes eye-shaped, the concave part can be flattened and flattened, and some of the insulating material that remained during the edging of the fruit surface will become below the level of the opening. It has the effect of preventing inconvenience.

次いで、半導体層上に堆積した絶縁膜tマスク材を用い
ずに溝部以外の半導体層部が露出する壕でエツチング液
去して溝部内に絶縁材料を残置させたフィールド領域管
形成する。この工程におけるエツチング手段としては、
例えばエツチング液或いはプラズマエツデャン)を用い
次全面エツーング法さらにはリアクティブイオンヱツテ
ング法などが採用し得る。その後、フィールド領域で分
離された素子形成領域にバイポーラトランジスタ等の能
動素子を形成してバイポーラ型半導体装置tSS造する
Next, the etching solution is removed in the groove where the semiconductor layer portion other than the groove is exposed without using the insulating film t mask material deposited on the semiconductor layer, thereby forming a field region tube with the insulating material remaining in the groove. As an etching means in this process,
For example, a whole surface etching method using an etching solution or plasma etching method, a reactive ion etching method, etc. can be employed. Thereafter, active elements such as bipolar transistors are formed in the element formation regions separated by the field regions to fabricate a bipolar semiconductor device tSS.

しかして、本発明によれば半導体層に溝部を設け、該溝
部【含む半導体層全面に絶縁材料を少なくとも一つの溝
部O■開口部!Iい巾O半分以上の厚さとなるLうに堆
積した後、絶縁膜!溝部以外の半導体層部分が露出する
壕でエツチングすることによって、マスク合せ金裕直を
とることなく溝部に対してセルファライVで絶縁材料を
残量でき、これkよりフィールド領域を形成できるため
、以下に示す1うな種kO効果を有するバイポーラ型半
導体装置を提供できる。
According to the present invention, a groove is provided in a semiconductor layer, and an insulating material is applied to the entire surface of the semiconductor layer, including at least one groove O. After being deposited to a thickness that is more than half the width, an insulating film is formed! By etching in the trenches where the semiconductor layer parts other than the trenches are exposed, it is possible to leave an amount of insulating material in the trenches with self-alignment V without having to worry about mask alignment, and from this it is possible to form a field region, as shown below. It is possible to provide a bipolar semiconductor device having a unique kO effect.

(1)  フィールド領域の面積は半導体層に予め設け
た溝部の面積で決するため、溝部の面積を縮小化するこ
とに1って容易に所期目的の微細なフィールド領域を形
成でき、高集積度のバイポーラ蓋半導体装置を得ること
ができる。
(1) Since the area of the field region is determined by the area of the trench previously provided in the semiconductor layer, the desired fine field region can be easily formed by reducing the area of the trench, resulting in high integration. A bipolar lid semiconductor device can be obtained.

(2)  フィールド領域の深さは面積に関係なく半導
体層に設けた溝部の櫟さで決まるため、その深さt任意
に選択することが可能であると共に、素子間の電流リー
ク等をフィールド領域で確実に阻止でi高性能Oパイボ
ーク型半導体装置を得ることができる。
(2) The depth of the field region is determined by the rectilinearity of the groove provided in the semiconductor layer, regardless of the area, so the depth t can be arbitrarily selected, and current leakage between elements can be prevented from occurring in the field region. It is possible to obtain a high-performance O-pibok type semiconductor device with reliable blocking.

(3)  I11部管設け、チャンネルストッパ用の不
純物を溝部に選択的にドーピングし几後においては、従
来の選択酸化法のような高温、長時間の熱酸化工Stと
らないため、該不純物領域が横方向に再拡散して素子形
成領域の埋込層あるいはトランズスタO活性領域まで例
達しないので実効的な素子形成領域O縮小化を防止でき
る。この場合、不純物のドーピングをイオン注入KLり
行なえばその不純物イオン注入層管溝部の底部に形成す
ることができ、そのイオン注入層が再拡散しても素子形
成領域の表層(トランジスタの活性部)Ktで嶌びるこ
とかないため、実効的な素子形成領域の縮小を防止でき
ると共に、)ランジスタ活性部の不純物領域への阻害化
も防止できる。
(3) After providing the I11 tube and selectively doping the channel stopper impurity into the groove, the impurity region This prevents lateral rediffusion from reaching the buried layer of the element forming region or the active region of the transistor O, thereby effectively preventing reduction in the element forming area O. In this case, if the impurity is doped by ion implantation KL, the impurity ion-implanted layer can be formed at the bottom of the tube groove, and even if the ion-implanted layer is re-diffused, it will still remain in the surface layer of the element formation region (the active part of the transistor). Since there is no collapse due to Kt, it is possible to prevent the effective reduction of the element formation area, and also to prevent the active region of the transistor from being inhibited by the impurity region.

(4)溝部の全てに絶縁材料を残置させてフィールド領
域を形成した場合、基板は平坦化されるため、その後の
電極電線0形成に際して段切れt生じるのt防止でき石
(4) If the field region is formed by leaving the insulating material in all of the grooves, the substrate will be flattened, so it is possible to prevent the occurrence of breakage when forming the electrode wires later.

次に、本願第2の発明の詳細な説明する。Next, the second invention of the present application will be explained in detail.

前記した本願第1の発明と同様な工St経て半導体層上
に絶縁材料を少なくともその半導体層に設けられた1つ
の溝部の開口部O短い幅の申分以上の厚さとなるように
堆積する。次いで、少なくとも絶縁材料PCより開口部
tで置め込壕れた溝部上の一部を含む絶縁膜の領域もし
くは溝部以外のフィールド領域となるべき絶縁膜の領域
のうちの少なくともいずれか會マヌタ材、゛例えばレジ
メ)パターン等で覆う。つづいて、マスク材及び溝部以
外の半導体層部分が露出するまでエツチングし、溝部内
kI!縁材料を残置させてフイ」ルド領域を、溝部以外
の半導体層よにもフィールド領域を形成する◇この場合
、溝部以外の半導体層上に形成されたフィールド領域は
誼溝部のフィールド領域と一体化されたものをも會む0
その後、フィールド領域で分離された素子形成領域にバ
イポーラトランジスタ等の能動素子を形成してバイポー
ラ瓢半導体装置を製造する。   。
An insulating material is deposited on the semiconductor layer through a process similar to that of the first aspect of the present invention described above so as to have a thickness that is at least equal to the short width of the opening O of one groove provided in the semiconductor layer. Next, at least one of the area of the insulating film including a part of the trench placed in the opening t from the insulating material PC, or the area of the insulating film that is to become a field area other than the trench, is removed. , ``For example, cover with a regimen'' pattern, etc. Next, etching is performed until the mask material and the semiconductor layer portions other than the groove are exposed, and the inside of the groove is kI! A field region is formed by leaving the edge material on the semiconductor layer other than the groove. In this case, the field region formed on the semiconductor layer other than the groove is integrated with the field region of the groove. I also meet those who have been
Thereafter, active elements such as bipolar transistors are formed in the element formation regions separated by the field regions to manufacture a bipolar semiconductor device. .

しかして、本願第2の発明に工れば、前述した種々の効
果含有する他に1牛導体層内に埋込まれたフィールド領
域と、溝部以外の半導体層上に該フィールド領域と一体
的もしくは分離された異種形態のフィールド領域とを備
え次バイポーラ型半導体装置を得ることができる。
Therefore, if the second invention of the present application is implemented, in addition to the various effects described above, the field region embedded in the conductor layer and the field region on the semiconductor layer other than the groove portion can be integrated with the field region or A bipolar semiconductor device having separated field regions of different shapes can be obtained.

次に本発明をapl  バイポーラトランジスタO製W
iK適用した例について図面を参照して説実施例1 0〕 まず、第4図(a)に示す如<pmの半導体基板
101に選択的にnllの不純物の高llI度壇込み層
102f形成し、その上Knllのエピタキシャル半導
体層103を約2.5pm成長させた後で、半導体層1
030表面に写真蝕刻法にエリレジストパターン1o4
m、104に+10def残量させた。つづいて、この
パターンユングされたレジス) 104m、104b。
Next, the present invention is apl bipolar transistor O made W
An example in which iK is applied will be explained with reference to the drawings.Example 10] First, as shown in FIG. , After growing an epitaxial semiconductor layer 103 of Knll to a thickness of about 2.5 pm, the semiconductor layer 1
Eri resist pattern 1o4 by photolithography on 030 surface
m, 104 had +10def remaining amount. Next, this pattern Jung Regis) 104m, 104b.

10dcをマスクにして半導体層101f、異方性のり
アクティブ・イオンエツチングに工’)sP711の基
板101に達するまでシリコンエツチングすることKz
って、幅が約1μ深さが約3μの溝部101m、101
bYt形成し、nWの半導体層101f島状に分離させ
る(第4図(b)図示)0この時、ボロンのイオン・イ
ンプクンティVwンにて、素子間のデャンネル力ットの
ためpHの領域1oti*。
Using 10dc as a mask, perform anisotropic active ion etching on the semiconductor layer 101f by etching the silicon until it reaches the substrate 101 of sP711.
Therefore, the grooves 101m and 101 have a width of about 1μ and a depth of about 3μ.
bYt is formed and the nW semiconductor layer 101f is separated into islands (as shown in FIG. 4(b)). 1oti*.

xoibt形成しておくことが好ましい〇104b、1
e4*t@去Ll後、CVD−810゜1n1erts
素子分離O溝部1m1m、1e5bO幅の半分(約Io
oo1> xりも充分に厚く堆積させる0この時、CV
D−110,は溝部の内面に徐々に堆積され、溝部1t
ll*、1#libが充分に曹込1t、CVD−810
,膜J o t。
It is preferable to form xoibt〇104b,1
e4*t@After Ll, CVD-810゜1n1erts
Element isolation O groove 1m1m, half of 1e5bO width (approximately Io
oo1>x is also deposited sufficiently thickly0 At this time, CV
D-110 is gradually deposited on the inner surface of the groove, and the groove 1t
ll*, 1#lib is enough for 1t, CVD-810
, Membrane J o t.

表面が、は埋平坦となっている。なおこO堆積時におい
て、選択酸化法のごとく、高温。
The surface is flat and buried. Note that during O deposition, high temperatures are used as in the selective oxidation method.

長時間O熱酸化鵡理を必要としないので、pmの領域1
mgm、106にの再拡散はほとんど起きない◎つづい
て、CVD−110,膜101を弗化アンモンで溝部J
#Ja、Jljb以外のシリコン半導体層1010部分
が露出するまで全面エツチングした0この時、第4図(
d)に示す如く半導体層1exo上OCVD  Blo
w膜1ov部分O膜厚分膜部除去され、溝部1m1h、
185%内0みCYD−1110,が残置しこれによっ
て半導体層10a内Kllめ込壕れたフィールド領域J
#Fa、f#Fbが形成される。
Since long-term O thermal oxidation is not required, PM range 1
Rediffusion to mgm, 106 hardly occurs ◎Continuously, CVD-110, film 101 is coated with ammonium fluoride in the groove part J.
#The entire surface of the silicon semiconductor layer 1010 other than Ja and Jljb was etched until it was exposed. At this time, as shown in FIG.
d) OCVD Blo on the semiconductor layer 1exo
W film 1ov part O film thickness part film part removed, groove part 1m1h,
0 CYD-1110 within 185% remains, thereby forming a trenched field region J in the semiconductor layer 10a.
#Fa and f#Fb are formed.

圓 次いで、フィールド領域J#Fa、J#Fbで分離
された半導体領域にレジスト・ブロック法によるポロン
のイオン・インプランティV冒ンにてpHのペース領域
xezt形成し、半導体層の全面に約aoooiの絶縁
膜1ettを形成し、さらに写真蝕刻法にて、この絶縁
膜189にエイツタ、コレクタの拡散の窓上開口し、ヒ
素のイオン・インプランテイシ曹ンを行ない、1建ツタ
となる!III領域110゜コレクタ取出部となるNl
l領域111を形成する。次KPIIのベース領域1#
1に対する開口を形成し、半導体表面にU等の電極材を
堆積させ、この電極材を写真蝕刻法にてパターンユング
することによってペース電極112、工iツタ電極11
J、コレクタ電極114t−形成してapm バイポー
ラトランジスタ製造する(第4図(、)図示)0 上述し九実施例1の製造方法にLつて、トランジスタの
素子分離の溝の@を約1声と極めて微細な面積にでき、
IC中に占める素子分離領域tm小し、高集積度化を達
成できたo又、第4図(・)に示すごとく素子分離領域
と素子形成領域の間に段差がなく平坦であるため、電極
配線の断切rLt防止できる0 実施例2 ■ まず、実施例1と同様にPIlの半導体基板z−1
に選択的KnllO不純物の高sum込み層102を形
成し、その上にallのエピタキシャル半導体層203
t#2.5−成長させたo次いで、半導体層gas上に
、例えばCVD−810,l堆−し、この膜を写真蝕刻
法にてパターンエングしこのパターンエングされfic
VD−Blow膜パターyj*4m−204纏tマスク
として半導体層1est、4%λ性ノツノリアクティブ
オンエツチングすることにエリ、幅が約1声深さが約2
声の溝部205゜205管形威しfe、oこの時、これ
らの溝部gas、tartは80字状に連結されている
0次いで、埋込み層taXの直上にある溝部2ozに対
して、写真蝕刻法によりレジストパターン106を残置
させ、このレジストバf −71m g トCVD−1
110鵞膜パターy1114m〜2044等管マスクと
して、ポロンのイオン争インブランティV冒ンを用いて
、選択的1cpHo領域zera、zorbtN戚した
(第6図(a)図示)。
Next, in the semiconductor region separated by the field regions J#Fa and J#Fb, a pH pace region xezt is formed using poron ion implantation V using the resist block method, and approximately An insulating film 1ett of aoooi is formed, and an opening is made in this insulating film 189 above the diffusion window of the collector and arsenic by photolithography, and ion implantation of arsenic is performed to form a single ivy! III area 110°Nl which becomes the collector extraction part
l region 111 is formed. NextKPII base area 1#
By forming an opening for 1, depositing an electrode material such as U on the semiconductor surface, and patterning this electrode material by photolithography, a pace electrode 112 and an ivy electrode 11 are formed.
J, Collector electrode 114t- is formed to manufacture an APM bipolar transistor (as shown in FIG. Can be made into extremely small areas,
The element isolation region tm occupied in the IC was small, and a high degree of integration was achieved.Also, as shown in Figure 4 (), there is no step difference between the element isolation region and the element formation region, and the electrode is flat. Example 2 First, as in Example 1, the PIl semiconductor substrate z-1
A high sum implantation layer 102 of selective KnllO impurity is formed on the layer 102, and all epitaxial semiconductor layers 203 are formed thereon.
Then, for example, CVD-810,1 is deposited on the semiconductor layer gas, and this pattern is engraved by photolithography.
VD-Blow film pattern yj*4m-204-t mask for semiconductor layer 1st, 4% λ-based reactive on-etching, width is about 1 pitch, depth is about 2
At this time, these grooves gas and tart are connected in a figure-80 shape. The resist pattern 106 is left behind, and the resist pattern 106 is removed by CVD-1.
Using Poron's ion-fighting imbranti V as a 110 membranous putter y1114m-2044 isotube mask, selective 1cpHo regions zera and zorbtN were mapped (as shown in FIG. 6(a)).

■ 次いで、半導体層201表面のレジストパターン2
06を除去し、つぎに熱#a、mすることに1って、P
illの領域206m、106hを再拡散させることに
よって、素子形成予定部であるn1iO半導体層1−J
を島状KPN接合分離させた0さらに、半導体層gos
中に形成された溝部gas・・・の幅の半分(豹!!0
OOX)z4J4充分に厚く、CVD−11i0.膜2
#1を堆積させる。この時、第5図(b) o如くCV
D−1110,膜xoao表面が、fiff平Jiトな
る0前述のCVD−101膜5eat、半導体層zes
o’11面が露出する壕で、弗化アンモン等でエツチン
グし、半導体層J#1の溝部KCVD−81012ea
m、20Rh、20Mm f残置させる。次いで、レジ
ス[・プロッタ法にするポロンのイオン・インブランテ
ィン1ンにて%PIlOベース領域j11を形成した後
、半導体層gasの倉内に約aooolの絶縁膜11−
管形成し、さらに写真蝕刻法にて選択的に1ヱ電ツタお
よびプレタタ予定領域部O約5ooo1の絶縁膜を除去
し、k素のイオン・インプランティV冒ン等に工って、
エイツタとなゐnIlの領域211.コレクタ取出部と
なる*fMの領域111を形成する。次にptttto
ベース領域111mに対する開口管形成し、表面Ku等
の電極材を堆積させて、この電極材を写真蝕刻法に【パ
ターンエングすることによってペース電@l j j%
エミッタ電極114、フレタタミ極xis會形成してs
pa  パイポーラシランジスタta造した(館5図(
@)図示)0 上述した実施例10擬造方法に1って、Fランジメタの
素子分離の縮少を行ない、しかも平坦・性の良い集積回
路を可能とせしめ露o本実施例の特徴としては、素子分
離が溝に埋込まれたCVD  BSCh とPH10合
に1って実現され、さらにベース領域209とコレクタ
電極取り出し領域212とを、溝部に埋込まれ九〇VD
−10!に工って自己整合的に形成でき、さらにペース
コレクタ間の接合容量管小さくしている事が上けられる
■ Next, resist pattern 2 on the surface of the semiconductor layer 201
Remove 06, then heat #a, m to 1, P
By re-diffusing the ill regions 206m and 106h, the n1iO semiconductor layer 1-J, which is the planned element formation area, is
Furthermore, the semiconductor layer gos
Half the width of the groove gas... formed inside (leopard!!0
OOX) z4J4 sufficiently thick, CVD-11i0. membrane 2
Deposit #1. At this time, Fig. 5(b) CV like o
D-1110, the surface of the film is flat, the aforementioned CVD-101 film 5eat, the semiconductor layer zes
In the trench where the o'11 plane is exposed, etching with ammonium fluoride etc. is performed to form the trench part KCVD-81012ea of the semiconductor layer J#1.
Leave m, 20Rh, 20Mm f. Next, after forming a %PIlO base region j11 using poron ion implantation using a resist plotter method, an insulating film 11- of about aooool is formed in the chamber of the semiconductor layer gas.
After forming a tube, selectively remove the insulating film of the electric ivy and the insulating film of about 5001 of the pre-tatable area using a photolithography method, and perform ion implantation V etching etc. of the k element.
Area 211 of Aituta and NainIl. A region 111 of *fM, which becomes a collector extraction portion, is formed. then ptttto
An open tube is formed for the base region 111m, an electrode material such as Ku is deposited on the surface, and this electrode material is pattern-engraved by photolithography to form a pace electrode.
The emitter electrode 114 is formed by forming a full-length electrode.
pa Pypolar cilandystata was constructed (Figure 5)
@)Illustrated) 0 In the above-mentioned fabrication method of Example 10, the element separation of the F range metal is reduced, and an integrated circuit with good flatness and properties can be produced.The features of this example are as follows. , element isolation is achieved by combining the CVD BSCh buried in the groove and the PH10, and furthermore, the base region 209 and the collector electrode extraction region 212 are realized by the CVD BSCh buried in the groove.
-10! It can be formed in a self-aligned manner by engineering, and furthermore, the junction capacitance tube between the pace collectors can be made small.

実施例3 まず、第6図(a)に示す如くn型シリコン亭導体層2
02にリアクティプイオンヱッテングを用いた写真蝕刻
法により開口部の幅が61 。
Example 3 First, as shown in FIG. 6(a), an n-type silicon conductor layer 2 was formed.
The width of the opening was 61mm by photolithography using reactive ion etching.

8宜 55158mと断続的に変化する溝部1611設
けた。なお、溝部304における開口部幅の大小は81
(St <Hmの関係となる0次いで、810. tl
−cVD法にエリ開口部の幅8嘗の1/2エリ若干厚く
なるように堆積して溝部3040開口部幅が81+S1
O部分KCVD−810゜膜を十分埋め込み開口部”輻
がS、の部分に妹内周mK堆積L7を後半導体層zoz
上OCVD−1110g膜の厚さ分だけ弗化アンモンで
エツテングしたところ、第6図(h)0如く開口部幅が
Si 、S鵞部分KcVD  glow膜sexが残置
され、同幅BaK)部分が除去され開口した素子分離領
域の彫状が得らrした。
A groove portion 1611 was provided which intermittently changes to 55158 m at 80 m. Note that the width of the opening in the groove 304 is 81
(0 with the relationship St < Hm, then 810. tl
- Deposited using the cVD method so that the 1/2 area of the opening width of the opening area is slightly thicker by 8 mm, so that the opening width of the groove part 3040 is 81+S1
After fully filling the O part KCVD-810° film and depositing mK on the inner periphery of the opening "S", the semiconductor layer zoz
When etching with ammonium fluoride to the thickness of the upper OCVD-1110g film, as shown in Figure 6 (h) 0, the opening width was Si, the S part remained (KcVD glow film sex), and the same width part (BaK) was removed. A carved shape of an element isolation region with an opening was obtained.

実施例4 まず、pro半導体基11411上の素子形成予室部K
mlllOII込み層aazt形威し形成の上にmMO
エピタキシャル半導体層411を成長させ、所望の部分
に!いに連結する夫々同幅01111の溝部4#4*、
41db、4fld* f設ける(第7図(、)図示)
0次いで、第1図(b) 0ごとく前述O溝部aeaa
〜4#4・の幅の半分よりも充分厚いCVD−110m
膜4−5を堆積させたOひきつづき写真蝕刻法にてレジ
スト°パターンmega、aeH,tag・を所望の部
分に残置させた(第7図(@)図示)0さらに1このレ
ジストパターン40σa〜4mg@fマスタとして弗化
アンモン等で(VD−110m膜4#riをエツテング
して、素子分離領域となh CVD −1101405
m。
Example 4 First, the element formation pre-chamber part K on the pro semiconductor substrate 11411
mlOII-containing layer aazt on top of mMO
Grow the epitaxial semiconductor layer 411 in the desired area! grooves 4#4*, each having the same width 01111, connected to
41db, 4fld*f (as shown in Figure 7(, ))
0 Then, as shown in FIG. 1(b), the above-mentioned O groove part aeaa
~CVD-110m which is sufficiently thicker than half the width of #4.
Following the deposition of the film 4-5, a resist pattern mega, aeH, tag was left in the desired area by photolithography (as shown in Figure 7 (@)). @f As a master, etch the VD-110m film 4#ri with ammonium fluoride, etc., and use it as an element isolation region.CVD-1101405
m.

405に、4m5m、配線用Oフィールド領域J#J4
.J##・、4081が形成された。この様に、フィー
ルド領域は溝部の幅の半分よりも充分に厚く、任意の場
所に形成でき、配線領域として使用可能である・ 実施例5 ω まず、pgの半導体5aiesの上0素子形成予定
部K n triの極込み層Halt形成しその上Kn
lliのエピタキシャル半導体層を成長させ所望の部分
に互いに連結する、夫々同幅の値数の溝部iea*ai
eib、sea@を設けてエピタキシャル半導体層1m
1h〜5o11に分離し、さらに写真蝕刻法にてレジス
ト・パター:1501m、1elhf形成した(第8図
(&)図示)0つづいて% vyスト・パターン1#l
*、1m1hfマスクとして、フィールド領域形成予走
部の半導体層sos@ts所望する蒙さにレリコンエッ
デングした後、レジスト・パターンを除去した(第81
11(h)図示)0叩 次いで、溝部1ads〜104
・O輻の半分よりも厚<、CVD−1110,膜x #
 gtj11mlltた(第8図(0)図示)0つづい
て第8図(d) K示す如くフィールド形成予定部の上
に写真蝕刻法にて、レジストパターンtinyt残置さ
せた0ひきつづき、前述のレジス) /(ターン101
をマスクとして、弗化アン毫ン等で、nmの半導体層1
02m、102b、503纏の表面が露出するまでエツ
チングし、素子分離領域511、素子分離されたフィー
ルド領域5asht形成した(第8図(・)図示)0こ
の様に、フィールド領域は溝部の@O亭分よりも大きい
厚さで形成でき、しかも、半導体層1t)Ia、1ll
lk、1014の表面とフィールド領域5ashの表面
とを同じレベルにすることが出来るので、平坦性が曳く
、配線0段切れも防止できる。
405, 4m5m, O field area for wiring J#J4
.. J##., 4081 was formed. In this way, the field region is sufficiently thicker than half the width of the trench, can be formed at any location, and can be used as a wiring region.Example 5 ω First, the top 0 element formation area of the pg semiconductor 5aies is formed. Form a K n tri polarization layer Halt, and then form a K n tri
lli epitaxial semiconductor layers are grown and connected to each other at desired portions, grooves iea*ai each having the same width and number of values are formed.
Epitaxial semiconductor layer 1m with eib and sea@ provided
1h to 5o11 were separated, and a resist pattern of 1501m and 1elhf was formed by photolithography (as shown in FIG. 8) followed by %vyst pattern 1#l.
*, as a 1m1hf mask, the semiconductor layer sos@ts of the field region formation preliminary area was edded to the desired depth, and then the resist pattern was removed (81st
11(h) shown) 0 hit, then groove 1ads~104
・Thickness less than half of O radiation <, CVD-1110, film x #
gtj11mlt (as shown in FIG. 8(0)) 0 Then, as shown in FIG. 8(d), a tiny resist pattern was left by photolithography on the area where the field was to be formed. (Turn 101
Using a mask as a mask, a semiconductor layer 1 of nm thickness is formed using fluoride film or the like.
Etching was performed until the surfaces of the 02m, 102b, and 503 layers were exposed, and an element isolation region 511 and an isolated field region 5asht were formed (as shown in FIG. It can be formed with a thickness larger than that of the semiconductor layer 1t) Ia, 1ll.
Since the surface of lk, 1014 and the surface of field region 5ash can be made at the same level, flatness can be maintained and zero-level disconnection of wiring can be prevented.

なお、本発明に係るバイポーラ型半導体装置OI!1″
m方法において、半導体層としてP!!!!半導体基板
に設けたPINエビタキVヤル層、pH半導体基板K 
n IIエピタキシャル層t−2回積層したちの1或い
は同基板にPalエピ!キシャル層と*mエビタキレヤ
ル層を夫々積層したものを用いてもよい。
Note that the bipolar semiconductor device OI! according to the present invention! 1″
In the m method, P! ! ! ! PIN layer provided on semiconductor substrate, pH semiconductor substrate K
n II epitaxial layer t-2 times stacked or Pal epitaxial on the same substrate! A layer obtained by laminating a axial layer and an *m-epitaki layer may also be used.

本発明に係ゐバイポーラ履半導体装電の製造においては
、上記実施例の如<PII半導体基板上C) n II
半導体層に1ulk  バイポーラトランジスタを形成
する以外に1例えばPl!半導体基板に三重拡散法によ
りmpn  )ランジス!!形成する場合にも適用でき
る。
In manufacturing the bipolar semiconductor device according to the present invention, as in the above embodiment, <PII semiconductor substrate C) n II
In addition to forming a 1ulk bipolar transistor in the semiconductor layer, for example, Pl! mpn ) Rungis by triple diffusion method on semiconductor substrate! ! It can also be applied when forming.

以上詳述した如く、本発明によればマスク会わせ余裕度
tとることなく、任意かつ黴細なフィールド領域を主に
半導体層に設けらf′した溝部に対してセルファライン
で形成でき、もって高集積度、高信頼性及び高性能のバ
イポーラ製半導体装置tIl造し得る方法を提供できゐ
ものである0
As described in detail above, according to the present invention, an arbitrary and moldy field region can be formed by self-line mainly in the groove portion f′ provided in the semiconductor layer without taking the mask alignment margin t. We are able to provide a method for manufacturing bipolar semiconductor devices with high integration, high reliability, and high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(−〜(−)は従来の選択酸化法!採用した縦形
*p*  )クンジスタの製造工at示す断面図、第2
図は従来の選択酸化法の問題点を説明するための断面図
、第3図(荀、(b)は従来の選択酸化法のバイポーラ
トランジスタに適用した場合0問題点を説明するためO
断面図、第4図(&)〜(・)は本発明の実施例IKお
ける1lpn バイポーラトランジスタO1l造工程會
示す断面図、第S図(、)〜(、)は本発明の実施例2
における11バイポーラ)ランジスタの製造工St示す
断面図、第all(a) 、 (b)は本発明の実施例
3におけるmpn バイポーラトランジスタのフィール
ド領域形成工1!管示す平面図、第7図(a)〜0)は
本発明の実施例4におけゐ1pfl  バイポーラトラ
ンジスタのフィールド値域形成工程1示す断面図、第8
図(、)〜(−)は実施例5におけるmpn  バイポ
ーラトランジスタのフィールド領域形成工程を示す断面
図である。 1019201.401.5111・・・Plf半導体
基板、ioz、zoz、ioz、1az−・n+型の思
込み層、zox、zex、xos。 a o s 、5ash 〜saga−n’tllエピ
タキシャル半導体層、Jljfa、106b、IrO2
,104,404h〜404e 、504*〜MO4e
 ・・・溝部、1#1゜108.408 、j06・・
・CVD  IiO*膜、74FFIl、Ielrk 
、2111m”−1t)Re 、201,401a〜4
01e、106h、106c  −フィールド領域、1
011.209・・・PW1領域(ベース)、110゜
211・・・n+型領領域エミッタ領域)、111゜2
12・・・n+塵領領域コレクタ取出部)、11:I、
113,114,213,114゜215・・・電極。 出願人代理人 弁理士  鈴 江 武 彦(a) 第6v!J (a)        (b) (d) 第7図
Figure 1 (- to (-) are the conventional selective oxidation methods! A cross-sectional view showing the manufacturing process of the vertical type *p*) Kunjista, Figure 2
The figure is a cross-sectional view to explain the problems of the conventional selective oxidation method, and FIG.
Cross-sectional views, FIGS. 4(&) to (・) are cross-sectional views showing the 1lpn bipolar transistor O1l fabrication process in Example IK of the present invention, and FIGS. S(,) to (,) are Example 2 of the present invention.
All (a) and (b) are cross-sectional views showing the manufacturing process of the mpn bipolar transistor in Embodiment 3 of the present invention. FIGS. 7(a) to 0) are cross-sectional views showing step 1 of forming a field range of a 1pfl bipolar transistor in Example 4 of the present invention.
Figures (,) to (-) are cross-sectional views showing the step of forming a field region of an mpn bipolar transistor in Example 5. 1019201.401.5111...Plf semiconductor substrate, ioz, zoz, ioz, 1az-/n+ type assumption layer, zox, zex, xos. aos, 5ash ~ saga-n'tll epitaxial semiconductor layer, Jljfa, 106b, IrO2
, 104, 404h~404e, 504*~MO4e
...Groove, 1#1゜108.408, j06...
・CVD IiO* film, 74FFIl, Ielrk
, 2111m"-1t)Re, 201,401a~4
01e, 106h, 106c - field area, 1
011.209...PW1 region (base), 110°211...n+ type region (emitter region), 111°2
12...n+dust area collector extraction part), 11:I,
113,114,213,114°215... Electrode. Applicant's agent Patent attorney Takehiko Suzue (a) 6th v! J (a) (b) (d) Figure 7

Claims (1)

【特許請求の範囲】 (1)第1導電臘の半導体基板上に第2導電型の半導体
層を形成する工程と、前記第1導電型の半導体基板と第
2導電瓢の□半導体層との間あるいは前記第2導電II
O半導体層中に第2導電製の潅込み領域を形成する工程
と、前記第2導電蓋の半導体層の所望の部分に垂直もし
くは、垂直に近い側面を有する溝部を少なくとも1つ以
上設ける工程と、溝部を含む半導体層上に絶縁材料を少
なくとも1つの溝部の開口部の短い巾の半分以上の厚さ
となるLうに堆積する1鵬と、この絶縁膜を半導体層が
露出する壕でエツチングして少なくとも1つの溝部内に
絶縁材料t!l存させフィールド領域を形成す石工程と
を具備したことを特徴とするバイポーラ履半導体*tの
製造方法0(2)第2導電llO半導体層に溝部を設け
た後、絶縁材料を堆積する前に1半導体層金面もしくは
少くとも溝部の一部を酸化又は値化処理して溝部が烏か
れない@度の酸化膜又は蜜化膜を成長せしめることを特
徴とする特許請求の範囲第1項記載のバイポーラ量半導
体装置の製造方法。 (3)第2導電型の半導体層に溝部を設けた後、絶縁材
料を堆積する前に、溝部内に第1導電厘の半導体基板と
同導電wi、o不純吻を選択的にドーピングし、このド
ーピングによって形成さrL九領領域、前記の溝部の絶
縁材料と第1導電麗の半導体基板とに接触させることを
特徴とする特許請求の範囲第1項又は第2項記載のバイ
ポーラ曹半導体装置OIl造方法。 (4)絶縁材料を堆積後、誼絶縁膜の全体もしくは一部
の表層に低溶融化物質をドーピングし、熱処理を施して
該絶縁膜のドーピング層を溶融化し、しかる後に絶縁膜
のエツチングを行なうことを特徴とする特許請求の範囲
第1項乃至第3項いずれか記載のバイポーラ原半導体装
置の製造方法。 (5)絶縁材料t1積後、誼絶縁膜全体もしくは一部の
上に低溶融性絶縁膜管堆積し、この低溶融性絶縁膜を溶
融化し、しかる後にこれら絶縁膜のエツチング1行なう
ことを特徴とする特許請求の範囲第1項乃至第3項いず
れか記載のバイポーラ型半導体装置の製造方法。 (6)第2導電型の半導体層の所望部分に働直もしくは
働直に近い側面を有する溝部を少なくとも1つ以上設け
る工1と、溝部管含む半導体層上に絶縁材料を少なくと
も1つの溝部の開口部O短い巾の半分以上の厚さとなる
工うに堆積する工程と、少なくとも絶縁材料により開口
部壕で壌め込trta溝部上の一部を含む絶縁膜O領域
もしくは溝部以外のフィールド領域となるべき絶縁膜O
領域の少なくともいずれか管マスク材で覆った後、絶縁
膜を、マスク材及び溝部以外O半導体層が露出するまで
エツテングし、溝部内に絶縁材料を残置させてフィール
ド領域t1溝部以外にもフィールド領域管、形成する工
程とを具備したことを特徴とするバイポーラ型半導体装
置の製造方法。 (7)第2導電屋の半導体層に溝部を投砂た後、絶縁材
料を堆積する前に、半導体層食面もしくは少なくとも溝
部の一部を酸化又は書化処理して溝部が塞がれない1度
の酸化膜又は窒化膜を成長せしめることを特徴とする特
許請求の範囲第6項記載のバイポーラm亭導体装置の製
造方法0
[Scope of Claims] (1) A step of forming a second conductive type semiconductor layer on the semiconductor substrate of the first conductive gourd, and forming a semiconductor layer of the first conductive type and the second conductive gourd. or the second conductive II
a step of forming a second conductive irrigation region in the O semiconductor layer; and a step of providing at least one groove portion having vertical or nearly vertical side surfaces in a desired portion of the semiconductor layer of the second conductive lid. 1. Depositing an insulating material on the semiconductor layer including the trench to a thickness that is more than half the short width of the opening of at least one trench, and etching the insulating film in a trench where the semiconductor layer is exposed. Insulating material t! in at least one groove! A method for manufacturing a bipolar semiconductor*t characterized by comprising a stone process for forming a field region in which the semiconductor layer remains Claim 1, characterized in that the gold surface of the first semiconductor layer or at least a part of the groove portion is oxidized or oxidized to grow an oxide film or a honeydew film that does not scratch the groove portion. A method of manufacturing the bipolar semiconductor device as described. (3) after providing a groove in the semiconductor layer of the second conductivity type and before depositing the insulating material, selectively doping the groove with impurities having the same conductivity as the semiconductor substrate of the first conductivity type; The bipolar semiconductor device according to claim 1 or 2, wherein the rL9 region formed by this doping is brought into contact with the insulating material of the groove and the first conductive semiconductor substrate. OIL production method. (4) After depositing the insulating material, the entire or part of the surface layer of the insulating film is doped with a low-melting substance, heat treatment is performed to melt the doped layer of the insulating film, and then the insulating film is etched. A method for manufacturing a bipolar original semiconductor device according to any one of claims 1 to 3, characterized in that: (5) After depositing the insulating material t1, a low-melting insulating film is deposited on the entire or part of the insulating film, this low-melting insulating film is melted, and then these insulating films are etched. A method for manufacturing a bipolar semiconductor device according to any one of claims 1 to 3. (6) Step 1 of providing at least one groove portion having a direct or near-direct side surface in a desired portion of the semiconductor layer of the second conductivity type; A step of depositing the insulating film in a layer having a thickness of more than half of the short width of the opening O, and at least injecting the insulating material in the opening trench to form an insulating film O region including a part of the trench or a field region other than the trench. Insulating film O
After covering at least one of the regions with a pipe mask material, the insulating film is etched until the mask material and the O semiconductor layer other than the trench are exposed, and the insulating material is left in the trench to cover the field region t1 and the field region other than the trench. 1. A method for manufacturing a bipolar semiconductor device, comprising a step of forming a tube. (7) After sanding the groove in the semiconductor layer of the second conductive layer and before depositing the insulating material, oxidize or write the etched surface of the semiconductor layer or at least a part of the groove to prevent the groove from being blocked. A method for manufacturing a bipolar conductor device according to claim 6, characterized in that a single oxide film or nitride film is grown.
JP10160481A 1981-06-30 1981-06-30 Manufacture of bipolar semiconductor device Pending JPS583248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10160481A JPS583248A (en) 1981-06-30 1981-06-30 Manufacture of bipolar semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160481A JPS583248A (en) 1981-06-30 1981-06-30 Manufacture of bipolar semiconductor device

Publications (1)

Publication Number Publication Date
JPS583248A true JPS583248A (en) 1983-01-10

Family

ID=14304986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160481A Pending JPS583248A (en) 1981-06-30 1981-06-30 Manufacture of bipolar semiconductor device

Country Status (1)

Country Link
JP (1) JPS583248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220465A (en) * 1985-03-27 1986-09-30 Toshiba Corp Semiconductor device
US5688702A (en) * 1988-02-08 1997-11-18 Kabushiki Kaisha Toshiba Process of making a semiconductor device using a silicon-on-insulator substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432277A (en) * 1977-08-15 1979-03-09 Ibm Method of forming silicon area isolated from dielectric
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method
JPS5562733A (en) * 1978-11-03 1980-05-12 Ibm Method of forming narrow region on silicon substrate
JPS55148438A (en) * 1979-05-07 1980-11-19 Ibm Method of fabricating mosfet ram element
JPS5664453A (en) * 1979-10-31 1981-06-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432277A (en) * 1977-08-15 1979-03-09 Ibm Method of forming silicon area isolated from dielectric
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method
JPS5562733A (en) * 1978-11-03 1980-05-12 Ibm Method of forming narrow region on silicon substrate
JPS55148438A (en) * 1979-05-07 1980-11-19 Ibm Method of fabricating mosfet ram element
JPS5664453A (en) * 1979-10-31 1981-06-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220465A (en) * 1985-03-27 1986-09-30 Toshiba Corp Semiconductor device
US5688702A (en) * 1988-02-08 1997-11-18 Kabushiki Kaisha Toshiba Process of making a semiconductor device using a silicon-on-insulator substrate

Similar Documents

Publication Publication Date Title
US4871685A (en) Method of manufacturing bipolar transistor with self-aligned external base and emitter regions
JPH04211121A (en) Semiconductor device and fabrication thereof
JPS63234534A (en) Manufacture of semiconductor element
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JPS583248A (en) Manufacture of bipolar semiconductor device
JPS58220444A (en) Manufacture of semiconductor device
JPS59232437A (en) Manufacture of semiconductor device
TW522507B (en) Manufacturing method of semiconductor having trenched capacitor
KR100426492B1 (en) Method for forming charge storage electrode of semiconductor device
JPS63236317A (en) Manufacture of semiconductor device
JPS5850753A (en) Manufacture of semiconductor device
US6251769B1 (en) Method of manufacturing contact pad
JPS61263277A (en) Manufacture of semiconductor device
JPH01158768A (en) Semiconductor storage device and its manufacture
JPH0429354A (en) Manufacture of semiconductor integrated circuit device
JPH0338742B2 (en)
JPS63237542A (en) Semiconductor device
JPH02135776A (en) Semiconductor storage device
KR930004983B1 (en) Dram cell having a stacked-trenched capacitor and method of fabricating therefor
JPS6313362A (en) Manufacture of semiconductor device
JPS63260164A (en) Semiconductor memory device and manufacture thereof
US6204528B1 (en) Dynamic random access memory structure
TW516173B (en) Manufacturing method for self-align contact with removable spacer
JPS61234046A (en) Manufacture of semiconductor device
JP3111961B2 (en) Method for manufacturing semiconductor device