JPS5831609A - Thin film piezoelectric oscillator - Google Patents

Thin film piezoelectric oscillator

Info

Publication number
JPS5831609A
JPS5831609A JP12968581A JP12968581A JPS5831609A JP S5831609 A JPS5831609 A JP S5831609A JP 12968581 A JP12968581 A JP 12968581A JP 12968581 A JP12968581 A JP 12968581A JP S5831609 A JPS5831609 A JP S5831609A
Authority
JP
Japan
Prior art keywords
thin film
silicon
thickness
piezoelectric
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12968581A
Other languages
Japanese (ja)
Other versions
JPH0211043B2 (en
Inventor
Yoichi Miyasaka
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12968581A priority Critical patent/JPS5831609A/en
Publication of JPS5831609A publication Critical patent/JPS5831609A/en
Publication of JPH0211043B2 publication Critical patent/JPH0211043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To increase attenuation at the outside of a band, by providing one thin film layer made of SiO2 and Si3N4 insulating material between a silicon thin film doping a boron with a high concentration and a piezoelectric thin film, and giving a partial electrode at the boundary between this insulating material and the piezoelectric thin film. CONSTITUTION:On the surface of (100) silicon substrate 1, a silicon layer 3 having 1X10<20>/cm<3> boron density is grown by 2mum thickness, and an SiO2 thin film 4 having 3,000Angstrom thickness is formed on the layer 3 by the sputtering method and on the SiO2 thin film, Au is vapor-deposited by 2,000Angstrom thickness by taking Cr as a background to constitute a desired ground electrode pattern 5 with the photolithography, and then a ZnO thin film 6 having 11mum thickness is formed with the sputtering method and an Al electrode 7 is formed on the ZnO thin film with the lift-off. Finally, etching is carried out from the back side of the substrate with an aq. solution of KOH by taking an Si3N4 formed on the silicon as a mask to form the vacant hole of oscillating part.

Description

【発明の詳細な説明】 本発明は圧電薄膜を用い九五(F 、 UHP用高層高
周波圧電振動子し、特にホウ素を高盛j[Kドープした
シリコン薄膜と圧電薄−との組令せからなる複合構造の
振動部位を育する薄膜圧電振動子に関するものである。
[Detailed Description of the Invention] The present invention uses a piezoelectric thin film to produce a high-rise high-frequency piezoelectric vibrator for UHP, and in particular consists of a combination of a boron-doped silicon thin film and a piezoelectric thin film. This invention relates to a thin film piezoelectric vibrator that grows the vibrating part of a composite structure.

一般に数十Mkiz以上のような高い周波数で使用され
る圧電振動子は、振動モードとして4i−が厚さく比し
て十分広い薄板の厚み振動を使用する。
Generally, a piezoelectric vibrator used at a high frequency of several tens of Mkiz or more uses thickness vibration of a thin plate in which 4i- is sufficiently wide compared to the thickness as a vibration mode.

厚み振動の共振周波数は厚さに反比例するので高い周波
数で使用するためには厚さ′を薄くしなければならない
。しかし、厚さが40Iクロン程度以下になると平行平
−研磨などの加工が非常に蝋しくなり、したがってバル
ク結晶或いは°セラミ。
Since the resonant frequency of thickness vibration is inversely proportional to the thickness, the thickness must be made thinner in order to use it at a higher frequency. However, when the thickness is less than about 40 Icm, processing such as parallel flat polishing becomes very difficult, and therefore bulk crystal or ceramic is produced.

りを用いると基本共振周波数でs o htHz以上の
厚み振動圧電振動子を量産することは困難である。
If this method is used, it is difficult to mass-produce thickness-vibrating piezoelectric vibrators with a fundamental resonance frequency of sohtHz or more.

これに対して、バルク結晶或いはセラミ、りの奇数次の
高−波を使用すれば、同じ厚みで基本波の3倍、5倍、
・・・等の共振周波数が得られ、これはオーバートーン
邊動子として発振器などに使われている。しかし、第1
次の高#波を用いた場合の容量比は基本波の容量比To
n”  倍となり、このとき共振周波数と反共振周波数
の間−と共振周波との比は、はばl/2yH”となる、
したがって高−波を使ったのでは容量比の増大に伴って
フィルタ、の比帯域幅及び発振器の制御範囲が狭くなり
すぎる結果を招き、これまた実用に適さないことが多く
なる。
On the other hand, if you use odd-numbered high waves of bulk crystal or ceramic, the fundamental wave will be 3 times, 5 times, or 5 times higher with the same thickness.
A resonant frequency such as ... is obtained, and this is used as an overtone oscillator in oscillators. However, the first
The capacity ratio when using the next high # wave is the capacity ratio of the fundamental wave To
n" times, and at this time, the ratio between the resonance frequency and the anti-resonance frequency is 1/2yH".
Therefore, if high-frequency waves are used, as the capacitance ratio increases, the fractional bandwidth of the filter and the control range of the oscillator become too narrow, and this is often not suitable for practical use.

高調波を用いる他の方法は、基板の上に圧電薄Illを
作成し圧電4膜の厚ざが半波長となる共振モードに於い
て基板を麺次振動させるものであり、この場合基板の厚
さが半波長の*a倍に等しいときに容量比は最小値を持
つが、この容量比の最小値社共畿モードが高次になるに
従ってやはり増大する。この方法に於いても基板を薄く
することができないために、50 MH,以上の周波数
ではかなり高次の共振モードを用いることKなり、した
がって基板の厚さを半波長の整数倍に一致させ九として
も容量比が大きいためフィルタの比帯域幅反び発aSの
制御範囲は狭くなり実用に適さない。
Another method using harmonics is to create a thin piezoelectric layer on the substrate and vibrate the substrate in a resonant mode in which the thickness of the four piezoelectric films is half a wavelength; in this case, the thickness of the substrate is The capacitance ratio has a minimum value when the wavelength is equal to *a times the half wavelength, but the minimum value of this capacitance ratio also increases as the mode becomes higher order. Even with this method, it is not possible to make the substrate thinner, so at frequencies above 50 MH, a considerably higher-order resonant mode must be used. However, since the capacitance ratio is large, the filter's fractional bandwidth and the control range of aS become narrow, making it unsuitable for practical use.

振#部分の厚さを薄くして容量比の小さな圧電振動子を
得る方法として杜、たとえば特許公告昭46−2557
9KP−いて提案されているよ5にシリコン、水晶など
の基板上に8io!のような絶縁材料の薄膜と圧電薄膜
とを層状に作成し、振動子として使用する部分の基板を
工、チングによって除去することにより、振動部分は8
i0.のような絶縁材料の薄膜と圧電薄膜とからなり、
外縁部を基板によって支持され九構造の薄膜圧電振動子
が知られている。このような?IIM圧電振動子は、そ
の損IIh部分を薄くできるので、50 MHz以り数
千MH1K &ぶ周波数においても基本振動或いは第2
次、第3rXなどの低次のAm波振−を使用することが
でき、したがって広い比帯域のフィルタ友び制御範囲の
広い発振器を実現することができる。
As a method of obtaining a piezoelectric vibrator with a small capacitance ratio by reducing the thickness of the vibrating part, for example, patent publication No. 46-2557
9KP-It has been proposed that 5 to 8io on a silicon, crystal, etc. substrate! By creating a layer of a thin film of an insulating material and a thin piezoelectric film such as
i0. It consists of a thin film of insulating material such as and a piezoelectric thin film,
A thin film piezoelectric vibrator having a nine-structure structure in which the outer edge portion is supported by a substrate is known. like this? IIM piezoelectric vibrators can reduce the loss IIh portion, so even at frequencies of several thousand MH1K and above 50 MHz, fundamental vibration or second
Next, it is possible to use a low-order Am wave oscillation such as the third rX, and therefore it is possible to realize an oscillator with a wide ratio band filter and a wide control range.

しかし上記のような4M圧電振動子の機械的強度及び會
響四クォリティ7アクタQは低く、この点の改暑が望ま
れていた。その後これらの特性が改善された薄膜圧ii
t振動子として振動部分において圧電薄膜と組合せる4
11!材料としてホウ素を高濃度にドープしたシリコン
薄膜を用いた振動子が提案された。
However, the mechanical strength and acoustic four quality 7 actor Q of the 4M piezoelectric vibrator as described above are low, and improvement in this point has been desired. Thin film thickness ii with improved these properties
4. Combined with a piezoelectric thin film in the vibrating part as a t-oscillator.
11! A resonator using a silicon thin film heavily doped with boron was proposed.

この提案でホウ素を高濃度にドープしたシリコン薄膜を
用いた理由は次のと導りである。
The reason for using a silicon thin film heavily doped with boron in this proposal is as follows.

−殻に基板に用いる材料としては表−が(ioo)面で
ある工うなシリコンが使用される。なぜならば例えばK
OH、エチレンジアミンのようなエツチング液を用いれ
ば、(1(Be)diの工、チング遮度に比較して(1
11) @の工、チング速度が非常に小さいとい5工、
チングの異方性を示し、したがって面方向への工、チ/
ダの拡がりが極めて小さく振動部分の空孔を寸法精度良
く作成することができるためである。したがって薄膜材
料としては前述0KOH、エチレンシアj/のような工
、チンダ液に侵されに(いような材料に限定されるがs
lo、。
The material used for the shell and substrate is silicon, which has an (ioo) surface. Because, for example, K
If an etching solution such as OH or ethylenediamine is used, the etching resistance is
11) When the cutting speed of @ is very low,
It shows the anisotropy of the chipping, and therefore the machining in the plane direction,
This is because the expansion of the holes is extremely small and the holes in the vibrating portion can be created with high dimensional accuracy. Therefore, as a thin film material, materials such as 0KOH, ethylene shear, etc., which are not easily eroded by tinde liquid (but are limited to materials such as s
Lo,.

83、N、などの材料に比べて、シリコン基板表面への
形成が容易であること1機械的強度が高いこと、貴響的
タオリディ・7アクタQが大きいことdとの理由から圧
電薄膜と組合せる薄膜材料としてはホウ素を高濃度にド
ープしたシリコン薄膜が最も優れている。
Compared to materials such as 83, N, etc., it is easier to form on the silicon substrate surface. 1. It has high mechanical strength, and 7. Actor Q is large. d. The most excellent thin film material for this purpose is a silicon thin film doped with a high concentration of boron.

したがうて振動部位がホウ素を高濃度にドープし九シリ
コン薄膜と圧電111Illとからなる薄膜圧電振動子
は、上記のことかられかるように機械的値Jl!が高く
、會響的りオψティ・7アクタQが大合いという大きな
着炎を奮する。しかしホウ素を高濃度にドープし九シリ
コン薄jl紘導電率が非常に大きい丸め、振動子の特性
に関して次のような重大な欠点を膚している。すなわち
、こ0よ5な振動子は、圧電薄膜の両−Kt&けた電極
付近へのエネルギー閉じ込め効果を利用したいわゆるエ
ネルギー閉じ込め振動子とするのが普遍であるが、ホウ
素を高濃度にドープしたシリコン薄膜社導電率が非常に
大きいため、該シリコン薄膜と、圧電薄膜との界面に設
ける電極は部分電極とすることが不可能であり、したが
って特に反共振周波数付近においてエネルギー閉じ込め
効果が不完全となる結果、帯域外減衰量が小さくなり、
また圧電薄膜上の部分電極と入出力電極とを接線するリ
ード線部に於いても弾性波がm振される結果、周波数特
性に多くのり、プルを生じるという欠点である。
Therefore, as can be seen from the above, a thin film piezoelectric vibrator whose vibrating portion is doped with boron at a high concentration and is composed of a silicon thin film and a piezoelectric layer 111Ill has a mechanical value Jl! was high, and the 7th Actor Q, who was in the middle of the symphony, made a big splash. However, since the silicon thin film doped with boron at a high concentration has a very high electrical conductivity, it suffers from the following serious drawbacks regarding the characteristics of the vibrator. In other words, the 0 to 5 oscillator is generally a so-called energy trapping oscillator that utilizes the energy trapping effect near both -Kt and digit electrodes of a piezoelectric thin film, but silicon doped with a high concentration of boron is Since the conductivity of the thin film is very high, it is impossible to use the electrode provided at the interface between the silicon thin film and the piezoelectric thin film as a partial electrode, and therefore the energy trapping effect is incomplete, especially near the anti-resonant frequency. As a result, the out-of-band attenuation becomes smaller,
Furthermore, elastic waves are also oscillated in the lead wire portions that are tangential to the partial electrodes on the piezoelectric thin film and the input/output electrodes, resulting in a large amount of vibration in the frequency characteristics, resulting in a pull.

本発明の目的は、上記のような欠点を除いた薄膜圧電振
動子を提供することであり、本発明の最たる特徴線ホウ
素を高貴直にドープしたシリコン薄膜と圧電**との間
に5loh811N4ナト0flh縁材料の薄膜を一層
有し、この絶縁材料と圧電薄膜との昇−Kg分電1it
−設けた構造にある6本発v4によれば圧電薄膜ost
iの電極は共KI!1分電極とすることが可能てあり、
したがりて帯域外減衰量が大きく、周液数特性上K 9
 yプルのない良好な薄膜圧電振動子を得ることができ
る。
The purpose of the present invention is to provide a thin film piezoelectric vibrator which eliminates the above-mentioned drawbacks, and the most characteristic feature of the present invention is that 5loh811N4 nanometers are used between the silicon thin film doped with boron and the piezoelectric material. 0flh has one layer of thin film of edge material, and the rise of this insulating material and the piezoelectric thin film - Kg distribution 1it
- Piezoelectric thin film OST according to 6-ray V4 in the structure provided
Both i electrodes are KI! It is possible to use it as a 1 minute electrode.
Therefore, the amount of out-of-band attenuation is large, and due to the peripheral liquid number characteristics, K 9
A good thin film piezoelectric vibrator without y-pull can be obtained.

以下、実施例にしたがって本発明を詳jlK説明する。Hereinafter, the present invention will be explained in detail according to examples.

第1.2図は本実@O薄馬圧電振動子を利用したエネル
ギー閉じ込め二重モードフィルタO構造を示す、第1図
は平−図、第2図線断−図である。
Fig. 1.2 shows the structure of an energy trapping dual mode filter O using a real piezoelectric vibrator, Fig. 1 is a plan view, and Fig. 2 is a cross-sectional view.

第1.2図に$いて1は表向が(Zoo) 1mである
ようなシリコン基板、2は工、チングによりて基板IK
設は九空孔であり、3線拡散、エビタヤシャル成長或い
はイオン注入によって形成し九ホウ素を高amにドープ
したシリコン薄膜である。4は本実−の最良る特徴とす
るととろO胞縁材薄属であり、九とえ#1810麿e 
81 m N4 などのll属をスバ、タリyダ法、C
VD法など07j法で形成する。
In Figure 1.2, 1 is a silicon substrate whose front side is (Zoo) 1m long, and 2 is a substrate IK by machining and ching.
The silicon thin film has nine vacancies, is formed by three-line diffusion, epitaxial growth, or ion implantation, and is doped with nine boron to a high am. 4 is the best feature of this fruit, it is Toro O.
81 m
It is formed by a 07j method such as a VD method.

S杜絶縁材薄膜4の上く形成したダラクンFIE極であ
る。6社圧電薄朧であり、材料としては酸化1[鉛(Z
mO)を用いた。Zooはスバ、タリング法、CVD法
、イオン・プレーティンダ法などにょうてC軸が基板−
に対して垂直に配向した薄膜を再現性良く作成でき、し
かも高い抵抗率を持−)丸薄膜となる特長を有している
。さらにZ、OK関してれ厚みたて振動モードのエネル
ギー閉じ込めが可能なことも知られている。7は圧電薄
膜上に形成し九電緬であり、一方は入力端子8に、他方
は出方端子9に1a統声れている。
This is a Darakun FIE electrode formed on the S-Mori insulating material thin film 4. It is a piezoelectric thin film made by 6 companies, and the material is 1 [lead (Z) oxide].
mO) was used. Zoo uses Suba, Talling method, CVD method, ion-plating method, etc. where the C axis is the substrate.
It has the advantage that thin films oriented perpendicularly to the surface of the wafer can be produced with good reproducibility, and also have a high resistivity and can be formed into round thin films. Furthermore, it is known that it is possible to confine the energy of the thick vertical vibration mode regarding Z and OK. Numeral 7 is formed on a piezoelectric thin film and is connected to the nine electric wires.One side is connected to the input terminal 8 and the other side is connected to the output terminal 9.

以下に夾際に行なり九勇造工薯を述べ、本夾施例を具体
的に説明する。(10G)シリコン基板表−にホウ素O
蟲度がlXl0/7であるようなシリプン層を2μm成
長させ、この上にスバ、タリングf、によって3000
XO810m薄履を形成し九。
In the following, we will briefly describe the Kuyong construction plant and explain this example in detail. (10G) Boron O on the silicon substrate surface
A silicone layer with a grain size of 1X10/7 was grown to a thickness of 2 μm, and a thickness of 3000 μm was grown on this layer by a process of suba and taring f.
Formed XO810m thin shoes.

810、薄膜上K Crを下端にしてム鶴をzoooi
蒸着しフォトリングラフィにより所望のグラウンド電極
バター/とした0次にスバ、タリング法によって11μ
mOZmO薄展を形成し、Z、0 薄膜上にリフト・オ
フによってAIの電極を形成した。最後にシリコン基板
の裏−に形成し九8 l 、 N、薄膜をマスクとして
KOH水溶液によって基板の裏−から工、チンダをし振
動部分O空孔を形成した0以上のよ5eCして作威し九
フィルタは第3図に示すごとく予想通り約1801&を
中心周波数とする帯域通過フィルタ骨性を示した。この
際シリコン基板と2鳳0薄膜との関に810.層を持九
ない構造のフィルタを同様の1薯で製造した。このフィ
ルタの周波数特性を第411に示す。第3図及び第4図
から判かると詔り8i0.層を持九ない構造のフィルタ
では特に高周液傭での帯域外減衰量が低下して奢り、ま
た周波数特性にす、プルが顕著に見られるのに対し、シ
V=ylHaとzaO薄朧との間に810、層を有する
構造のフィルタで線帯域外減衰量が大きく、リップルは
はとんと見られず、本発明の有用性が実証され丸。
810, Zoooi Muzuru with K Cr on the thin film at the bottom end
The desired ground electrode butter was deposited by evaporation and photolithography was applied to the desired ground electrode.
A thin film of mOZmO was formed, and an electrode of AI was formed on the Z,0 thin film by lift-off. Finally, using a thin film of 98L, N, and a thin film as a mask, the back of the substrate was etched and soldered with a KOH aqueous solution to form a vacancy in the vibrating area. As shown in FIG. 3, the Shi-9 filter exhibited a band-pass filter characteristic with a center frequency of about 1801 & as expected. At this time, the relationship between the silicon substrate and the 2000 thin film is 810. A filter having a structure without layers was manufactured using a similar piece of paper. The frequency characteristic of this filter is shown in 411th. As can be seen from Figures 3 and 4, Edict 8i0. In a filter with a structure without nine layers, the out-of-band attenuation decreases especially in high-frequency liquids, and a noticeable pull is seen in the frequency characteristics. 810, the out-of-line band attenuation was large in the filter having a layer structure, and no ripples were observed, demonstrating the usefulness of the present invention.

以上Oように本実IiJ!に従えばυHP、VHF帯域
に於いて、機械的債度が高(、音響的なりオリティ・7
アタタQが大会く、しかも゛帯域外減衰量・が大きく周
旋数II#性にリップルのない薄膜圧電liI励子が提
供できる。
As above, the truth is IiJ! According to
It is possible to provide a thin film piezoelectric liI exciter with a large atta Q, a large amount of out-of-band attenuation, and no ripples in the rotational number II# property.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明の一実篇例であるエネルギー閉じ込
め二重モードフィルタの構造を示し、#I1図は平di
図、#g2図は断面図である1図において、1杜表−が
(10G)−であるようなシリプ/晶板、2雌工、チン
グによって基板に作成した空孔である。3はホウ素を高
澁度にドープしたシリコン薄膜、4は絶縁材料の薄膜で
ある。5はグラ/ド電極、6は圧電薄膜、7は上部電極
、8は入力電極、9は出力電極である。 第3図は本発明の実施例であるエネルギー閉じ込め二重
モードフィルタの周波数特性を示す。横軸はMl(、単
位で表わした周液数であり、縦軸はdB単位で表わした
減衰量である。2 第4図は従来の構造のエネルギーlじ込め二重モードフ
ィルタの周波数特性を示す。 第1図 ′l 第2図 第3図 周速数(NHK )
Figure 1.2 shows the structure of an energy trapping dual mode filter, which is an example of the present invention, and Figure #I1 is a flat diode filter.
Figure #g2 is a cross-sectional view of a hole created in the substrate by a silicon plate/crystal plate, 2-hole machining, and chiming in which the 1-diameter surface is (10G)- in Figure 1, which is a cross-sectional view. 3 is a silicon thin film heavily doped with boron, and 4 is an insulating material thin film. 5 is a ground electrode, 6 is a piezoelectric thin film, 7 is an upper electrode, 8 is an input electrode, and 9 is an output electrode. FIG. 3 shows the frequency characteristics of an energy trapping dual mode filter according to an embodiment of the present invention. The horizontal axis is the peripheral fluid number expressed in Ml (, unit), and the vertical axis is the attenuation amount expressed in dB.2 Figure 4 shows the frequency characteristics of the energy l storage double mode filter with the conventional structure. Figure 1 'l Figure 2 Figure 3 Peripheral speed number (NHK)

Claims (1)

【特許請求の範囲】[Claims] ホウ素を高濃度にドープしたシリコン薄膜と圧電薄膜と
からなる振動部位を持ち、振動部位にあたる部分を工、
チングによって取り除いた基板によって外縁部を支持し
た構造の薄膜圧電振動子において砿シリコン薄展と圧電
薄膜との間に、絶縁材料の薄膜の層を有することを特徴
とする薄膜圧電振動子。
It has a vibration part made of a silicon thin film doped with high concentration of boron and a piezoelectric thin film, and the part corresponding to the vibration part is engineered.
1. A thin film piezoelectric vibrator having a structure in which an outer edge portion is supported by a substrate removed by chiming, and having a thin film layer of an insulating material between a thin silicon layer and a piezoelectric thin film.
JP12968581A 1981-08-19 1981-08-19 Thin film piezoelectric oscillator Granted JPS5831609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12968581A JPS5831609A (en) 1981-08-19 1981-08-19 Thin film piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12968581A JPS5831609A (en) 1981-08-19 1981-08-19 Thin film piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS5831609A true JPS5831609A (en) 1983-02-24
JPH0211043B2 JPH0211043B2 (en) 1990-03-12

Family

ID=15015642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12968581A Granted JPS5831609A (en) 1981-08-19 1981-08-19 Thin film piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS5831609A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121817A (en) * 1982-01-14 1983-07-20 Murata Mfg Co Ltd Piezoelectric resonator
JPS59202722A (en) * 1983-04-30 1984-11-16 Murata Mfg Co Ltd Composite piezoelectric resonator
EP0155145A2 (en) * 1984-03-09 1985-09-18 Kabushiki Kaisha Toshiba Piezoelectric resonating device
JPS62169509A (en) * 1986-01-21 1987-07-25 Toyo Commun Equip Co Ltd Piezoelectric resonator for oscillation of overtone in composite structure
US4870313A (en) * 1985-04-11 1989-09-26 Toyo Communication Equipment Co., Ltd. Piezoelectric resonators for overtone oscillations
JPH02113616A (en) * 1988-10-24 1990-04-25 Hitachi Ltd Elastic wave filter and antenna demultiplexer using it
US5231327A (en) * 1990-12-14 1993-07-27 Tfr Technologies, Inc. Optimized piezoelectric resonator-based networks
US5233259A (en) * 1991-02-19 1993-08-03 Westinghouse Electric Corp. Lateral field FBAR
US5945773A (en) * 1994-06-23 1999-08-31 Citizen Watch Co., Ltd. Piezoelectric actuator for ink-jet printer and method of manufacturing the same
JP2001285016A (en) * 2000-03-29 2001-10-12 Kyocera Corp Piezoelectric resonator
US7161447B2 (en) 2002-09-25 2007-01-09 Murata Manufacturing Co., Ltd. Piezoelectric resonator, piezoelectric filter, and communication apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928795A (en) * 1972-07-14 1974-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928795A (en) * 1972-07-14 1974-03-14

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121817A (en) * 1982-01-14 1983-07-20 Murata Mfg Co Ltd Piezoelectric resonator
JPS59202722A (en) * 1983-04-30 1984-11-16 Murata Mfg Co Ltd Composite piezoelectric resonator
EP0155145A2 (en) * 1984-03-09 1985-09-18 Kabushiki Kaisha Toshiba Piezoelectric resonating device
US4642508A (en) * 1984-03-09 1987-02-10 Kabushiki Kaisha Toshiba Piezoelectric resonating device
US4870313A (en) * 1985-04-11 1989-09-26 Toyo Communication Equipment Co., Ltd. Piezoelectric resonators for overtone oscillations
JPS62169509A (en) * 1986-01-21 1987-07-25 Toyo Commun Equip Co Ltd Piezoelectric resonator for oscillation of overtone in composite structure
JPH02113616A (en) * 1988-10-24 1990-04-25 Hitachi Ltd Elastic wave filter and antenna demultiplexer using it
US5231327A (en) * 1990-12-14 1993-07-27 Tfr Technologies, Inc. Optimized piezoelectric resonator-based networks
US5404628A (en) * 1990-12-14 1995-04-11 Tfr Technologies, Inc. Method for optimizing piezoelectric resonator-based networks
US5233259A (en) * 1991-02-19 1993-08-03 Westinghouse Electric Corp. Lateral field FBAR
US5945773A (en) * 1994-06-23 1999-08-31 Citizen Watch Co., Ltd. Piezoelectric actuator for ink-jet printer and method of manufacturing the same
JP2001285016A (en) * 2000-03-29 2001-10-12 Kyocera Corp Piezoelectric resonator
JP4557356B2 (en) * 2000-03-29 2010-10-06 京セラ株式会社 Piezoelectric resonator
US7161447B2 (en) 2002-09-25 2007-01-09 Murata Manufacturing Co., Ltd. Piezoelectric resonator, piezoelectric filter, and communication apparatus

Also Published As

Publication number Publication date
JPH0211043B2 (en) 1990-03-12

Similar Documents

Publication Publication Date Title
US3582839A (en) Composite coupled-mode filter
JP3735777B2 (en) Resonator structure and filter having the resonator structure
US4456850A (en) Piezoelectric composite thin film resonator
US3590287A (en) Piezoelectric thin multilayer composite resonators
JP4345049B2 (en) Thin film acoustic resonator and manufacturing method thereof
US4870313A (en) Piezoelectric resonators for overtone oscillations
JP3703773B2 (en) Manufacturing method of crystal unit
CN109257027A (en) A kind of mixing acoustic resonator and preparation method thereof
US9099984B2 (en) HBAR resonator comprising a structure for amplifying the amplitude of at least one resonance of said resonator and methods for producing such a resonator
US3384768A (en) Piezoelectric resonator
JPS5831609A (en) Thin film piezoelectric oscillator
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
JPH0532925B2 (en)
JP2007129776A (en) Thin film piezoelectric oscillator, thin film piezoelectric device, and manufacturing method thereof
JP3715831B2 (en) Piezoelectric resonator
JPS58153412A (en) Piezo-electric thin film composite vibrator
JPS58175314A (en) Thin film piezoelectric oscillator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPH036912A (en) Surface acoustic wave element
JP2008178126A (en) Thin film acoustic resonator, and manufacturing method thereof
JPS58156220A (en) Thin film piezoelectric filter
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
US3544926A (en) Monolithic crystal filter having mass loading electrode pairs having at least one electrically nonconductive electrode
JPS60142607A (en) Piezoelectric thin film composite oscillator
JPS6281807A (en) Piezoelectric thin film resonator