JPS5831307A - Interference filter - Google Patents

Interference filter

Info

Publication number
JPS5831307A
JPS5831307A JP13044381A JP13044381A JPS5831307A JP S5831307 A JPS5831307 A JP S5831307A JP 13044381 A JP13044381 A JP 13044381A JP 13044381 A JP13044381 A JP 13044381A JP S5831307 A JPS5831307 A JP S5831307A
Authority
JP
Japan
Prior art keywords
change
refractive index
temp
filter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13044381A
Other languages
Japanese (ja)
Other versions
JPH031645B2 (en
Inventor
Tetsuo Kuwabara
鉄夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP13044381A priority Critical patent/JPS5831307A/en
Publication of JPS5831307A publication Critical patent/JPS5831307A/en
Publication of JPH031645B2 publication Critical patent/JPH031645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/21Brakes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/252Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore characterised by type of friction
    • E05Y2201/254Fluid or viscous friction
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/262Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore characterised by type of motion
    • E05Y2201/266Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore characterised by type of motion rotary
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/31Application of doors, windows, wings or fittings thereof for domestic appliances for refrigerators

Abstract

PURPOSE:To obtain an interference filter undergoing a small change in the central wavelength due to a temp. change by suitably combining a substance undergoing a plus change in the refractive index due to a temp. change with a substance undergoing a minus change in the refractive index due to a temp. change to form a multilayer film. CONSTITUTION:A multilayered film is formed by suitably combining at least 1 layer of a film forming substance undergoing a plus change in the refractive index due to a temp. change such as ZnS, SiO2, ZnSe or Ge with at least 1 layer of a film forming substance undergoing a minus change in the refractive index due to a temp. change such as PbTe, PbSe, CaF2, BaF2, LaF3 or MgF2. For example, a band-path filter is manufactured by forming a multilayered film consisting of alternate PbTe and ZnS layers 1-3, 5-7 and a spacer layer 4 made of ZnS having a low rate of change in the refractive index due to a temp. change on a substrate (sapphire) 8. The filter has reduced dependency of the central wavelength position on temp.

Description

【発明の詳細な説明】 本発明は光学干渉フィルターに係る。更に詳しくは、本
発明は温度変化に伴う中心波長の変化が小さな干渉フィ
ルターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical interference filter. More specifically, the present invention relates to an interference filter whose center wavelength changes little with temperature changes.

従来の光学干渉フィルターは珪素、ゲルマニウム、石英
、サファイヤまたはガラス等からなる基板と、該基板の
片面上Kfゲルマニウム酸化珪素(及0)、硫化亜鉛等
の屈折率を異にする複数の材料を蒸着することによ)形
成される多層膜とから構成されていた。
Conventional optical interference filters consist of a substrate made of silicon, germanium, quartz, sapphire, or glass, and multiple materials with different refractive indexes such as Kf germanium silicon oxide (and 0) and zinc sulfide deposited on one side of the substrate. It consisted of a multilayer film formed by

しかしながら、このような従来の光学干渉フィルターの
透過率、中心波長並びにバンドの半値幅Fi湯温度依存
して変化することが知られている。
However, it is known that the transmittance of such conventional optical interference filters, center wavelength, and band half width Fi vary depending on the temperature.

このような干渉フィルターの分光特性の温度依存性は波
長の選択性を著しく害し、大きな測定膜差の原因となシ
、特に精密測定に使用する場合には致命的欠点となる。
Such temperature dependence of the spectral characteristics of the interference filter significantly impairs wavelength selectivity and causes a large measurement difference, which is a fatal drawback especially when used for precision measurement.

実開昭55−105II05号公報の開示する光学干渉
フィルターは、従来の干渉フィルターの時に透過率の温
度依存性に着目し、その変化を単層膜の分光特性を利用
することKより補償している。
The optical interference filter disclosed in Japanese Utility Model Application Publication No. 55-105II05 focuses on the temperature dependence of transmittance in conventional interference filters, and compensates for the change by using the spectral characteristics of a single layer film. There is.

更に胛しく検射すると、実開昭5s−iosダ05号公
報の開示する技術では前記単層膜の膜厚を調整して、前
記多層膜の低温条件下における中心波長と該単層膜の高
温条件下における中心波長とを#tば一致させることK
より透過率の温度依存性を解消している。
Looking even more closely, in the technique disclosed in Utility Model Application Publication No. 5S-IOS No. 05, the thickness of the single layer film is adjusted, and the center wavelength of the multilayer film under low temperature conditions and that of the single layer film are adjusted. Match the center wavelength under high temperature conditions by #t.
This further eliminates the temperature dependence of transmittance.

しかしながら、該考案の技術では依然として温度変化に
基〈中心波長のズレの問題、バンド半値幅の変化の問題
の解決策とはなっていない、更に、該考案の技術では温
度変化に伴う透過率の変化は補償され九が、一方でこの
透過率の変化を補償するために透過率を犠牲にしている
ことがわかる。
However, the proposed technology still does not solve the problem of center wavelength shift and band half-width change due to temperature changes. It can be seen that the change is compensated for, but on the other hand, the transmittance is sacrificed to compensate for this change in transmittance.

現在のところ、温度g化に伴う中心波長のズレ並びに/
4ンド半値幅の変化の間−を解決した光学子連フィルタ
ーは知られていない。
At present, the center wavelength shift due to temperature g and /
There is no known optical element chain filter that solves the problem of change in the half-width of the fourth wave.

また、温度変化に伴う透過率変化、中心波長のズレ、バ
ンド半値幅の変化のうち特に顕著なものは中心波長のズ
レである。
Further, among the transmittance change, shift in center wavelength, and change in band half-width due to temperature change, the shift in center wavelength is particularly noticeable.

本発明の目的は中心波長位置の温度依存性を小さくした
干渉フィルターを提供するととKある。
An object of the present invention is to provide an interference filter in which the temperature dependence of the center wavelength position is reduced.

本発明の前記目的は屈折率の温度変化が正の物質と負の
物質とを適当に組合せて多層膜を構成することKよって
達成することができる。
The above object of the present invention can be achieved by constructing a multilayer film by appropriately combining materials whose refractive index changes with temperature are positive and negative.

干渉フィルターの分光特性の温度変化は該フィルター構
成膜の膜厚変化と屈折率変化とが原因となって生ずるが
、このような現象を抑制することは一般には困鴎である
Temperature changes in the spectral characteristics of an interference filter are caused by changes in the film thickness and refractive index of the filter's constituent films, but it is generally difficult to suppress such phenomena.

しかしながら、膜厚が温度に比例して増大するのに対し
て、屈折率は膜を構成する物質に依存して温度増加に伴
って増加したシ減少したりするので、このような特徴を
有効に利用することによシ従来の干渉フィルターの有す
る前記諸欠点を改善することが可能となる。
However, while the film thickness increases in proportion to the temperature, the refractive index either increases or decreases as the temperature increases, depending on the material that makes up the film. By utilizing this, it becomes possible to improve the above-mentioned drawbacks of conventional interference filters.

屈折率の温度変化が正である物質としてはム51Sto
、ムS・、G・等が知られておシ、一方屈折率の温度変
化が負である物質としてはPbT・、PbS・、MgF
2、CaF2、BaF2、LaF3 等が知られている
Mu51Sto is an example of a substance whose refractive index changes positively with temperature.
, MuS・, G・, etc. are known, while PbT・, PbS・, MgF are known as substances whose refractive index changes with temperature negatively.
2, CaF2, BaF2, LaF3, etc. are known.

を九、フィルターの基板としては従来公知の例えば珪素
、rルマニウム、石英、す7アイヤ、ガラス等を使用す
る。
(9) As the filter substrate, conventionally known materials such as silicon, rumanium, quartz, glass, etc. are used.

午のようKして、フィルターの膜構成並びKI[材料を
適当に選んで組合せることによ〕、使用波長域における
フィルターの分光特性の温度変化を小さくするζ□とが
可能となる。
By changing the film structure and KI of the filter (by appropriately selecting and combining materials), it is possible to reduce the temperature change in the spectral characteristics of the filter in the used wavelength range.

以下実施例によ)、本発明を更に異体的に説明する。し
かしながら、これら実施例は単に例示であって、何等本
発羽を限定するもので社ない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below. However, these Examples are merely illustrative and do not limit the invention in any way.

実施例1 本実施例では、屈折率の温度変化が正の物質としてh3
を、一方負O物質としてPbT・ を使用したΔンドパ
スフイルターを例示する。
Example 1 In this example, h3 is used as a material with a positive temperature change in refractive index.
On the other hand, a Δ-and-pass filter using PbT as a negative O substance is illustrated.

−1RK、ΔンPΔスフイルターはスペーサ一層を少な
くとも7層有す、&が、これがバンドパスフィルターの
分光特性O温度依存性に大きな影響を与えていり。
The -1RK, ΔnPΔ filter has at least seven spacer layers, and this has a great influence on the temperature dependence of the bandpass filter's spectral characteristics.

前記hSシよびPlsT・ の屈折率の温度変化率を比
較するとkS O方がPIeT・ よ抄も小さい、そζ
て、lIIλペー賃一層を屈折率の温度変化率の小さ 
□なhS Kよって構成する。これKよりてΔンドΔス
フイルターの中心波長の温度変化を小さくすることがで
龜ゐ。
Comparing the temperature change rates of the refractive index of hS and PlsT, we find that kSO is smaller than that of PIeT.
Therefore, the lIIλ layer has a small temperature change rate of refractive index.
It is composed of □ hSK. This K makes it possible to reduce the temperature change in the center wavelength of the Δnd Δspace filter.

本実施例Q膜構成は第1図に示したように1PbT@ 
 ト&S C)交m N3によびi〜yと、屈折率の温
度変化率の小さなムSKよp構成され九スペーす一層4
とからなる多層膜および基板(+ファイヤ)纒かもなる
。これら蒸着膜各々のII[厚はパンドースフィルター
の中心波長をλ0 とし九と童、スペーサ一層4のみを
光学的膜厚C屈折率X厚さmnd)をλo/2  とな
るようにし、他の1〜3およびS〜7層をλO4となる
ようにした。
The film structure of this example Q is 1PbT@ as shown in FIG.
G & S C) Cross m
It also consists of a multilayer film and a substrate (+fire) fabric. The thickness of each of these deposited films is set to λo/2, with the center wavelength of the Pandos filter being λ0, and the optical film thickness of only the spacer layer 4 (C refractive index x thickness mnd) being λo/2. Layers 1 to 3 and S to 7 were made to have λO4.

ζOような膜構成を有すゐフィルターの分光特性O温度
変化を11Iコ[に、そしてこのフィルターの温度と中
心波長の変化率との関係を露JIIK示した。
The temperature change in the spectral characteristics of a filter having a film structure such as ζO is shown in 11I, and the relationship between the temperature and the rate of change in the center wavelength of this filter is shown in 11I.

一方、比較の九めに、Sダl1WK示すような!lll
1III或を有す為Δンドノ々スフイルター、即ち屈折
率の温度変化が負のPbT・と正のzIaSとの交互層
1〜4および6〜9と屈折率の温度変化率が大きいPb
T・からなるスペーサ一層器と基板10とからなる7イ
ルターの分光特性の温度変化を第5図に示した。
On the other hand, the ninth comparison shows SDA l1WK! lll
Since it has 1III, it is a Δn filter, that is, alternating layers 1 to 4 and 6 to 9 of PbT, which has a negative temperature change in refractive index, and zIaS, which has a positive temperature change, and Pb, which has a large temperature change rate in its refractive index.
FIG. 5 shows temperature changes in the spectral characteristics of a 7-ilter consisting of a single-layer spacer made of T. and a substrate 10.

第Jllと第5IEIとの比較から明らかな如く、本発
明の膜構成を有するバンドパスフィルターは比較例のフ
ィルターよシも着しく小さな中心波長の温度変化率を示
すことがわかる。
As is clear from the comparison between No. Jll and No. 5 IEI, it can be seen that the bandpass filter having the film structure of the present invention exhibits a much smaller temperature change rate of the center wavelength than the filter of the comparative example.

を九、wiaItO本発明の干渉フィルターの分光特性
の温度変化から明らかな如く、フィルタ一温度がかな)
変化しても透過率は殆ど変化せず、かつ/lンド亭値輻
O変化も小さいことがわかる。
(9) As is clear from the temperature change in the spectral characteristics of the interference filter of the present invention, the temperature of the filter is
It can be seen that the transmittance hardly changes even with the change, and the change in the output value O is also small.

従りて、かか為朧榔威を有する本発明の干渉フィルター
は極めて優れた分光特性を有するものであることが理解
されよう・ 夷麿例コ 本実施例で社、スペーす一層の構成材料として、ムS以
外O層折率の温度変化率の小さな物質を使用した例を示
す。
Therefore, it can be understood that the interference filter of the present invention, which has a relatively low density, has extremely excellent spectral properties. An example in which a substance other than MuS having a small rate of temperature change in the refractive index of the O layer is used is shown below.

実施例fO膜構威において、スペーサ一層4のみを5o
KJD構成した・詳しい膜構成はsI6図に示す迩)′
?あ)、スペーサ一層4をぶ0 とした他は実施例/と
同様である。このような膜構成のフィルターも実施例1
のフイ#違−と同様の分光特性の温度依存性を示した。
In the example fO membrane structure, only the spacer layer 4 is 5o
The detailed membrane structure of KJD is shown in Figure sI6)'
? A) It is the same as in Example 1 except that the spacer layer 4 is made of 0. A filter with such a membrane structure is also used in Example 1.
The temperature dependence of the spectral characteristics was similar to that of the spectral characteristics.

以上の実施例においては、最も簡単な膜構成を有する7
アブリー・シ四−タイブの干渉フィルターについて記載
したが、スペーサ一層を一つ以上有する更に複雑なバン
ドパスフィルターについても同様に応用することができ
る。
In the above embodiments, 7
Although a four-type interference filter has been described, more complex bandpass filters having one or more spacer layers are equally applicable.

かくして、本発明によれば干渉フィルターの温度変化に
伴う中心波長の温度変化を小さくすることがで自る。従
って、本発明の干渉フィルターを使用するととによp各
種光学的測定機器O濶定精度を著しく向上させることが
可能となる。
Thus, according to the present invention, it is possible to reduce the temperature change in the center wavelength due to the temperature change of the interference filter. Therefore, by using the interference filter of the present invention, it is possible to significantly improve the accuracy of various optical measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1Mは本発明のバンドパスフィルター011111成
を示す模式図であ)1 第一図は第1IEIK示した膜構成を有するフィルター
の分光特性の温度変化を示す図であ〕寡53aFi第1
図に示し先膜構成を有するフィルターの温度と中心波長
の変化率との関係を示すダラ7であル1 第4図は本発明の比較例としてのフィルターの膜構成を
示す模式図であ)S 第581は第4図に示し先膜構成を有するフィルターの
温度と中心波長の変化率との関係を示すグラフであシ寡 第6図は本発明の他の実施例の膜構成を示す模式図であ
る。 馬1図 苓6図 馬3図 フィjしタ一温度(°C) 馬5図 フィルタ一温度(°C)
Figure 1M is a schematic diagram showing the composition of the bandpass filter 011111 of the present invention)1 Figure 1 is a diagram showing temperature changes in the spectral characteristics of a filter having the film configuration shown in Figure 1IEIK.
Figure 4 is a schematic diagram showing the film structure of a filter as a comparative example of the present invention. S 581 is a graph showing the relationship between the temperature and the rate of change of the center wavelength of a filter having the front film structure shown in FIG. 4. FIG. 6 is a schematic diagram showing the film structure of another embodiment of the present invention. It is a diagram. Horse 1 Figure 6 Figure Horse 3 Filter 1 Temperature (°C) Horse 5 Figure Filter 1 Temperature (°C)

Claims (1)

【特許請求の範囲】 (!)  屈折率の温度変化が正である膜物質の層と屈
折率の濃度変化が負である膜物質の層とを各々少なくと
も/11類含む多層膜を有する分光特性の温度変化を小
さくした干渉フィルター。 (2)  前記屈折率の温度変化が正である物質が7!
1IIS。 及0、ZmS@およびG・ からなる群から選ばれる、
特許請求の範囲第(1)項記載の干渉フィルター。 (3)前記屈折率の温度変化が負である物質がPbTl
Pb5s、CaF2.88F2、LaF3およびMgF
2 からなる鮮かも選ばれる、特許請求の範囲第(1)
項記載の干渉フィルター。 (4)前記多層膜におけるスペーす一層が屈折率の濃度
変化の小さな膜物質からなる一特許請求の範囲m1(1
)〜(3)項のいずれかにsatの干渉フィルター。
[Claims] (!) Spectral characteristics having a multilayer film including at least a layer of a film material whose temperature change in refractive index is positive and a layer of a film material whose concentration change in refractive index is negative. An interference filter that reduces temperature changes. (2) The number of substances whose refractive index changes with temperature is positive is 7!
1IIS. and 0, ZmS@ and G.
An interference filter according to claim (1). (3) The substance whose refractive index changes with temperature is negative is PbTl.
Pb5s, CaF2.88F2, LaF3 and MgF
2. Claim No. (1)
Interference filter as described in section. (4) Claim m1 (1
) to (3), a sat interference filter.
JP13044381A 1981-08-20 1981-08-20 Interference filter Granted JPS5831307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13044381A JPS5831307A (en) 1981-08-20 1981-08-20 Interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13044381A JPS5831307A (en) 1981-08-20 1981-08-20 Interference filter

Publications (2)

Publication Number Publication Date
JPS5831307A true JPS5831307A (en) 1983-02-24
JPH031645B2 JPH031645B2 (en) 1991-01-11

Family

ID=15034361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13044381A Granted JPS5831307A (en) 1981-08-20 1981-08-20 Interference filter

Country Status (1)

Country Link
JP (1) JPS5831307A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262101A (en) * 1984-06-09 1985-12-25 Horiba Ltd Multi-layered film interference filter for moisture meter
JPS619604A (en) * 1984-06-23 1986-01-17 Koshin Kogaku:Kk Multi-layered dielectric film filter
JPS6222034A (en) * 1985-07-22 1987-01-30 Koshin Kogaku:Kk Interference filter spectral device
JPS62103519U (en) * 1985-12-20 1987-07-01
JPH04217206A (en) * 1990-12-18 1992-08-07 Asahi Optical Co Ltd Fresh color separating reflective film
JPH05273472A (en) * 1992-01-21 1993-10-22 Hughes Aircraft Co Light observation and near-infrared-ray tracking system for portable missile firing device
EP0863414A3 (en) * 1997-03-06 1999-07-28 Northrop Grumman Corporation Process for fabricating structurally robust optical coatings
WO2010128605A1 (en) 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Optical characteristic measuring probe
GB2530099A (en) * 2014-09-15 2016-03-16 Schlumberger Holdings Temperature invariant infrared filter
JP2016518031A (en) * 2013-05-08 2016-06-20 カムリン・テクノロジーズ・(スウィッツァランド)・リミテッドCamlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting lasers
US10345480B2 (en) 2014-09-15 2019-07-09 Schlumberger Technology Corporation Mid-infrared acid sensor
US10487646B2 (en) 2014-09-15 2019-11-26 Schlumberger Technology Corporation Mid-infrared sensor
US10539500B2 (en) 2014-09-15 2020-01-21 Schlumberger Technology Corporation Active surface cleaning for a sensor
US10921482B2 (en) 2014-09-15 2021-02-16 Schlumberger Technology Corporation Mid-infrared carbon dioxide sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114032A (en) * 1974-06-20 1976-02-04 Gen Derekutorishite Co Opuchikarufuaibaarinkuyokonekuta
JPS5453549A (en) * 1977-10-05 1979-04-26 Canon Inc Multilayer thin film optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114032A (en) * 1974-06-20 1976-02-04 Gen Derekutorishite Co Opuchikarufuaibaarinkuyokonekuta
JPS5453549A (en) * 1977-10-05 1979-04-26 Canon Inc Multilayer thin film optical system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262101A (en) * 1984-06-09 1985-12-25 Horiba Ltd Multi-layered film interference filter for moisture meter
JPS619604A (en) * 1984-06-23 1986-01-17 Koshin Kogaku:Kk Multi-layered dielectric film filter
JPH0469882B2 (en) * 1984-06-23 1992-11-09 Koshin Kogaku Jugen
JPS6222034A (en) * 1985-07-22 1987-01-30 Koshin Kogaku:Kk Interference filter spectral device
JPS62103519U (en) * 1985-12-20 1987-07-01
JPH0330329Y2 (en) * 1985-12-20 1991-06-27
JPH04217206A (en) * 1990-12-18 1992-08-07 Asahi Optical Co Ltd Fresh color separating reflective film
JPH05273472A (en) * 1992-01-21 1993-10-22 Hughes Aircraft Co Light observation and near-infrared-ray tracking system for portable missile firing device
EP0863414A3 (en) * 1997-03-06 1999-07-28 Northrop Grumman Corporation Process for fabricating structurally robust optical coatings
WO2010128605A1 (en) 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Optical characteristic measuring probe
JP2016518031A (en) * 2013-05-08 2016-06-20 カムリン・テクノロジーズ・(スウィッツァランド)・リミテッドCamlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting lasers
GB2530099A (en) * 2014-09-15 2016-03-16 Schlumberger Holdings Temperature invariant infrared filter
GB2530099B (en) * 2014-09-15 2019-01-02 Schlumberger Holdings Temperature invariant infrared filter
US10345480B2 (en) 2014-09-15 2019-07-09 Schlumberger Technology Corporation Mid-infrared acid sensor
US10451784B2 (en) 2014-09-15 2019-10-22 Schlumberger Technology Corporation Temperature invariant infrared filter
US10487646B2 (en) 2014-09-15 2019-11-26 Schlumberger Technology Corporation Mid-infrared sensor
US10539500B2 (en) 2014-09-15 2020-01-21 Schlumberger Technology Corporation Active surface cleaning for a sensor
NO344896B1 (en) * 2014-09-15 2020-06-22 Schlumberger Technology Bv Temperature invariant infrared filter
US10865638B2 (en) 2014-09-15 2020-12-15 Schlumberger Technology Corporation Mid-infrared sensor
US10921482B2 (en) 2014-09-15 2021-02-16 Schlumberger Technology Corporation Mid-infrared carbon dioxide sensor

Also Published As

Publication number Publication date
JPH031645B2 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
JPS5831307A (en) Interference filter
US5460888A (en) Multi-layered optical film
JPH0238924B2 (en)
JPS60225803A (en) Multilayered film interference filter for gas analyzer
US2742819A (en) Long wavelength transmitting optical interference filters
US3423147A (en) Multilayer filter with wide transmittance band
US3936579A (en) Absorbent film produced by vacuum evaporation
JPH0743528A (en) Filter device
JPH031644B2 (en)
JPH10133253A (en) Light quantity stopping device
JPH07244216A (en) Transmission wavelength variable interference filter
Zakery et al. Optical constants of Ag-photodoped As-S amorphous films
JPS60262101A (en) Multi-layered film interference filter for moisture meter
SU1007066A1 (en) Multilayer interference rejection filter
HU189042B (en) Band-pass interference filter
JP2602035B2 (en) Bandpass optical filter
JPH07244215A (en) Interference filter for infrared ray
JPH0718961B2 (en) Bandpass filter
JPH03217825A (en) Space optical modulating element
JPS5932965Y2 (en) optical interference filter
JPS5941163B2 (en) multilayer interference film
JPS6361202A (en) Optical thin film for infrared ray
JP2725043B2 (en) Broadband half mirror
JPS5942283B2 (en) color separation stripe filter
JPS6188203A (en) Band-pass light interference film filter