JPS5932965Y2 - optical interference filter - Google Patents

optical interference filter

Info

Publication number
JPS5932965Y2
JPS5932965Y2 JP703279U JP703279U JPS5932965Y2 JP S5932965 Y2 JPS5932965 Y2 JP S5932965Y2 JP 703279 U JP703279 U JP 703279U JP 703279 U JP703279 U JP 703279U JP S5932965 Y2 JPS5932965 Y2 JP S5932965Y2
Authority
JP
Japan
Prior art keywords
filter element
optical
element made
spectral transmittance
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP703279U
Other languages
Japanese (ja)
Other versions
JPS55105405U (en
Inventor
憲久 桜井
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to JP703279U priority Critical patent/JPS5932965Y2/en
Publication of JPS55105405U publication Critical patent/JPS55105405U/ja
Application granted granted Critical
Publication of JPS5932965Y2 publication Critical patent/JPS5932965Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、光学干渉フィルタに関するものであって、詳
しくは、分光透過率の温度変化による変化量が小さな光
学干渉フィルタを提供するものである。
[Detailed Description of the Invention] The present invention relates to an optical interference filter, and more specifically, it provides an optical interference filter in which the amount of change in spectral transmittance due to temperature change is small.

たとえば、赤外線吸収形のガス分析計では、光学干渉フ
ィルタを透過する光量の変化に基づいてガス濃度等を測
定するように構成されている。
For example, an infrared absorption type gas analyzer is configured to measure gas concentration etc. based on changes in the amount of light transmitted through an optical interference filter.

第1図は、従来のこの種の光学干渉フィルタの一例を示
す構成説明図であって、1は支持体である基板、2は基
板1の一方の面に蒸着技術により形成された多層膜より
なる光学フィルタ要素である。
FIG. 1 is a configuration explanatory diagram showing an example of a conventional optical interference filter of this kind, in which 1 is a substrate as a support, and 2 is a multilayer film formed on one surface of the substrate 1 by vapor deposition technology. This is an optical filter element.

基板1としては、シリコン(Si)、ゲルマニウム(G
e)、石英、ガラス等が用いられ、多層膜2の材料とし
ては、ゲルマニウム(Ge)、酸化シリコン(Sin)
、硫化亜鉛(ZnS)等、屈折率の異なる複数の材料が
用いられる。
As the substrate 1, silicon (Si), germanium (G
e), quartz, glass, etc. are used, and the material of the multilayer film 2 is germanium (Ge), silicon oxide (Sin), etc.
, zinc sulfide (ZnS), and the like are used.

そして、これら多層膜材料は、透過波長域に対応した所
定の膜厚で所定の順序にしたがって順次積層され、光学
フィルタ要素2として形成される。
Then, these multilayer film materials are sequentially laminated in a predetermined order with a predetermined film thickness corresponding to the transmission wavelength range to form the optical filter element 2.

ところで、このような構成の光学干渉フィルタの分光透
過率の温度特性に着目すると、たとえば第2図のように
なる。
By the way, if we pay attention to the temperature characteristics of the spectral transmittance of the optical interference filter having such a configuration, we will see, for example, the one shown in FIG. 2.

第2図において、実線Aは常温状態の分光透過率特性を
表わし、破線Bは常温より30℃程度高い高温状態での
分光透過率特性を表わしている。
In FIG. 2, the solid line A represents the spectral transmittance characteristics at room temperature, and the broken line B represents the spectral transmittance characteristics at high temperatures approximately 30° C. higher than room temperature.

なお、第2図において、横軸には波長λ(μm)をとり
、縦軸には透過率T(%)をとっている。
In FIG. 2, the horizontal axis represents the wavelength λ (μm), and the vertical axis represents the transmittance T (%).

これら第2図から明らかなように、温度が変化すると、
最大透過波長がλいからλ8に変化し、その最大透過率
もTAからTBに変化する。
As is clear from these Figure 2, when the temperature changes,
The maximum transmission wavelength changes from λ to λ8, and the maximum transmittance also changes from TA to TB.

したがって、このような光学干渉フィルタを用いた場合
には、温度変化による透過率の変化の影響を受けて測定
誤差を生じるおそれがある。
Therefore, when such an optical interference filter is used, measurement errors may occur due to changes in transmittance due to temperature changes.

このような影響をなくする方法としては、たとえば光学
干渉フィルタの温度を一定に保つことが考えられるが、
温度調節された光学干渉フィルタの収納容器が必要とな
り、小形化も困難である。
One way to eliminate this effect is to keep the temperature of the optical interference filter constant, for example.
A temperature-controlled storage container for the optical interference filter is required, and miniaturization is also difficult.

本考案は、これらの欠点を解決するものであって、以下
、図面を用いて詳細に説明する。
The present invention solves these drawbacks and will be described in detail below with reference to the drawings.

第3図は、本考案の一実施例を示す構成説明図であって
、第1図と同等部分には同一符号を付している。
FIG. 3 is a configuration explanatory diagram showing one embodiment of the present invention, and parts equivalent to those in FIG. 1 are given the same reference numerals.

すなわち、3は単層膜よりなる光学フィルタ要素であっ
て、多層膜2を構成する材料のうちの一つの材料で形成
され、基板1の他方の面に蒸着技術により形成されてい
る。
That is, reference numeral 3 denotes an optical filter element made of a single layer film, which is made of one of the materials constituting the multilayer film 2, and is formed on the other surface of the substrate 1 by a vapor deposition technique.

第4図は、このような単層膜3として用いる材料の一種
であるゲルマニウム(Ge)の分光透過率の温度特性の
一例を示したものであって、第2図と同様に、実線Cは
常温状態の分光透過率特性を表わし、破線りは高温状態
の分光透過率特性を表わしている。
FIG. 4 shows an example of the temperature characteristics of the spectral transmittance of germanium (Ge), which is a type of material used for such a single layer film 3, and similarly to FIG. 2, the solid line C is The spectral transmittance characteristics at room temperature are shown, and the broken lines represent the spectral transmittance characteristics at high temperature.

また、横軸には波長λ(μm)をとり、縦軸には透過率
T(%)をとっている。
Further, the horizontal axis shows the wavelength λ (μm), and the vertical axis shows the transmittance T (%).

この第4図から明らかなように、ゲルマニウムの単層膜
3の分光透過率温度特性は、第2図の多層膜2の分光透
過率温度特性と同一極性を有している。
As is clear from FIG. 4, the spectral transmittance temperature characteristics of the germanium single layer film 3 have the same polarity as the spectral transmittance temperature characteristics of the multilayer film 2 shown in FIG.

また、第2図における最大透過波長の変化量を△λA8
、第4図における最大透過波長の変化量を△λCDとす
ると、△λ。
In addition, the amount of change in the maximum transmission wavelength in Figure 2 is △λA8
, if the amount of change in the maximum transmission wavelength in FIG. 4 is ΔλCD, then Δλ.

0〉△λA8の関係にある。このような特性を有するゲ
ルマニウム単層膜3を基板1に形成するのにあたって、
膜厚を調整して、多層膜2の常温状態における最大透過
波長λ□と単層膜3の高温状態における最大透過波長λ
Dとをほぼ一致させることにより、多層膜2および単層
膜3の分光透過率の温度特性は、それぞれ第5図のA−
Dのようになる。
The relationship is 0>△λA8. In forming the germanium single layer film 3 having such characteristics on the substrate 1,
By adjusting the film thickness, the maximum transmission wavelength λ□ of the multilayer film 2 at room temperature and the maximum transmission wavelength λ of the single layer film 3 at high temperature
By making D almost the same, the temperature characteristics of the spectral transmittance of the multilayer film 2 and the single layer film 3 are as shown in A- in FIG. 5, respectively.
It will look like D.

この結果、第3図の光学干渉フィルタ全体の分光透過率
の温度特性は、第6図のE、Fのようになり、温度変化
による最大透過率の変化に小さな光学干渉フィルタが実
現できる。
As a result, the temperature characteristics of the spectral transmittance of the entire optical interference filter in FIG. 3 become as shown in E and F in FIG. 6, and an optical interference filter can be realized in which the change in maximum transmittance due to temperature change is small.

なお、第6図において、実線Eは常温状態の特性を表わ
し、破線Fは高温状態の特性を表わしている。
In FIG. 6, the solid line E represents the characteristics at room temperature, and the broken line F represents the characteristics at high temperature.

すなわち、常温状態における波長λ。、λ4での分光透
過率TEはTA−Toとなり、高温状態における波長λ
1.λ8での分光透過率TFはTB ” TDとなる。
In other words, the wavelength λ at room temperature. , the spectral transmittance TE at λ4 becomes TA-To, and the wavelength λ in the high temperature state
1. The spectral transmittance TF at λ8 is TB''TD.

第7図は、単層膜3として用いる材料の一種である酸化
シリコン(Sin)の分光透過率特性の一例を示したも
のである。
FIG. 7 shows an example of the spectral transmittance characteristics of silicon oxide (Sin), which is a type of material used as the single layer film 3.

このような酸化シリコン単層膜の温度変化による分光透
過率の変化量は、多層膜2の変化量に比べて充分小さい
ことが知られている。
It is known that the amount of change in spectral transmittance due to temperature changes in such a silicon oxide single layer film is sufficiently smaller than the amount of change in the multilayer film 2.

このような特性を有する酸化シリコン単層膜3を基板1
に形成するにあたって、膜厚を調整して、多層膜2の常
温状態における最大透過波長λAと単層膜3の透過波長
λ6□とをほぼ一致させることにより、多層膜2および
単層膜3の各分光透過率特性はそれぞれ第8図のA、B
、Gのようになる。
A silicon oxide single layer film 3 having such characteristics is coated on the substrate 1.
When forming the multilayer film 2 and the single layer film 3, the maximum transmission wavelength λA of the multilayer film 2 at room temperature and the transmission wavelength λ6□ of the single layer film 3 are almost the same by adjusting the film thickness. The spectral transmittance characteristics are A and B in Figure 8, respectively.
, becomes like G.

この結果、第3図の光学干渉フィルタ全体の分光透過率
の温度特性は、第9図のH,Iのようになり、温度変化
による最大透過率の変化の小さな光学干渉フィルタが実
現できる。
As a result, the temperature characteristics of the spectral transmittance of the entire optical interference filter shown in FIG. 3 become as shown by H and I in FIG. 9, and an optical interference filter with a small change in maximum transmittance due to temperature change can be realized.

なお、実線Hは常温状態における特性を表わし、破線■
は高温状態の特性を表わしている。
Note that the solid line H represents the characteristics at room temperature, and the broken line ■
represents the characteristics of a high temperature state.

すなわち、常温状態における波長λ□、λ4ての分光透
過率THはTA−T6□となり、高温状態における波長
λ1.λ8での分光透過率T1はTB ” Tcmとな
る。
That is, the spectral transmittance TH at wavelengths λ□ and λ4 at room temperature becomes TA-T6□, and at the wavelength λ1. The spectral transmittance T1 at λ8 is TB'' Tcm.

なお、第3図の実施例では、多層膜よりなる光学フィル
タ要素2と単層膜よりなる光学フィルタ要素3とを共通
の基板1の両面にそれぞれ形成する例について示してい
るが、これら各光学フィルタ要素2,3をそれぞれ異な
った基板に形威し、これら複数の基板を組み合わせて光
学干渉フィルタを構成することもできる。
The embodiment shown in FIG. 3 shows an example in which the optical filter element 2 made of a multilayer film and the optical filter element 3 made of a single layer film are respectively formed on both sides of a common substrate 1. It is also possible to form an optical interference filter by forming the filter elements 2 and 3 on different substrates and combining a plurality of these substrates.

第10図にこのような構成の一例を示す。FIG. 10 shows an example of such a configuration.

以上説明したように、本考案によれば、比較的簡単な構
成で、温度変化による分光透過率の変化量の小さな光学
干渉フィルタが実現でき、各種測定器の光学系のフィル
タとして好適である。
As described above, according to the present invention, it is possible to realize an optical interference filter with a relatively simple configuration and a small amount of change in spectral transmittance due to temperature change, and is suitable as a filter for optical systems of various measuring instruments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学干渉フィルタの一例を示す構成説明
図、第2図は第1図のフィルタの分光透過率の温度特性
例図、第3図は本考案の一実施例を示す構成説明図、第
4図は本考案に用いる単層膜光学フィルタ要素の分光透
過率の温度特性例図、第5図は第2図と第4図の特性図
を同一目盛でそれぞれ表わした特性図、第6図は第5図
の各温度特性を合成した特性図、第7図は本考案に用い
る他の単層膜光学フィルタ要素の分光透過率の特性図、
第8図は第2図と第7図の特性図を同一目盛でそれぞれ
表わした特性図、第9図は第8図の各特性を合成した特
性図、第10図は本考案の他の実施例を示す構成説明図
である。 1・・・・・・基板(支持体)、2・・・・・・多層膜
光学フィルタ要素、3・・・・・・単層膜光学フィルタ
要素。
Fig. 1 is an explanatory diagram of the configuration showing an example of a conventional optical interference filter, Fig. 2 is an illustration of an example of the temperature characteristics of the spectral transmittance of the filter of Fig. 1, and Fig. 3 is an explanatory diagram of the configuration of an example of the present invention. 4 is an example of the temperature characteristics of the spectral transmittance of the single-layer optical filter element used in the present invention, and FIG. 5 is a characteristic diagram showing the characteristic diagrams of FIGS. 2 and 4 on the same scale, respectively. FIG. 6 is a characteristic diagram that combines the temperature characteristics shown in FIG. 5, and FIG. 7 is a characteristic diagram of spectral transmittance of another single-layer optical filter element used in the present invention.
Figure 8 is a characteristic diagram in which the characteristic diagrams in Figures 2 and 7 are expressed on the same scale, Figure 9 is a characteristic diagram that combines the characteristics in Figure 8, and Figure 10 is another implementation of the present invention. FIG. 2 is a configuration explanatory diagram showing an example. 1...Substrate (support), 2...Multilayer film optical filter element, 3...Single layer film optical filter element.

Claims (5)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)多層膜よりなる光学フィルタ要素を有する光学干
渉フィルタに単層膜よりなる光学フィルタ要素を付加し
、多層膜よりなる光学フィルタ要素の温度変化による分
光透過率の変化量を単層膜よりなる光学フィルタ要素の
温度変化による分光透過率の変化量で補償することを特
徴とする光学干渉フィルタ。
(1) An optical filter element made of a single layer film is added to an optical interference filter having an optical filter element made of a multilayer film, and the amount of change in spectral transmittance due to temperature change of the optical filter element made of a multilayer film is compared with that of the single layer film. An optical interference filter characterized in that compensation is made by the amount of change in spectral transmittance due to temperature change of an optical filter element.
(2)基板の一方の面に多層膜よりなる光学フィルタ要
素を形成するとともに基板の他方の面に単層膜よりなる
光学フィルタ要素を形成することを特徴とする実用新案
登録請求の範囲第1項記載の光学干渉フィルタ。
(2) Utility model registration claim 1, characterized in that an optical filter element made of a multilayer film is formed on one surface of the substrate, and an optical filter element made of a single layer film is formed on the other surface of the substrate. Optical interference filter as described in section.
(3)多層膜よりなる光学フィルタ要素と単層膜よりな
る光学フィルタ要素とをそれぞれ異なった基板に形成す
ることを特徴とする実用新案登録請求の範囲第1項記載
の光学干渉フィルタ。
(3) The optical interference filter according to claim 1, wherein the optical filter element made of a multilayer film and the optical filter element made of a single layer film are respectively formed on different substrates.
(4)単層膜よりなる光学フィルタ要素として、多層膜
よりなる光学フィルタ要素と同一極性の分光透過率温度
特性を有しかつ温度変化による分光透過率の変化量が多
層膜よりなる光学フィルタ要素よりも大きなものを用い
ることを特徴とする実用新案登録請求の範囲第1項記載
の光学干渉フィルタ。
(4) An optical filter element made of a single layer film has a spectral transmittance temperature characteristic of the same polarity as an optical filter element made of a multilayer film, and the amount of change in spectral transmittance due to temperature change is the same as that of an optical filter element made of a multilayer film. 2. The optical interference filter according to claim 1, wherein the optical interference filter is larger than the above.
(5)単層膜よりなる光学フィルタ要素として、温度変
化による分光透過率の変化量が多層膜よりなる光学フィ
ルタ要素よりも充分小さなものを用いることを特徴とす
る実用新案登録請求の範囲第1項記載の光学干渉フィル
タ。
(5) Utility model registration claim 1, characterized in that the optical filter element made of a single layer film has a sufficiently smaller change in spectral transmittance due to temperature change than the optical filter element made of a multilayer film. Optical interference filter as described in section.
JP703279U 1979-01-19 1979-01-19 optical interference filter Expired JPS5932965Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP703279U JPS5932965Y2 (en) 1979-01-19 1979-01-19 optical interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP703279U JPS5932965Y2 (en) 1979-01-19 1979-01-19 optical interference filter

Publications (2)

Publication Number Publication Date
JPS55105405U JPS55105405U (en) 1980-07-23
JPS5932965Y2 true JPS5932965Y2 (en) 1984-09-14

Family

ID=28814408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP703279U Expired JPS5932965Y2 (en) 1979-01-19 1979-01-19 optical interference filter

Country Status (1)

Country Link
JP (1) JPS5932965Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718961B2 (en) * 1984-03-21 1995-03-06 株式会社堀場製作所 Bandpass filter
JPH0812281B2 (en) * 1985-11-13 1996-02-07 富士通株式会社 Light attenuator

Also Published As

Publication number Publication date
JPS55105405U (en) 1980-07-23

Similar Documents

Publication Publication Date Title
Hall et al. Optical properties of cadmium sulfide and zinc sulfide from 0.6 micron to 14 microns
Takashashi Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition
Ritter Optical film materials and their applications
Carlie et al. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges
Hass et al. Optical constants and reflectance and transmittance of evaporated aluminum in the visible and ultraviolet
Hass et al. Optical properties of various evaporated rare earth oxides and fluorides
Hunter et al. Reflectance of aluminum overcoated with MgF 2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence
Hlubina et al. Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film
Stolberg-Rohr et al. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared
Bates et al. Interference filters for the far ultraviolet (1700 Å to 2400 Å)
JPS5932965Y2 (en) optical interference filter
Cox et al. Further studies on LiF-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet
Efstathiou et al. Optical Properties of As 2 Se 3,(AsxSb 1− x) 2 Se 3, and SbxS 3
Pérez et al. Infrared characterisation of evaporated SiO thin films
Gamble et al. Reflection filter multilayers of metallic and dielectric thin films
Hawkins et al. An ultra-wide passband (5–30 μm) filter for FTIR studies of Photosystem II
Von Klüber Production of a high resolving power by means of multilayer coatings
Corrales et al. Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only
Nedelcu et al. Optimum GeSbSe layer design with respect to transmission and thickness
JPS6361202A (en) Optical thin film for infrared ray
Evans et al. High-performance multilayer interference filters for the region 12-50μm
Dobrowolski et al. Beam splitter for a wide-angle Michelson Doppler imaging interferometer
Tasseva et al. Light-induced changes in the physico-chemical and optical properties of thin Ge–S–Se–As films
Cox et al. Optical properties of zinc sulfide in the vacuum ultraviolet
JPH03185402A (en) Optical frequency filter