JPH03185402A - Optical frequency filter - Google Patents

Optical frequency filter

Info

Publication number
JPH03185402A
JPH03185402A JP32524589A JP32524589A JPH03185402A JP H03185402 A JPH03185402 A JP H03185402A JP 32524589 A JP32524589 A JP 32524589A JP 32524589 A JP32524589 A JP 32524589A JP H03185402 A JPH03185402 A JP H03185402A
Authority
JP
Japan
Prior art keywords
refractive index
change
optical
optical medium
frequency filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32524589A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tatsuta
立田 光廣
Tsuneo Konaka
小中 庸夫
Tsuneo Horiguchi
常雄 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32524589A priority Critical patent/JPH03185402A/en
Publication of JPH03185402A publication Critical patent/JPH03185402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To offset a change in refractive index by a temp. change and to allow spectral measurement with high accuracy by integrally joining an optical medium and a refractive index control member which generates thermal strains and thermal stresses by the temp. change. CONSTITUTION:An etalon material 2 of the optical frequency filter is formed by joining and integrating, for example, a thermal glass as the optical medium 1 and, for example, quartz glass as the refractive index control member 3. Both the medium and the member have end faces 2-1, 2-2 parallel with each other. A material which generate the different thermal strains and thermal stresses at the time of the temp. change and can offset the change i the refractive index by the action of the optical medium 1 and the control member 3 on each other is selected for the refractive index control member 3. As a result, the change in the frequency of the transmitted light of the etalon material by the temp. change is eliminated and the spectral measurement with the high accuracy is executed without requiring an intricate temp. stabilizer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特定の周波数帯をもつ光のみを通過させる光
周波数フィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical frequency filter that passes only light having a specific frequency band.

[従来技術とその課N] 光周波数フィルタは、光の吸収・放出現象をとらなう物
wL測測定光周波数多重通信における分波素子として重
要である。
[Prior Art and Its Section N] Optical frequency filters are important as devices that perform light absorption/emission phenomena as demultiplexing elements in wL measurement and optical frequency multiplex communication.

従来の代表的な光周波数フィルタはファブリ・ペロー・
エタロンと呼ばれているものであって、平行度の高い平
面板の2つの反射面における光の多重反射現象を用いる
ものである。第6図はその原理説明図であって、符号!
はエタロン材料である。エタロン材料2の屈折率をn、
厚さをQとすると、エタロン材料2の入射端面1−1上
の1点Oから入射した波長λの光の一部は、光線OCA
Conventional typical optical frequency filters are Fabry-Perot filters.
It is called an etalon and uses the phenomenon of multiple reflection of light on two reflective surfaces of a highly parallel flat plate. FIG. 6 is a diagram explaining the principle, and the symbol!
is the etalon material. The refractive index of etalon material 2 is n,
Assuming that the thickness is Q, a part of the light of wavelength λ that is incident from one point O on the incident end surface 1-1 of the etalon material 2 is the light ray OCA.
.

となってエタロン材料2を透過するが、一部はエタロン
材料2内部で反射し、光線0CBAAt等の多重反射光
を生じる。
The light passes through the etalon material 2, but a portion of the light is reflected inside the etalon material 2, producing multiple reflected light such as the light ray 0CBAAt.

1往復だけ光路差のある2つの出射光線の位相差δは、
エタロン材料2内の屈、折角θを用いて次式であられさ
れる。
The phase difference δ between two outgoing beams with an optical path difference of one round trip is:
It is calculated by the following equation using the refraction and refraction angles θ in the etalon material 2.

δ−4trn(lcosθ/λ       ・(1)
したがって透過率最大の条件は、鵬を任意の整数として
、 δ=2−π              ・・・(2)
と示される。ここで光速度をC1光周波数をνとすれば
、 C−νλ              ・・・(3)の
関係より、−次の透過光周波数シーは次式であられされ
る。
δ−4trn(lcosθ/λ ・(1)
Therefore, the condition for maximum transmittance is δ=2−π (2), where Peng is an arbitrary integer.
is shown. Here, if the speed of light is C1 and the optical frequency is ν, then from the relationship of C−νλ (3), the −th transmitted light frequency C is given by the following equation.

vm =s C/2n Q cosθ       ・
−(4)第7図はエタロン材料2の入射端面1−1と出
射端面1−2にむける反射率Rを考慮して計算されたフ
ァブリ・ペロー・エタロンの透過特性を示したグラフで
あり、横軸は光の周波数、縦軸は透過率を示した。(M
、Born and E、11o1r、Pr1ncip
lesof 0ptics、3d Ed、New Yo
rk、Pergason、1965.Chap。
vm =s C/2n Q cosθ ・
-(4) FIG. 7 is a graph showing the transmission characteristics of the Fabry-Perot etalon calculated by taking into account the reflectance R towards the entrance end face 1-1 and the exit end face 1-2 of the etalon material 2, The horizontal axis shows the frequency of light, and the vertical axis shows the transmittance. (M
, Born and E, 11o1r, Pr1ncip
lesof 0ptics, 3d Ed, New Yo
rk, Pergason, 1965. Chap.

7より) この理論特性は多くの実験によって確認されており、フ
ァブリ・ペロー・エタロンはすぐれた光周波数フィルタ
として広く用いられている。
7) This theoretical characteristic has been confirmed by many experiments, and the Fabry-Perot etalon is widely used as an excellent optical frequency filter.

しかしながらファブリ・ペロー・エタロンの透過光周波
数シーは温度変化の影響を受けやすく、高精度な温度安
定化を必要とするという欠点があった。すなわち、上記
(4)式から温度Tの変化の影響を求めると、 −(dν lI/dT)(l/ν −)=(1/n)(
θn/θT)+(1/12)(θUθT)    −(
5)となり、さらにエタロン材料2として一般的に用い
られている石英について考察すると、(1/n)(θn
/θT)# 7XlO−”(1#り(θQ/θT)45
X1G−’の程度である。
However, the transmitted light frequency sheath of the Fabry-Perot etalon has the disadvantage that it is easily affected by temperature changes and requires highly accurate temperature stabilization. That is, when calculating the influence of the change in temperature T from the above equation (4), −(dν lI/dT)(l/ν −)=(1/n)(
θn/θT)+(1/12)(θUθT) −(
5), and further considering quartz, which is commonly used as etalon material 2, (1/n)(θn
/θT)#7XlO-”(1#ri(θQ/θT)45
It is about X1G-'.

今、ここで興味のある光周波数ν霞が2X10”H2(
λ=1.5μs+lこ相当)とすると、dν/dT=1
.4X10@Hzとなる。すなわち1’Cの温度上昇に
より透過光周波数は1.4GHzも変化することとなる
。このため例えば透過光周波数の安定性をIMIIz以
下にするためには、1/1000℃以下の温度安定性を
必要としていた。
Now, the optical frequency ν haze that we are interested in is 2X10”H2 (
If λ = 1.5 μs + l equivalent), then dν/dT = 1
.. It becomes 4X10@Hz. That is, a temperature increase of 1'C causes the transmitted light frequency to change by as much as 1.4 GHz. For this reason, for example, in order to maintain the stability of the transmitted light frequency below IMIIz, temperature stability of 1/1000° C. or below is required.

本発明は上記課題に鑑みてなされたものであって、温度
変化に対する透過光の周波数変化が小さく、簡易な温度
制御のみで安定に動作する光周波数フィルタを損供する
ことを目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an optical frequency filter that has a small change in the frequency of transmitted light with respect to temperature changes and operates stably with only simple temperature control.

[課題を解決するための手段] 本発明の請求項1記戦の光周波数フィルタは、入射端面
と出射端面とが互いに平行で、温度変化により屈折率が
変化する光学媒体に、温度変化に上り熱歪と熱応力を発
生し、上記光学媒体の屈折率変化を相殺する屈折率調節
部材を接合一体化してなることを解決手段とした。
[Means for Solving the Problems] The optical frequency filter according to claim 1 of the present invention has an incident end face and an outgoing end face parallel to each other, and has an optical medium whose refractive index changes with temperature change. The solution is to integrally bond a refractive index adjusting member that generates thermal strain and thermal stress to offset the change in the refractive index of the optical medium.

また本発明の請求項2記載の光周波数フィルタは、光学
媒体の外周面に屈折率調節部材を被覆してなることを解
決手段とした。
Moreover, the optical frequency filter according to claim 2 of the present invention has a solution in that the outer peripheral surface of an optical medium is coated with a refractive index adjusting member.

[作用] 本発明の光周波数フィルタは、光学媒体と屈折率調節部
材とを一体化することにより、光学媒体単体の場合とは
異なる熱歪と熱応力を発生させて、温度変化に由来する
エタロン材料の屈折率変化(1/ n)(θn/θT)
の影響を相殺することを最も主要な特徴とし、高精度な
温度制御を不必要とした点で従来技術と大きく異なる。
[Function] By integrating the optical medium and the refractive index adjusting member, the optical frequency filter of the present invention generates thermal strain and thermal stress that are different from those produced by the optical medium alone, thereby reducing the etalon caused by temperature changes. Change in refractive index of material (1/n) (θn/θT)
The main feature of this technology is to offset the effects of heat, and it differs greatly from conventional technology in that it eliminates the need for high-precision temperature control.

以下、本発明の詳細な説明する。第1図は本発明の光周
波数フィルタの1例を原理を説明する概略図であって、
符号2はエタロン材料である。このエタロン材料2は、
光学媒体lと屈折率調節部材3を接合一体化してなるも
のである。光学媒体1と屈折率調節部材3とは、いずれ
も互いに平行な2つの端面を有し、光の伝搬が可能な物
質からなり、エタロン材料2の温度変化に際して、異な
る熱歪と熱応力とを発生させ、エタロン材料2の屈折率
変化がOとなるような物質からなる。そしてこれらは基
準温度T0において自然長Q6をもって互いに接着され
、光の入射方向と接合面とが一致するように一体化され
ている。
The present invention will be explained in detail below. FIG. 1 is a schematic diagram illustrating the principle of an example of the optical frequency filter of the present invention,
Reference numeral 2 is an etalon material. This etalon material 2 is
The optical medium 1 and the refractive index adjusting member 3 are integrally bonded together. The optical medium 1 and the refractive index adjusting member 3 both have two end surfaces parallel to each other, and are made of a material that allows light to propagate, and are capable of experiencing different thermal strains and thermal stresses when the temperature of the etalon material 2 changes. The refractive index of the etalon material 2 changes to O. These are bonded to each other with a natural length Q6 at a reference temperature T0, and are integrated so that the direction of light incidence coincides with the bonding surface.

いまここで光学媒体lと屈折率調節部材3の線膨張係数
をα□α3、ヤング率をE 、E s、接合面の断面積
を81S3とし、エタロン材料2の屈折率をn、ポアソ
ン比をμとする。第1図に示したような一体構造におい
ては、温度’ro+’rにおいて光学媒体lと屈折率調
節部材3は互いに力Fを及ぼしあい、一体として伸縮長
さQとなる。このとき、光学媒体lと屈折率調節部材3
の平均線膨張係数をαとすると、簡単な計算により次式
が得られる。
Here, the linear expansion coefficient of the optical medium l and the refractive index adjusting member 3 is α□α3, the Young's modulus is E and E s, the cross-sectional area of the joint surface is 81S3, the refractive index of the etalon material 2 is n, and the Poisson's ratio is Let it be μ. In the integral structure as shown in FIG. 1, the optical medium l and the refractive index adjusting member 3 exert a force F on each other at a temperature of 'ro+'r, and the length Q is extended as a unit. At this time, the optical medium l and the refractive index adjusting member 3
If the average linear expansion coefficient of is α, then the following equation can be obtained by simple calculation.

F=(α1αs)T/(1/S1L+1/5sEs) 
    ・” (6)αミ(1/12)(θQ/θT) −(α、S、E、+α3S3E3)/(SIEl+53
E3)   ・・・(7)ただし、エタロン材料2に働
く力はα、〉α1のときは張力であり、α、くα1のと
きは圧縮力となる。
F=(α1αs)T/(1/S1L+1/5sEs)
・” (6) αmi(1/12)(θQ/θT) −(α, S, E, +α3S3E3)/(SIEl+53
E3) ... (7) However, when the force acting on the etalon material 2 is α, > α1, it is a tension force, and when α, α1, it is a compressive force.

このとき、熱応力F/S 、の効果をも含めたエタロン
材料2の透過光周波数の温度変化は次式であられされる
At this time, the temperature change in the transmitted light frequency of the etalon material 2, including the effect of thermal stress F/S, is expressed by the following equation.

(1/νm) (dνs/dT)・(1#り(# Q/
θT)+(1/n)(θn/θT)+(1/n)(θn
/θσ)(θσ/θT)・・・(8) ここで、(8)式右辺第1項は上記(7)式で与えられ
る平均線膨張係数αである。右辺第2項は光学媒体lの
屈折率の温度変化による項であり、材料固有の値をもつ
。右辺第3項は応力σ−F/S。
(1/νm) (dνs/dT)・(1#ri(#Q/
θT)+(1/n)(θn/θT)+(1/n)(θn
/θσ) (θσ/θT) (8) Here, the first term on the right side of equation (8) is the average linear expansion coefficient α given by equation (7) above. The second term on the right side is a term due to temperature change in the refractive index of the optical medium l, and has a value specific to the material. The third term on the right side is stress σ-F/S.

による屈折率変化である。光学媒体lの光弾性定数をP
 ll+P l!とすると、 (1/n)(θn/θa )(n’/2E+) (P 
t t−# (P lt ”P + t))・・・(9
)となり、 また上記(6)式より (θσ/θT)=F/S、T ・(α1α*)/S+(1/S+E++l/5sE3)
・・・(10) よって、 (1/n)(θn/θσ)(θσ/θT)本発明の目的
は(8)式右辺の値を0とするように設計することにあ
る。
This is the change in refractive index due to The photoelastic constant of the optical medium l is P
ll+P l! Then, (1/n)(θn/θa)(n'/2E+) (P
t t-# (P lt "P + t))...(9
), and from equation (6) above, (θσ/θT) = F/S, T ・(α1α*)/S+(1/S+E++l/5sE3)
...(10) Therefore, (1/n) (θn/θσ) (θσ/θT) The purpose of the present invention is to design the value on the right side of equation (8) to be 0.

すなわち、 (P、−μ(p、、+t’t*))・0       
    ・・・(12)とすることである。
That is, (P, -μ(p,,+t't*))・0
...(12).

光学媒体lおよび屈折率調節部材3を定めれば、その断
面積S 、、 S s以外の値はすべて定まるから、上
記(12)式を満たすようにSt、Ssを定めることに
より、温度変化による透過光周波数の変化のない(θシ
/θT−〇)エタロン材料2すなわち光層波数フィルタ
が得られる。
Once the optical medium l and the refractive index adjustment member 3 are determined, all values other than the cross-sectional area S , , S s are determined, so by determining St and Ss so as to satisfy the above equation (12), The etalon material 2, that is, the optical layer wavenumber filter with no change in transmitted light frequency (θshi/θT−〇) is obtained.

このような材料の組み合わせの具体例を以下にあげる。Specific examples of such combinations of materials are listed below.

人工衛星に積みこまれる望遠鏡やレーザ発振装置などに
用いられるアサーマルガラス(athermalgla
ss)は (θσ/θT)・−(n−1)α、        ・
・・(13)を満たす媒質であって、ATCI、ATF
2.ATF4.FCDIO等を名付けられたものが開発
されている。(いずれも保谷ガラス(株)社製)このよ
うなガラスにおいては屈折率の温度係数が負であるため
、応力屈折率と正の線膨張率を相殺して、全体としてエ
タロン材料の光路長の温度変化を零にすることができる
。上記式(13)を式(12)に代入してS、E、/S
、E、について解くと、S、E、/S、E。
Athermal glass is used in telescopes and laser oscillation devices loaded onto artificial satellites.
ss) is (θσ/θT)・−(n−1)α, ・
...Medium that satisfies (13), ATCI, ATF
2. ATF4. Devices with names such as FCDIO have been developed. (Both manufactured by Hoya Glass Co., Ltd.) In such glasses, the temperature coefficient of refractive index is negative, so the stress refractive index and positive coefficient of linear expansion cancel each other out, and the optical path length of the etalon material as a whole increases. Temperature change can be reduced to zero. Substituting the above formula (13) into formula (12), S, E, /S
When solving for ,E, we get S,E,/S,E.

・(n−1−n’A/2)+(a s/α +)(n’
A/2−n)       ・” (14)たたし、 A=P+t−μ(p、、+P、)          
    ・・・(15)である。具体的数値例をあげる
と、光学媒体lとしてホヤガラスATC1,屈折率調節
部材3として石英を選ぶものとすれば、 U +=1.1XIO−″[deg−’]、a 5=5
Xlo−’[deg−’]n=1.5.El=E3=7
X10”[N/f11”]、PII=0.11゜P、、
=0.23.μ=0.2  の物性値を代入してSt/
S*=o、t’r             ・・・(
16)を得る。
・(n-1-n'A/2)+(as/α+)(n'
A/2-n) ・” (14)Tap, A=P+t-μ(p,,+P,)
...(15). To give a specific numerical example, if we choose ascidian glass ATC1 as the optical medium l and quartz as the refractive index adjusting member 3, then U + = 1.1XIO-''[deg-'], a 5 = 5
Xlo-'[deg-']n=1.5. El=E3=7
X10” [N/f11”], PII=0.11゜P,,
=0.23. By substituting the physical property value of μ=0.2, St/
S*=o, t'r...(
16) is obtained.

[実施例コ (実施例1) 第2図は上記設計例における本発明の実施例の具体的構
成図であって、半径riの光学媒体lを中心とし、半径
r、の屈折率調節部材3を被覆材とする同心円柱状のエ
タロン材料2としたものである。このとき、 r、/r、=            = 2.61+
1/(S、/S ) を得る。したがって透過ビーム径を1111とする場合
は、r+=0.5mg、ra=1.3mmとすればよい
[Example 1 (Example 1)] Fig. 2 is a specific configuration diagram of an embodiment of the present invention in the above design example, in which a refractive index adjusting member 3 with a radius r and an optical medium l with a radius ri is located at the center. A concentric cylindrical etalon material 2 is used as a covering material. At this time, r, /r, = = 2.61+
1/(S,/S) is obtained. Therefore, when the transmitted beam diameter is 1111, it is sufficient to set r+=0.5 mg and ra=1.3 mm.

一般にこのような構造を実現可能とするためには、上記
(14)式におL’ テS IE r / S s E
 s ”値が正であればよい。そのためには屈折率調節
部材の線膨張係数α3はある程度小さくする必要がある
In general, in order to realize such a structure, L' teS IE r / S s E is added to the above equation (14).
It suffices if the s'' value is positive. For that purpose, the linear expansion coefficient α3 of the refractive index adjusting member needs to be small to some extent.

(実施例2) 屈折率調節部材は必ずしも単一の材料で構成する必要は
なく、2つ以上の材料で構成してもよい。
(Example 2) The refractive index adjusting member does not necessarily need to be made of a single material, and may be made of two or more materials.

第3図は本発明の第2の実施例を示したものであって、
光学媒体1の外周に屈折率調節部材3−1゜3−2.・
・・3−Nにより多層被覆したものである。
FIG. 3 shows a second embodiment of the present invention,
A refractive index adjusting member 3-1, 3-2.・
...Multilayer coating with 3-N.

屈折率調節部材層3・・の各々の断面積を、それぞれS
 3−1+ S 3−1o・・・5s−yl、線膨張係
数をα、−3.α。
The cross-sectional area of each of the refractive index adjusting member layers 3...
3-1+S 3-1o...5s-yl, linear expansion coefficient α, -3. α.

hα、−〇、ギヤング率El−1+E3−2+”’E3
−nとすると、屈折率調節部材層3−1・・・3−Nの
平均線膨張係数α、は次式であられされる。
hα, -〇, Guyang's modulus El-1+E3-2+"'E3
-n, the average linear expansion coefficient α of the refractive index adjusting member layers 3-1...3-N is given by the following equation.

同様に平均のヤング率E、は j=l          j=1 ここで屈折率調節部材層の断面積S3をS、・ Σ S
s、−J ・・・(19) と定義すれば、 (12)式あるいは(14)式は一般の多層構造(N層
) についてもそのまま成立つ。した かって、たとえば負の線膨張係数をもつ液晶プラスチッ
ク(α=−6XIO−@[deg−’] 、E=1.5
x 1010(N/s+”)を薄いシリコンゴム層と共
に用いるなどの方法により、正から負にわたる平均線膨
張率をもつ一体化層を自由に得ることができる。
Similarly, the average Young's modulus E is j=l j=1, where the cross-sectional area S3 of the refractive index adjusting member layer is S, ・Σ S
s, -J (19) If defined as follows, equation (12) or equation (14) also holds true for a general multilayer structure (N layers). Therefore, for example, liquid crystal plastic with a negative coefficient of linear expansion (α=-6XIO-@[deg-'], E=1.5
By methods such as using x 1010 (N/s+'') with a thin silicone rubber layer, integrated layers with average coefficients of linear expansion ranging from positive to negative can be obtained at will.

(実施例3) 第4図は本発明の第3の実施例を示したものである。第
4図中、符号4はヤング率が大きく、かつ線膨張率が小
さいかまたは負を示すような屈折率調節部材片である。
(Embodiment 3) FIG. 4 shows a third embodiment of the present invention. In FIG. 4, reference numeral 4 denotes a refractive index adjusting member piece having a large Young's modulus and a small or negative coefficient of linear expansion.

この屈折率調節部材片4は、たとえば繊維(ケブラ繊維
や炭素繊維など)あるいは粉体(セラミックスなど)か
らなり、プラスチック材料または金属材料からなるバイ
ンダ5によって光学媒体1を被覆するように一体化され
ている。
This refractive index adjusting member piece 4 is made of, for example, fibers (Kevlar fiber, carbon fiber, etc.) or powder (ceramics, etc.), and is integrated so as to cover the optical medium 1 with a binder 5 made of a plastic material or a metal material. ing.

次に上述した各実施例1ないし実施例3の各光周波数フ
ィルタの製造方法について述べる。
Next, a method of manufacturing each of the optical frequency filters of Examples 1 to 3 described above will be described.

第2図に示した本発明の実施例1の光周波数フィルタの
製造工程を簡略化して第5図に示した。
The manufacturing process of the optical frequency filter according to the first embodiment of the present invention shown in FIG. 2 is simplified and shown in FIG.

まC光学媒体lからなる出発丸棒6と屈折率調節部材3
からなる出発中空パイプ7とをあらかじめ作成しておく
。次に出発丸棒6を出発中空パイプ7内に挿入し、バー
ナー8により加熱して、これらを軟化させて一体化する
とともに、図示しない外道測定計により外径をモニタし
ながら所望径に延伸してエタロン材料2とする。
A starting round rod 6 made of optical medium 1 and a refractive index adjusting member 3
A starting hollow pipe 7 consisting of the following is prepared in advance. Next, the starting round rod 6 is inserted into the starting hollow pipe 7, heated by a burner 8 to soften and integrate them, and is stretched to a desired diameter while monitoring the outer diameter with an external diameter measuring meter (not shown). etalon material 2.

所定の仕上り径に延伸した後、これを所定の長さに切断
し、図示しない端面2−1.2−2をそれぞれ研磨し、
必要に応じて反射膜加工をすればよい。
After stretching it to a predetermined finished diameter, it is cut to a predetermined length, and the end faces 2-1 and 2-2 (not shown) are polished, respectively.
A reflective film may be processed if necessary.

また第3図に示したように複数の被覆層を有する光周波
数フィルタを製造するには、上記のプロセスをくりかえ
し実行すればよい。このとき液晶プラスチックやシリコ
ンゴムのように、低温工程を必要とするものに対しては
適切な温度による工程を用いることはいうまでもない。
Further, in order to manufacture an optical frequency filter having a plurality of coating layers as shown in FIG. 3, the above process may be repeated. At this time, it goes without saying that a process at an appropriate temperature is used for products that require a low-temperature process, such as liquid crystal plastics and silicone rubber.

あるいはまた、屈折率調節部材がアルミナや窒化ケイ素
のようなセラミックスの場合には、プラズマ溶射法によ
って付n・一体化させることもできる。
Alternatively, if the refractive index adjusting member is made of ceramics such as alumina or silicon nitride, it can be integrated by plasma spraying.

[発明の効果〕 以上説明したように、本発明の請求項1記載の光周波数
フィルタは、光学媒体と屈折率調節部材を一体化したも
のであるので、光学媒体の屈折率の温度変化を、屈折率
調節部材の熱歪、応力歪により相殺することにより、温
度変化によるエタロン材料の透過光周波数の変化を無く
すことができる。
[Effects of the Invention] As explained above, since the optical frequency filter according to claim 1 of the present invention integrates an optical medium and a refractive index adjusting member, temperature changes in the refractive index of the optical medium can be controlled by By offsetting thermal strain and stress strain of the refractive index adjusting member, it is possible to eliminate changes in the frequency of light transmitted through the etalon material due to temperature changes.

このような光周波数フィルタは高精度な温度安定化装置
を必要とせず、再現性のよい分光測定を可能とし、また
、簡易な構成による光周波数多重信号の分波を実現する
ことができるという利点がある。
Such an optical frequency filter does not require a high-precision temperature stabilization device, enables spectroscopic measurements with good reproducibility, and has the advantage of being able to demultiplex optical frequency multiplexed signals with a simple configuration. There is.

また本発明の請求項2記載の光周波数フィルタは、光学
媒体の外周面に屈折率調節部材を被覆してなるものであ
るので、小型化が容易となるばかりでなく、各種光集積
回路に好適に利用される光ファイバとの接合が容易とな
るという利点がある。
Furthermore, since the optical frequency filter according to claim 2 of the present invention is formed by coating the outer peripheral surface of an optical medium with a refractive index adjusting member, it is not only easy to downsize, but also suitable for various optical integrated circuits. This has the advantage that it can be easily joined to optical fibers used in other applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の請求項1記戦の光周波数フィルタの概
略構成図、第2図、第3図および第4図はいずれも本発
明の請求項2記載の光周波数フィルタのl実施例の概略
構成図、第5図は本発明の請求項2記載の光周波数フィ
ルタの製造方法を示した概略構成図、第6図は従来のフ
ァブリ・ペロー・エタロンの動作原理説明図、第7図は
第6図に示したファブリ・ペロー・エタロンの透過特性
を示したグラフである。 l・・・光学媒体、 2・・・エタロン材料 2−1.2−2・・・エタロン反射面、3・・・屈折率
調節部材、 4・・・屈折率調節部材片、 5・・バインダ。
FIG. 1 is a schematic configuration diagram of the optical frequency filter according to claim 1 of the present invention, and FIGS. 2, 3, and 4 are all embodiments of the optical frequency filter according to claim 2 of the present invention. FIG. 5 is a schematic diagram showing the manufacturing method of the optical frequency filter according to claim 2 of the present invention, FIG. 6 is a diagram illustrating the operating principle of a conventional Fabry-Perot etalon, and FIG. is a graph showing the transmission characteristics of the Fabry-Perot etalon shown in FIG. 6. 1... Optical medium, 2... Etalon material 2-1.2-2... Etalon reflective surface, 3... Refractive index adjusting member, 4... Refractive index adjusting member piece, 5... Binder .

Claims (1)

【特許請求の範囲】[Claims] (1)入射端面と出射端面とが互いに平行で、温度変化
により屈折率が変化する光学媒体に、温度変化により熱
歪と熱応力を発生し、上記光学媒体の屈折率変化を相殺
する屈折率調節部材を接合一体化してなることを特徴と
する光周波フィルタ(2)光学媒体の外周面に屈折率調
節部材を被覆してなることを特徴とする請求項1記載の
光周波数フィルタ
(1) A refractive index that generates thermal strain and thermal stress due to temperature changes in an optical medium whose entrance end face and exit end face are parallel to each other and whose refractive index changes with temperature changes, canceling out the change in the refractive index of the optical medium. 2. The optical frequency filter according to claim 1, wherein the optical frequency filter is formed by integrally bonding an adjustment member. (2) The optical frequency filter according to claim 1, characterized in that the outer peripheral surface of an optical medium is coated with a refractive index adjustment member.
JP32524589A 1989-12-15 1989-12-15 Optical frequency filter Pending JPH03185402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32524589A JPH03185402A (en) 1989-12-15 1989-12-15 Optical frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32524589A JPH03185402A (en) 1989-12-15 1989-12-15 Optical frequency filter

Publications (1)

Publication Number Publication Date
JPH03185402A true JPH03185402A (en) 1991-08-13

Family

ID=18174653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32524589A Pending JPH03185402A (en) 1989-12-15 1989-12-15 Optical frequency filter

Country Status (1)

Country Link
JP (1) JPH03185402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221914A (en) * 2000-02-10 2001-08-17 Furukawa Electric Co Ltd:The Etalon filter
JP2002303721A (en) * 2001-04-05 2002-10-18 Furukawa Electric Co Ltd:The Face type wavelength selective filter and method for manufacturing the same
US6829053B1 (en) 2000-01-26 2004-12-07 Fujitsu Limited Airgap type etalon and apparatus utilizing the same
WO2013171929A1 (en) * 2012-05-15 2013-11-21 京セラクリスタルデバイス株式会社 Etalon and method for producing etalon
JP2020051841A (en) * 2018-09-26 2020-04-02 株式会社エィ・ダブリュ・サービス Optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829053B1 (en) 2000-01-26 2004-12-07 Fujitsu Limited Airgap type etalon and apparatus utilizing the same
JP2001221914A (en) * 2000-02-10 2001-08-17 Furukawa Electric Co Ltd:The Etalon filter
JP2002303721A (en) * 2001-04-05 2002-10-18 Furukawa Electric Co Ltd:The Face type wavelength selective filter and method for manufacturing the same
WO2013171929A1 (en) * 2012-05-15 2013-11-21 京セラクリスタルデバイス株式会社 Etalon and method for producing etalon
JP2013238722A (en) * 2012-05-15 2013-11-28 Kyocera Crystal Device Corp Etalon and method for producing etalon
JP2020051841A (en) * 2018-09-26 2020-04-02 株式会社エィ・ダブリュ・サービス Optical device

Similar Documents

Publication Publication Date Title
US20090232450A1 (en) Simple fiber optic cavity
WO2022199637A1 (en) Optical fiber temperature sensor and sensing head structure
JPH0194312A (en) Variable interference device
US6269202B1 (en) Highly temperature stable filter for fiberoptic applications and system for altering the wavelength or other characteristics of optical devices
JPS5835503A (en) Single lineary polarizing optical fiber of zero polarization scattering
US6778278B2 (en) Temperature insensitive Mach-Zehnder interferometers and devices
CN103323943A (en) Adjustable optical filter
JPH05241039A (en) Optical fiber having internal partial mirror
US6829053B1 (en) Airgap type etalon and apparatus utilizing the same
US6816315B1 (en) Optical path length tuner
US6909511B2 (en) Athermal interferometer
JPH03185402A (en) Optical frequency filter
US3578848A (en) Method of making an interference filter
US6452725B1 (en) Thermally stable etalon wavelength interleaver-multiplexer
US6850654B2 (en) Passive thermal compensation of all-fiber Mach-Zehnder interferometer
CN113108939B (en) Temperature sensing head and temperature sensor
JP2007232509A (en) Fiber optic sensor
JP6484779B1 (en) Tunable filter and optical communication device
JPS63232386A (en) Fabry-perot interferometer
EP1482335A1 (en) Fiber optic device with reduced thermal sensitivity
US6721100B2 (en) Sandwiched thin film optical filter
WO2014146477A1 (en) Wide range wavelength tunable etalon
US20090060415A1 (en) Fiber optic cavity
US6891994B2 (en) Micro optical design for DWDM interleavers with narrow channel spacing
JPS6270777A (en) Optical fiber magnetic field sensor