JPS5831023A - Melt-manufacturing method of very low carbon steel - Google Patents
Melt-manufacturing method of very low carbon steelInfo
- Publication number
- JPS5831023A JPS5831023A JP12965381A JP12965381A JPS5831023A JP S5831023 A JPS5831023 A JP S5831023A JP 12965381 A JP12965381 A JP 12965381A JP 12965381 A JP12965381 A JP 12965381A JP S5831023 A JPS5831023 A JP S5831023A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- oxygen
- lance
- ladle
- blowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、VAD炉によって鋼を溶製する溶製方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of melting steel using a VAD furnace.
VAD炉は、当初脱水素を目的として開発されたが1そ
の抜脱窒素、脱炭、脱酸素あるいは脱リンとその適用範
囲が広められ、現在では高級鋼の製造法の一つとして重
要な位置を占めている。VAD furnaces were initially developed for the purpose of dehydrogenation, but their scope of application has expanded to include denitrification, decarburization, deoxidation, and dephosphorization, and they now play an important role as one of the manufacturing methods for high-grade steel. occupies .
ところで、従来C含有量0.02%以下の極低炭素鋼を
製造する場合、転炉や電気炉で精錬ししようとすると、
出鋼歩留の低下や炉体耐大物の溶損が太きいという問題
があるにもかかわらず、安定した炭素含有量も得難いも
のであった0そこで、一般に炉外精錬法によって極低炭
素鋼を得ている。その例の一つとして、VOD炉によシ
溶鋼上面に酸素ガスを供給しながら真空脱炭を図る方法
がある。しかしVOD炉自体加熱設備を有していないた
め、精錬中の温度降下を補償するために、母溶鋼溶製炉
(たとえば転炉)から高温出鋼せねばならず、また温度
降下に伴う脱炭時間の制約もある。他の例として、上記
温度降下の補償のために、VAD炉とVOD炉とを組み
合わせたVAD−VODプロセスも知られているが、溶
鋼を二基の炉間を移動させるために、全体の処理時間が
長くなシ、シかもその間の熱損失も大きいという欠点を
有する。By the way, when trying to manufacture ultra-low carbon steel with a C content of 0.02% or less, if you try to refine it in a converter or electric furnace,
Despite the problems of low tapping yield and severe melting damage of large furnace bodies, it has been difficult to obtain a stable carbon content. I am getting . One example is a method in which vacuum decarburization is performed while supplying oxygen gas to the upper surface of molten steel in a VOD furnace. However, since the VOD furnace itself does not have heating equipment, in order to compensate for the temperature drop during refining, steel must be tapped at a high temperature from the mother molten steel melting furnace (for example, a converter), and decarburization due to the temperature drop is required. There are also time constraints. As another example, a VAD-VOD process is known in which a VAD furnace and a VOD furnace are combined in order to compensate for the temperature drop. It has the disadvantage that it takes a long time and the heat loss during that time is also large.
これに対して、VAD炉は、加熱設備を有しているため
、溶鋼の温度管理上の問題はないため、極低炭素鋼の溶
製に元来適している。しかし、VAD炉での脱炭では、
必要な酸素を母溶鋼中の溶解酸素や外部から添加するス
ラグ中の酸素に依存しているため、母溶鋼中の炭素量が
多い場合、酸素不足が生じ、安定した極低炭素鋼を溶製
することができないことがある0また酸素不足が予想さ
れる場合には、予め母溶鋼溶製炉において炭素量を吹き
下げる必要があるが、吹き下げを行うと母溶鋼の出鋼歩
留シが低下し、かつ母溶鋼溶製炉の耐火物の溶損が大き
くなる問題もある。On the other hand, since VAD furnaces have heating equipment, there are no problems in temperature control of molten steel, and therefore they are originally suitable for melting ultra-low carbon steel. However, in decarburization in a VAD furnace,
The necessary oxygen depends on the dissolved oxygen in the mother molten steel and the oxygen in the slag added from the outside, so if the amount of carbon in the mother molten steel is high, oxygen deficiency will occur, making it difficult to produce stable ultra-low carbon steel. In addition, if a lack of oxygen is expected, it is necessary to blow down the carbon content in the mother molten steel melting furnace in advance, but blowing down will reduce the tapping yield of the mother molten steel. There is also the problem that the refractories of the base molten steel melting furnace become more susceptible to erosion.
本発明は、前記従来の問題点を一挙に解決したもので、
その目的は母溶鋼溶製炉で特別に炭素を吹き下げるよう
なことを行なわず、かつVAD炉単独で所望の品質の鋼
を溶製できる溶製方法を提供することにある。The present invention solves the above-mentioned conventional problems all at once.
The purpose is to provide a melting method that does not require special blowing down of carbon in a base molten steel melting furnace and can melt steel of a desired quality using a VAD furnace alone.
この目的の達成のため、本発明は、加熱装置を有する真
空容器内に取鍋を設置し、減圧状態で加熱しなから取鍋
内の鋼を溶製する方法において、真空容器の側壁を通し
た酸素ランスを介して取鍋内の溶鋼表面に向けて酸素を
吹込む構成としたものである0
本発明が従来技術と異なる点は、第1にVAD炉におい
て酸素吹錬すること、第2に酸素ランスは上部から下す
のではなくして真空容器の側壁を通すことにある0
次に本発明を第1図に基きながら説明すると、同図はV
AD炉の概要を示したもので、1は真空容器で、その内
部には取鍋2が設置されている。真空容器1内は真空ポ
ンプ(図示せず)により減圧状態が保たれる。炉の上部
には3相アーク電極3が配され、取鍋蓋4を通して溶鋼
5表面へ向けて上下動自在と々っている06はスラグ投
入ホッパである0また取鍋2の下部からは、Arまたは
窒素等の不活性ガス7が吹き込まれ、バブリングを行う
よう構成されている0本発明においては、真空容器1の
側壁を通して酸素ランス8が傾斜して溶鋼5の表面に向
って配設される。酸素ランス8と真空容器1の側壁との
間隙は耐熱性ゴムからなる0リング9によシシールして
おくとともに、酸素ランス8を進退可能としておく。To achieve this object, the present invention provides a method for melting steel in the ladle by installing a ladle in a vacuum container having a heating device and heating it under reduced pressure. The present invention differs from the prior art in that oxygen is blown into the surface of the molten steel in the ladle through an oxygen lance that is In this case, the oxygen lance is passed through the side wall of the vacuum container instead of being lowered from the top.Next, the present invention will be explained based on FIG.
This figure shows an outline of an AD furnace. 1 is a vacuum container, and a ladle 2 is installed inside the vacuum container. The inside of the vacuum container 1 is maintained at a reduced pressure state by a vacuum pump (not shown). A three-phase arc electrode 3 is arranged in the upper part of the furnace, and a slag charging hopper 06, which can freely move up and down through the ladle lid 4 toward the surface of the molten steel 5, is also connected from the bottom of the ladle 2. In the present invention, an inert gas 7 such as Ar or nitrogen is blown into the container to perform bubbling. In the present invention, an oxygen lance 8 is provided through the side wall of the vacuum container 1 at an angle toward the surface of the molten steel 5. Ru. The gap between the oxygen lance 8 and the side wall of the vacuum vessel 1 is sealed with an O-ring 9 made of heat-resistant rubber, and the oxygen lance 8 is allowed to move forward and backward.
溶製に際しては、真空容器1内を減圧状態に保持し、取
鍋2内の溶鋼5に対してバブリングを行い、また電極3
を介してアークを発生させ溶鋼5の加熱を行う。かくし
て、酸素ランス8から溶鋼5の表面に向けて酸素を吹き
付け、脱炭を図る0また酸素吹込み不必要時、たとえば
加熱時には、酸素ランス8を後退させる0酸素ランス8
は)長期間使用すると溶損するので、その分進出させれ
ばよい。During melting, the inside of the vacuum vessel 1 is maintained in a reduced pressure state, the molten steel 5 in the ladle 2 is bubbled, and the electrode 3 is
An arc is generated through the molten steel 5 to heat the molten steel 5. In this way, oxygen is blown from the oxygen lance 8 toward the surface of the molten steel 5 to achieve decarburization.Also, when oxygen injection is unnecessary, for example during heating, the oxygen lance 8 is moved back.
) If used for a long period of time, it will melt and damage, so it is better to extend it accordingly.
このような溶製法によれば、脱炭を確実に達成できる0
これを第2図において説明すると、図中A線は母溶鋼の
溶存酸素のみに頼る場合、B線は母溶鋼の溶存酸素とス
ラグを添加してそれに含まれる酸素にも頼る場合、C線
は本発明法により酸素を吹込んだ場合であシ、極低炭素
鋼を容易に得ることができることが判る。According to such a melting method, decarburization can be reliably achieved.
To explain this in Figure 2, line A in the figure relies only on dissolved oxygen in the mother molten steel, line B relies on dissolved oxygen in the mother molten steel and the oxygen contained in it by adding slag, and line C It can be seen that ultra-low carbon steel can be easily obtained when oxygen is blown according to the method of the present invention.
ところで、本発明において、酸素ランス8を側壁から挿
し込むのは、主として設備上の点からである。すなわち
、上方から下向きに酸素ランスを向けようとすると、炉
の上部には電極等がありスペースを採ることができない
からであるO
次に、酸素ランス8からの酸素吹込み量は、20ON<
/Il(〜70oNrn/Hが好適である0その理由は
、20ON</H未満では酸素供給量が十分でないこと
があシ、また70ONm//Hをこえるとスプラッシュ
が多くなシ炉の寿命上好ましくない。By the way, in the present invention, the reason why the oxygen lance 8 is inserted from the side wall is mainly for the sake of equipment. In other words, if you try to point the oxygen lance downward from above, there are electrodes etc. at the top of the furnace and you cannot take up space.Next, the amount of oxygen blown from the oxygen lance 8 is 20ON<
/Il (~70oNrn/H is preferable.The reason is that below 20ONm//H, the oxygen supply is not sufficient, and when it exceeds 70ONm//H, there will be a lot of splash.) Undesirable.
酸素供給時間は通常10分〜30分が望ましい0本発明
は脱炭のみに限定されるものではなく、脱リン処理に対
しても適用できる。この場合、スラグ投入用ホッパ6を
介して脱リン用スラグを溶鋼5べ投入するとともに、酸
素吹錬を行う0以上の通シ、本発明は、加熱装置を有す
るVAD炉において鋼の溶製を行うものであるから、母
溶鋼溶製炉における出鋼温度を特別に上げる必要がない
ため、母溶鋼溶製炉の耐火物の溶損を防止できるととも
に、母溶鋼溶製炉からの溶鋼の温度降下に特に注意を払
わなくてもよい。The oxygen supply time is usually preferably 10 minutes to 30 minutes. The present invention is not limited to decarburization, but can also be applied to dephosphorization treatment. In this case, dephosphorization slag is charged into the molten steel 5 through the slag charging hopper 6, and oxygen blowing is performed over 0 or more times. Since the tapping temperature in the mother molten steel melting furnace does not need to be particularly raised, it is possible to prevent melting of the refractories in the mother molten steel smelting furnace, and also to reduce the temperature of the molten steel from the mother molten steel smelting furnace. You don't have to pay special attention to the descent.
この点、少量の溶鋼を取扱う場合特に好適である。また
溶解に酸素を供給するから、酸素量不足を防止でき、安
定した極低炭素鋼などの製造を行うことができる0また
母溶鋼溶製炉で炭素量を必要以上に吹き下げる必要もな
いから、出鋼歩留9の低下を防止できる。さらに酸素吹
込用酸素ランスは、真空容器の側壁を通すから、加熱用
電極の昇降操作等に支障を与えることなく酸素を供給で
きる。In this respect, it is particularly suitable when handling small amounts of molten steel. In addition, since oxygen is supplied during melting, oxygen shortages can be prevented and ultra-low carbon steel can be produced in a stable manner.Also, there is no need to blow down the carbon content more than necessary in the mother molten steel melting furnace. , a decrease in the tapping yield 9 can be prevented. Furthermore, since the oxygen lance for oxygen blowing passes through the side wall of the vacuum container, oxygen can be supplied without interfering with the lifting and lowering operations of the heating electrode.
第1図は本発明法を実施するためのVAD炉の概要図、
第2図は本発明法と従来法との脱炭挙動の比較を示すC
−0量相関図である。
1・・真空容器 2・・取鍋
3・・電極 5・・溶鋼
6・・脱リン用スラグ投入ホ、バFigure 1 is a schematic diagram of a VAD furnace for carrying out the method of the present invention;
Figure 2 shows a comparison of decarburization behavior between the method of the present invention and the conventional method.
It is a -0 amount correlation diagram. 1. Vacuum container 2. Ladle 3. Electrode 5. Molten steel 6. Dephosphorization slag input ho, bar
Claims (1)
圧状態で加熱しなから取鍋内の鋼を溶製する方法におい
て、真空容器の側壁を通した酸素ランスを介して取鍋内
の溶鋼表面に向けて酸素を吹込むことを特徴とする極低
炭素鋼の溶製方法。(1) In a method in which a ladle is installed in a vacuum container equipped with a heating device and the steel in the ladle is melted without being heated under reduced pressure, the ladle is heated through an oxygen lance that passes through the side wall of the vacuum container. A method for producing ultra-low carbon steel characterized by blowing oxygen toward the surface of the molten steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12965381A JPS5831023A (en) | 1981-08-19 | 1981-08-19 | Melt-manufacturing method of very low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12965381A JPS5831023A (en) | 1981-08-19 | 1981-08-19 | Melt-manufacturing method of very low carbon steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5831023A true JPS5831023A (en) | 1983-02-23 |
JPH0124844B2 JPH0124844B2 (en) | 1989-05-15 |
Family
ID=15014827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12965381A Granted JPS5831023A (en) | 1981-08-19 | 1981-08-19 | Melt-manufacturing method of very low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5831023A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62146213A (en) * | 1985-12-20 | 1987-06-30 | Nippon Steel Corp | Decarburization method for high chromium steel under reduced pressure |
-
1981
- 1981-08-19 JP JP12965381A patent/JPS5831023A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62146213A (en) * | 1985-12-20 | 1987-06-30 | Nippon Steel Corp | Decarburization method for high chromium steel under reduced pressure |
JPH0582449B2 (en) * | 1985-12-20 | 1993-11-19 | Nippon Steel Corp |
Also Published As
Publication number | Publication date |
---|---|
JPH0124844B2 (en) | 1989-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930001129B1 (en) | Method for smelting reduction of ni ore | |
JP3972266B2 (en) | Method and apparatus for operating a double vessel arc furnace | |
US5454852A (en) | Converter for the production of steel | |
JP4195106B2 (en) | Alloy steel manufacturing method and alloy steel manufacturing plant | |
JPS5831023A (en) | Melt-manufacturing method of very low carbon steel | |
JPH01127613A (en) | Method and apparatus for refining molten metal | |
JPH05195043A (en) | Method for injecting flux for refining molten metal and device therefor | |
JPH0234715A (en) | Method for melting and secondary-refining steel | |
KR20020052520A (en) | Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese | |
KR100311799B1 (en) | Method for raising temperature of molten steel of circulation type vacuum degassing apparatus and apparatus thereof | |
RU2828265C2 (en) | Electric furnace and method of steel production | |
JPH09165613A (en) | Scrap melting method | |
JPS61235506A (en) | Heating up method for molten steel in ladle | |
JPS631367B2 (en) | ||
JPH1046226A (en) | Production of low nitrogen molten steel with arc electric furnace | |
JPS61279608A (en) | Production of high-chromium alloy by melt reduction | |
JPS5925007B2 (en) | Method of refining hot metal and molten steel | |
US852347A (en) | Process of producing low-carbon ferro alloys. | |
JPS62116712A (en) | Melting and smelting vessel having splash lance | |
US2816018A (en) | Process for the production of steel from high phosphorus pig iron | |
JPH0120208B2 (en) | ||
JPH07310109A (en) | Production of stainless steel | |
JPH07316625A (en) | Method for melting high purity steel | |
EP1431403A1 (en) | Direct smelting furnace and process therefor | |
JPH09202911A (en) | Method for melting scrap under condition excellent in thermal efficiency |