JPH05156343A - Production of extremely low nitrogen steel - Google Patents

Production of extremely low nitrogen steel

Info

Publication number
JPH05156343A
JPH05156343A JP31821991A JP31821991A JPH05156343A JP H05156343 A JPH05156343 A JP H05156343A JP 31821991 A JP31821991 A JP 31821991A JP 31821991 A JP31821991 A JP 31821991A JP H05156343 A JPH05156343 A JP H05156343A
Authority
JP
Japan
Prior art keywords
molten steel
steel
gas
concentration
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31821991A
Other languages
Japanese (ja)
Inventor
Kazumi Harashima
和海 原島
Nobuyuki Ishiwatari
信之 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31821991A priority Critical patent/JPH05156343A/en
Publication of JPH05156343A publication Critical patent/JPH05156343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide and efficient and simple denitrogenizing method for molten steel at a low cost which removes nitrogen [N] contained in the molten steel to extremely low level so as to produce the extremely low nitrogen steel. CONSTITUTION:At the time of executing the denitrogenizing treatment of the molten steel while decarbonizing the molten steel in reduced pressure, the decarbonizing speed in this molten steel or the decarbonizing rate in the molten steel converted into the unit time is secured to >=0.005wt.%/min, and while controlling [O] <=0.030wt.%, carbon concn. [C] in the molten steel is always held to >=0.010wt.%, and by directly blowing oxidizing gas into the molten steel, the extremely low nitrogen steel can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼に含有されている
窒素[N]を極微量まで除去し、極低窒素鋼を溶製する
ための、効率的、且つ簡便で安価な溶鋼の脱窒方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to remove nitrogen [N] contained in molten steel to a very small amount, and to produce an extremely low nitrogen steel. It relates to the method of sequestration.

【0002】[0002]

【従来の技術】鋼に含まれる窒素は、自動車用薄鋼板、
飲料缶用薄鋼板として使用する鋼板の場合には、加工性
向上、時効防止等のために、また極細線スチール・コー
ド用の鋼の場合には伸延性向上のために、極微量である
ことが要求される。一般に、製鉄業においては、溶鋼の
脱窒処理を、例えば第3版鉄鋼便覧 II製銑製鋼編 6
71〜685頁に示されているような、各種の減圧精錬
設備を用いて実施している。この場合には、溶鋼中に含
有させた酸素[O]あるいは、鉄鉱石Fex y 、酸素
ガスO2 などの酸化源を用いて、以下の反応によって溶
鋼に含有される炭素[C]を除去し、発生するCOガス
気泡による気・液界面を脱窒反応サイトとして利用して
いる。
2. Description of the Related Art Nitrogen contained in steel is a thin steel sheet for automobiles,
In the case of a steel sheet used as a thin steel sheet for beverage cans, it should be in a very small amount in order to improve workability and prevent aging, and in the case of steel for ultrafine wire steel cords, to improve ductility. Is required. Generally, in the steel industry, denitrification treatment of molten steel is performed, for example, in the 3rd edition Iron and Steel Handbook II
It carries out using various vacuum refining equipment as shown in pages 71-685. In this case, oxygen [O] contained in the molten steel or an oxidation source such as iron ore Fe x O y and oxygen gas O 2 is used to remove carbon [C] contained in the molten steel by the following reaction. The gas-liquid interface due to the removed CO gas bubbles is used as a denitrification reaction site.

【0003】 [C]+[O]=CO(gas)…………………………………(1) y[C]+Fex y =yCO(gas)+x[Fe]………(2) 即ち、溶鋼の窒素[N]は気・液界面で以下の反応によ
って除去される。 [N]=1/2N2 (gas)……………………………………(3) しかし、鉄と鋼 第73年 第11号 1559〜15
66頁に記載されているように、前記(3)式で示され
る脱窒反応の速度は、[O]と[S]濃度の増加と共に
極端に小さくなる。ただし、従来からよく知られている
ように、溶鋼の脱炭速度を大きくすると溶鋼の脱窒速度
は増大する(鉄と鋼 第63年 第13号2077〜2
086頁)。従って、これらの思想に基づき、鉄鉱石添
加による溶鋼の脱炭反応を利用する研究が最近報告され
た。例えば、鉄と鋼 第73年第2号 313〜320
頁には、減圧下で高炭素濃度の溶鋼に0.1mm以下の大
きさの鉄鉱石粉を一定量吹付けて脱炭させることによっ
て溶鋼の脱窒を実施することが記載されている。さらに
本発明者の一人は、鉄と鋼 第74年 第3号441〜
448頁で、脱炭速度を変更する手段として鉄鉱石供給
速度を変化させると、その供給速度にほぼ比例して脱窒
速度が増大することを明らかにしている。
[C] + [O] = CO (gas) …………………………………… (1) y [C] + Fe x O y = yCO (gas) + x [Fe] …… (2) That is, nitrogen [N] of molten steel is removed by the following reaction at the gas-liquid interface. [N] = 1 / 2N 2 (gas) ……………………………… (3) However, iron and steel 73rd year No. 11 No. 1559-15
As described on page 66, the rate of the denitrification reaction represented by the formula (3) becomes extremely small as the [O] and [S] concentrations increase. However, as is well known in the art, increasing the decarburization rate of molten steel increases the denitrification rate of molten steel (Iron and Steel No. 63, No. 13, 2077-2).
086). Therefore, based on these ideas, researches utilizing the decarburization reaction of molten steel by adding iron ore have been recently reported. For example, Iron and Steel No. 73, No. 2, 313-320.
The page describes that denitrification of molten steel is performed by spraying a certain amount of iron ore powder having a size of 0.1 mm or less onto molten steel having a high carbon concentration under reduced pressure to decarburize the molten steel. Further, one of the inventors of the present invention is iron and steel 74th No. 3rd 441-
On page 448, it is clarified that when the iron ore supply rate is changed as a means for changing the decarburization rate, the denitrification rate increases almost in proportion to the supply rate.

【0004】しかし、上記方法は、脱炭反応を促進する
ために、鉄鉱石やマンガン鉱石のような固体酸化物を溶
鋼に添加して[O]濃度を確保するため、溶鋼の温度が
低下し、別途溶鋼の加熱が必要であった。さらに、
[C]濃度が低下し、脱炭反応が活発に進行しなくなる
と、[O]濃度が増加して脱窒速度が極めて小さくな
り、[N]を極低濃度まで除去するには、溶鋼の脱窒の
ための処理時間を延長しなければならず、このような場
合にも溶鋼の温度が低下するため、前工程での転炉ある
いは電気炉で、脱窒すべき該溶鋼の温度を予め高温度で
出鋼するか、次工程で該溶鋼を再加熱することで対処せ
ざるを得ない。即ち、脱窒処理前の出鋼温度を高温にす
ると、転炉あるいは電気炉の耐火物が溶損され、耐火物
原単位が大きくなり、脱窒処理のための費用が高くな
る。これは、非効率的で、且つ不経済であり、安定して
極低窒素鋼を溶製することは極めて困難である。
However, in the above method, in order to accelerate the decarburization reaction, solid oxide such as iron ore and manganese ore is added to the molten steel to secure the [O] concentration, so that the temperature of the molten steel decreases. It was necessary to separately heat the molten steel. further,
When the [C] concentration decreases and the decarburization reaction does not proceed actively, the [O] concentration increases and the denitrification rate becomes extremely small. To remove [N] to an extremely low concentration, molten steel The treatment time for denitrification must be extended, and the temperature of the molten steel also decreases in such cases, so the temperature of the molten steel to be denitrified in advance in the converter or electric furnace in the previous step It has to be dealt with by tapping at a high temperature or reheating the molten steel in the next step. That is, if the tapping temperature before the denitrification treatment is set to a high temperature, the refractory in the converter or the electric furnace is melted and damaged, the refractory basic unit becomes large, and the cost for the denitrification treatment becomes high. This is inefficient and uneconomical, and it is extremely difficult to stably produce ultra-low nitrogen steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記の問題点
を解決し極低窒素溶鋼溶製のための経済的な溶鋼の脱窒
方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide an economical method for denitrifying molten steel for the production of extremely low nitrogen molten steel.

【0006】[0006]

【課題を解決するための手段および作用】本発明の要旨
とするところは、溶鋼の一部を減圧槽に導きつつ脱炭さ
せながら該溶鋼の脱窒処理を実施するにあたり、脱炭速
度あるいは単位時間当りに換算した溶鋼の脱炭量を0.
005[wt%/min ]以上とし、且つ溶鋼の酸素濃度
[O]を0.030wt%以下に制御し、溶鋼の炭素濃度
[C]を0.010wt%以上に保持しつつ、溶鋼に酸化
性ガスを直接吹込むことを特徴とする極低窒素鋼の溶製
方法にある。
Means and Actions for Solving the Problem The gist of the present invention is that a decarburization rate or a unit for carrying out denitrification treatment of a molten steel while guiding a portion of the molten steel to a decompression tank while decarburizing the molten steel. The decarburization amount of molten steel converted per hour is 0.
005 [wt% / min] or more, and the oxygen concentration [O] of the molten steel is controlled to 0.030 wt% or less, while the carbon concentration [C] of the molten steel is kept at 0.010 wt% or more, the molten steel is oxidizable. This is a method for melting ultra-low nitrogen steel, which is characterized by blowing gas directly.

【0007】この時、溶鋼自由表面が接する真空槽の雰
囲気圧力は70mmHg以下とする。この時、脱炭に伴う溶
鋼スプラッシュ量を極力少量にし、且つ反応容器に付着
し、凝固する鋼の量(以下、地金と記述する)を少なく
して、効率よく溶鋼を脱窒処理するためには、真空槽の
雰囲気圧力は5〜30mmHgの範囲に制御するのが好まし
い。
At this time, the atmospheric pressure of the vacuum chamber in contact with the molten steel free surface is set to 70 mmHg or less. At this time, in order to efficiently denitrify molten steel, minimize the amount of molten steel splash accompanying decarburization and reduce the amount of steel that adheres to the reaction vessel and solidifies (hereinafter referred to as metal). In particular, it is preferable to control the atmospheric pressure of the vacuum chamber within the range of 5 to 30 mmHg.

【0008】さらに、脱炭反応で発生するCOガスを、
真空槽内に酸素ガスを供給して燃焼させることにより、
溶鋼温度の低下を低減し、真空槽耐火物温度を確保する
ことにより、前記付着地金量が軽減できる。即ち、本発
明の技術的思想の根源は、(3)式に従って溶鋼を脱窒
処理するにあたり、酸素源を溶鋼に供給して溶鋼の酸素
濃度[O]をできうる限り低濃度に抑制しながら[C]
と反応させ、脱炭速度を大きくして、脱炭反応によるC
Oガス気泡量を多くし、単位溶鋼重量当たりの気・液界
面積を増大させ、脱窒反応サイトの増加を図る点にあ
る。この時、脱炭反応を継続的に進行させることと、溶
鋼温度の低下を極力低減するために、[O]源として酸
化性ガスを溶鋼に直接吹込み、また[C]濃度を確保す
るために、場合によっては溶鋼に炭素源を供給して、溶
鋼とCOガス気泡とが接する気・液界面積を増大させる
と同時に[O]の濃度の増加を抑制する。
Further, the CO gas generated by the decarburization reaction is
By supplying oxygen gas into the vacuum chamber and burning it,
By reducing the decrease in molten steel temperature and ensuring the temperature of the refractory in the vacuum tank, the amount of the adhered metal can be reduced. That is, the root of the technical idea of the present invention is to supply the oxygen source to the molten steel and suppress the oxygen concentration [O] of the molten steel to the lowest possible concentration when denitrifying the molten steel according to the formula (3). [C]
To increase the decarburization rate, and to remove C by the decarburization reaction.
This is to increase the amount of O gas bubbles, increase the gas / liquid interface area per unit weight of molten steel, and increase the number of denitrification reaction sites. At this time, in order to continuously advance the decarburization reaction and to blow the oxidizing gas as the [O] source directly into the molten steel in order to minimize the decrease in the molten steel temperature, and to secure the [C] concentration. In some cases, a carbon source is supplied to the molten steel to increase the gas / liquid interface area where the molten steel and the CO gas bubbles are in contact with each other, and at the same time suppress the increase of the [O] concentration.

【0009】この時、脱炭で消費される[C]の一部あ
るいは全てを黒鉛、コークス、石炭あるいは炭化水素系
ガスで補う。供給されたこれらの炭素源は溶鋼に[C]
として溶解し、供給される酸化性ガスと反応してCOガ
ス気泡を発生し、継続的に[O]濃度の上昇を抑え、脱
窒反応に対する[O]の悪影響を除去しつつ脱窒を促進
させる。
At this time, a part or all of the [C] consumed by decarburization is supplemented with graphite, coke, coal or a hydrocarbon gas. These carbon sources supplied to molten steel [C]
As CO gas, reacts with the supplied oxidizing gas to generate CO gas bubbles, continuously suppresses the increase in [O] concentration, and promotes denitrification while removing the adverse effect of [O] on the denitrification reaction. Let

【0010】酸化性ガスと炭素源を連続的に溶鋼に供給
して脱炭反応を継続的に行わしめる場合、酸化性ガス中
の酸素Oの添加速度Fo(mol /min )と炭素源中の炭
素Cの添加速度Fc(mol /min )の比を以下の範囲で
添加することが好ましい。 0.5≦(Fc/Fo)≦1.5…………………………………(4) 0.5>(Fc/Fo)の場合には酸素源が過剰にな
り、やがて炭素源が不足して[O]濃度が上昇し脱窒反
応が阻害される。(Fc/Fo)>1.5の場合には溶
鋼の[C]濃度が上昇し、不経済である。
When the decarburization reaction is continuously carried out by continuously supplying the oxidizing gas and the carbon source to the molten steel, the addition rate Fo (mol / min) of oxygen O in the oxidizing gas and the carbon source The carbon C addition rate Fc (mol / min) is preferably added in the following range. 0.5 ≦ (Fc / Fo) ≦ 1.5 …………………………………… (4) When 0.5> (Fc / Fo), the oxygen source becomes excessive, and eventually The carbon source is insufficient, the [O] concentration rises, and the denitrification reaction is hindered. When (Fc / Fo)> 1.5, the [C] concentration of the molten steel increases, which is uneconomical.

【0011】本発明の範囲における脱炭反応は酸素源の
供給律速であるから、脱炭速度Vcは、酸化性ガスの供
給速度で一義的に決まる。従って、Vcの値を0.00
5[wt%/min ]以上確保するために添加する酸素源の
添加速度は、(2)式で示されるような脱炭反応式に従
って化学量論的に決定できる。酸化性ガスは、一般には
酸素ガスが好ましいが、炭酸ガス単独でもよく、これら
のガスの混合物でもよい。さらにこれらのガスに水蒸気
が含有されていても、効果は同じである。
Since the decarburization reaction within the scope of the present invention is the rate-determining supply of the oxygen source, the decarburization rate Vc is uniquely determined by the rate of supply of the oxidizing gas. Therefore, the value of Vc is 0.00
The addition rate of the oxygen source added to secure 5 [wt% / min] or more can be stoichiometrically determined according to the decarburization reaction formula as shown in formula (2). Generally, the oxidizing gas is preferably oxygen gas, but carbon dioxide gas may be used alone or a mixture of these gases may be used. Further, even if these gases contain water vapor, the effect is the same.

【0012】本発明を実施するにあたり、溶鋼に添加す
る炭素源は黒鉛、コークス、石炭等の固体炭素源を用い
るか、あるいは炭化水素系ガスの1種もしくは2種を併
用することもできる。さらに、酸化性ガスの一部を鉄鉱
石、マンガン鉱石、ニッケル鉱石およびクロム鉱石等の
ような、溶鋼に含有される炭素で容易に還元される酸化
物で置き換えてもよい。この場合、置き換え率は、溶鋼
の温度低下を極力小さくするために、全酸素量の30wt
%以下にすべきである。
In carrying out the present invention, the carbon source added to the molten steel may be a solid carbon source such as graphite, coke or coal, or one or two types of hydrocarbon gas may be used in combination. In addition, some of the oxidizing gas may be replaced by oxides such as iron ore, manganese ore, nickel ore and chromium ores that are easily reduced by the carbon contained in the molten steel. In this case, the replacement rate is 30 wt% of the total oxygen content in order to minimize the temperature drop of the molten steel.
Should be less than or equal to%.

【0013】この時、溶鋼に添加するこれらの固体酸化
物の大きさは、その歩留りと反応性を確保するために
0.1〜30mmの範囲とすることが好ましい。本発明
は、現在の真空精錬設備、例えばDH、RH、VOD、
VAD等の設備で溶鋼を脱窒する場合にも適用できる。
At this time, the size of these solid oxides added to the molten steel is preferably in the range of 0.1 to 30 mm in order to secure the yield and reactivity. The present invention applies to current vacuum refining equipment such as DH, RH, VOD,
It can also be applied when denitrifying molten steel with equipment such as VAD.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1 真空槽内圧力が20mmHg以下で、温度が1650℃、重
量が250トンである溶鋼の脱窒処理を、図2(a)と
図2(b)に示すような減圧脱ガス炉で実施した。
[C]濃度は0.015〜0.50wt%の範囲であり、
[O]濃度は0.01〜0.03wt%の範囲である。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 The denitrification treatment of molten steel having a pressure in the vacuum chamber of 20 mmHg or less, a temperature of 1650 ° C. and a weight of 250 tons was carried out in a vacuum degassing furnace as shown in FIGS. 2 (a) and 2 (b). Carried out.
[C] concentration is in the range of 0.015-0.50 wt%,
The [O] concentration is in the range of 0.01 to 0.03 wt%.

【0015】用いた酸化性ガスは、 酸素ガス、炭酸ガスの単独、 酸素ガスに炭酸ガス(50%)を加えた混合ガス、 酸素ガスに水蒸気(20%)を加えた混合ガス、であ
る。
The oxidizing gas used is oxygen gas, carbon dioxide alone, a mixed gas of oxygen gas and carbon dioxide (50%), or a mixed gas of oxygen gas and water vapor (20%).

【0016】溶鋼への酸化性ガスの供給は、真空槽内の
ノズルを介して実施した。溶鋼の[C]濃度を0.01
wt%以上に保持するために供給した炭素源は黒鉛屑、コ
ークス、石炭の単独およびその混合物であり、真空槽内
の溶鋼に供給した。溶鋼を脱炭させない時の脱窒速度定
数kN 0 (1/wt%・min )を基準にし、酸化性ガスを
吹込んで溶鋼を脱炭させつつ脱窒した時の脱窒速度定数
N (1/wt%・min )との比kN /kN 0 と脱炭速度
Vc[wt%/min ]との関係を図1に示す。
The oxidizing gas was supplied to the molten steel through a nozzle in a vacuum chamber. [C] concentration of molten steel is 0.01
The carbon source supplied to maintain the wt% or more was graphite waste, coke, coal alone or a mixture thereof, and was supplied to the molten steel in the vacuum chamber. Based on the denitrification rate constant k N 0 (1 / wt% · min) when the molten steel is not decarburized, the denitrification rate constant k N (when denitrifying while decarburizing the molten steel by blowing an oxidizing gas) The relationship between the ratio k N / k N 0 with 1 / wt% · min) and the decarburization rate Vc [wt% / min] is shown in FIG.

【0017】kN /kN 0 の値はVcが大きくなると増
加する。しかし、Vcが0.005[wt%/min ]以上
になると、kN /kN 0 の値の増加割合が急激に大きく
なる。この関係は、用いる酸化性ガスの種類と、供給し
た炭素源の種類の相違による違いはなく、用いた減圧脱
ガス炉の相違による差もなかった。 実施例2 真空槽内圧力が200mmHg以下で、温度が1650℃、
重量が250トンである溶鋼の脱窒処理を、図2(a)
と図2(b)に示すような減圧脱ガス炉で実施した。
[C]濃度は0.015〜0.50wt%の範囲であり、
[O]濃度は0.01〜0.03wt%の範囲、脱炭速度
Vcの値は0.005〜0.018wt%/min の範囲で
ある。
The value of k N / k N 0 increases as Vc increases. However, when Vc becomes 0.005 [wt% / min] or more, the rate of increase in the value of k N / k N 0 rapidly increases. There was no difference in this relationship due to the difference in the type of oxidizing gas used and the type of the supplied carbon source, and no difference due to the difference in the vacuum degassing furnace used. Example 2 The pressure in the vacuum chamber was 200 mmHg or less, and the temperature was 1650 ° C.
Fig. 2 (a) shows the denitrification treatment of molten steel with a weight of 250 tons.
And a vacuum degassing furnace as shown in FIG.
[C] concentration is in the range of 0.015-0.50 wt%,
The [O] concentration is in the range of 0.01 to 0.03 wt% and the decarburization rate Vc is in the range of 0.005 to 0.018 wt% / min.

【0018】用いた酸化性ガスは、 酸素ガス、炭酸ガスの単独、 酸素ガスにを炭酸ガス(50%)を加えた混合ガス、 酸素ガスに水蒸気(20%)を加えた混合ガス、であ
る。
The oxidizing gas used is oxygen gas, carbon dioxide alone, a mixed gas of oxygen gas and carbon dioxide gas (50%), or a mixed gas of oxygen gas and steam (20%). ..

【0019】溶鋼への酸化性ガスの供給は、真空槽内の
ノズルを介して実施した。溶鋼の[C]の濃度を0.0
1wt%以上に保持するために供給した炭素源は黒鉛屑、
コークス、石炭の単独およびその混合物であり、真空槽
内の溶鋼に供給した。真空槽内圧力0.1mmHg以下での
脱窒速度定数kN 0 と各圧力下での脱窒速度定数kN
値の比kN /kN 0 と、真空槽内圧力との関係を図3に
示す。kN /kN 0 の値は真空槽の圧力が70mmHgを超
えると極端に低下し始める。
The oxidizing gas was supplied to the molten steel through a nozzle in the vacuum chamber. The concentration of [C] in molten steel is 0.0
The carbon source supplied to keep the content above 1 wt% is graphite scrap,
Coke, coal alone and a mixture thereof were supplied to molten steel in a vacuum chamber. Figure and denitrification rate constant k N 0 the ratio k N / k N 0 values of the denitrification rate constant k N under the pressure, the relationship between the vacuum chamber pressure below the vacuum chamber pressure 0.1mmHg 3 shows. The value of k N / k N 0 begins to drop extremely when the pressure in the vacuum chamber exceeds 70 mmHg.

【0020】この時、真空槽に付着した、脱炭にともな
う溶鋼スプラッシュ量指数W/Wo(以下、地金付着量
指数と記す)と真空槽内雰囲気圧力との関係を図4に示
す。Woは真空槽内圧力が10mmHgの時に付着した地金
量であり、Wは各圧力下での地金付着量である。地金付
着量指数は、真空槽内圧力が3mmHg以下になると極端に
増加する。
At this time, FIG. 4 shows the relationship between the molten steel splash amount index W / Wo (hereinafter referred to as the bare metal attachment amount index) associated with decarburization attached to the vacuum chamber and the atmospheric pressure in the vacuum chamber. Wo is the amount of metal adhered when the pressure in the vacuum chamber is 10 mmHg, and W is the amount of metal adhered under each pressure. The bare metal adhesion index extremely increases when the pressure in the vacuum chamber becomes 3 mmHg or less.

【0021】従って、脱窒処理は、真空槽内圧力を1〜
70mmHg程度とし、好ましくは、3〜30mmHgの範囲に
制御することで、地金付着による溶鋼歩留りを低下させ
ることなく、効率的な脱窒処理ができる。この脱窒期間
中、上部に設置したランスを用いて酸素ガスを供給し、
発生するCOガスの50〜90%を燃焼させた。このこ
とにより、地金付着量指数はおよそ半分に減少し、より
効率的であった。この時、真空槽内圧力は1〜70mmHg
程度としてよい。
Therefore, in the denitrification treatment, the pressure in the vacuum chamber is set to 1 to
By controlling to about 70 mmHg, and preferably in the range of 3 to 30 mmHg, efficient denitrification treatment can be performed without lowering the molten steel yield due to metal adhesion. During this denitrification period, oxygen gas is supplied using the lance installed at the top,
50 to 90% of the generated CO gas was burned. As a result, the bare metal adhesion index was reduced to about half, which was more efficient. At this time, the pressure in the vacuum chamber is 1 to 70 mmHg
Good as a degree.

【0022】実施例3 真空槽内圧力10mmHgで、温度が1650℃、重量が2
50トンである溶鋼の脱窒処理を、図2(a)に示す減
圧脱ガス炉で実施した。図6に示すように、炭素源を溶
鋼に供給し、脱炭速度をおよそ0.01wt%/min と
し、[C]濃度を0.01〜0.03wt%に保持するこ
とで、脱窒反応を阻害することなく、極低窒素溶鋼が溶
製できる。
Example 3 The pressure in the vacuum chamber was 10 mmHg, the temperature was 1650 ° C., and the weight was 2
The denitrification treatment of the molten steel of 50 tons was carried out in the vacuum degassing furnace shown in FIG. As shown in FIG. 6, the carbon source is supplied to the molten steel, the decarburization rate is set to about 0.01 wt% / min, and the [C] concentration is maintained at 0.01 to 0.03 wt% to perform the denitrification reaction. Ultra low nitrogen molten steel can be melted without hindering

【0023】この時、炭素源はコークスあるいは石炭、
2 2を用いた。コークスあるいは石炭を用いた時
は、真空槽内の溶鋼に添加し、C2 2 は酸素ガス吹込
み2重管ノズルの外管からランスを用いて溶鋼に吹込ん
だ。従って、[O]濃度を増加させずにCOガス気泡を
発生させ、脱窒反応を進行させるためには、[C]濃度
は0.010wt%以上を確保する必要がある。
At this time, the carbon source is coke or coal,
C 2 H 2 was used. When coke or coal was used, it was added to the molten steel in the vacuum tank, and C 2 H 2 was blown into the molten steel from the outer tube of the oxygen gas blowing double tube nozzle using a lance. Therefore, in order to generate CO gas bubbles and increase the denitrification reaction without increasing the [O] concentration, it is necessary to secure the [C] concentration of 0.010 wt% or more.

【0024】実施例4 真空槽内圧力が20mmHg以下で、温度が1650℃、重
量が250トンである溶鋼の脱窒処理を、図2(a)と
図2(b)に示すような減圧脱ガス炉で実施した。脱炭
速度Vcは0.01〜0.02wt%/min の範囲であ
る。各圧力、各脱炭速度での脱窒速度定数kN と、各圧
力、各脱炭速度で[O]濃度が0.01wt%の時に得ら
れる脱窒速度定数kN 0.01との比kN /kN 0.01
[O]濃度との関係を図7に示す。
Example 4 The denitrification treatment of molten steel having a pressure in the vacuum chamber of 20 mmHg or less, a temperature of 1650 ° C., and a weight of 250 tons was carried out under reduced pressure degassing as shown in FIGS. 2 (a) and 2 (b). It was carried out in a gas furnace. The decarburization rate Vc is in the range of 0.01 to 0.02 wt% / min. Ratio of denitrification rate constant k N at each pressure and decarburization rate to denitrification rate constant k N 0.01 obtained when [O] concentration is 0.01 wt% at each pressure and decarburization rate k N The relationship between / k N 0.01 and the [O] concentration is shown in FIG. 7.

【0025】kN /kN 0.01の値は、[O]濃度が0.
030wt%超の高濃度になると極端に減少し、脱窒しに
くくなる。従って、効率よく溶鋼から脱窒するために
は、[O]濃度は0.030wt%以下に制御するのが好
ましい。 比較例 図5に示すように、溶鋼に酸素ガスを供給して脱炭させ
る場合、[C]濃度が0.010wt%未満になると、
[O]濃度が増加し、[N]の除去反応は進行しないこ
とが分かる。
The value of k N / k N 0.01 is 0.
When the concentration is higher than 030 wt%, the concentration is extremely reduced and it becomes difficult to denitrify. Therefore, in order to efficiently denitrify molten steel, it is preferable to control the [O] concentration to 0.030 wt% or less. Comparative Example As shown in FIG. 5, when supplying molten steel with oxygen gas for decarburization, when the [C] concentration was less than 0.010 wt%,
It can be seen that the [O] concentration increases and the [N] removal reaction does not proceed.

【0026】[0026]

【発明の効果】本発明により、溶鋼の脱窒素が10ppm
以下の極低窒素濃度まで脱窒することが可能となり、極
低窒素鋼の製造が容易になる。
According to the present invention, denitrification of molten steel is 10 ppm.
It becomes possible to denitrify to the following extremely low nitrogen concentration, which facilitates the production of extremely low nitrogen steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶鋼を脱炭させない時の見掛けの脱窒速度定数
N 0(1/wt%・min )を基準にし、酸化性ガスを吹
込んで溶鋼を脱炭させつつ脱窒した時の見掛けの脱窒速
度定数kN (1/wt%・min )の比kN /kN 0 と脱炭
速度Vc[wt%/min ]との関係を示す図面である。
[Fig. 1] Appearance of denitrification while decarburizing molten steel by blowing an oxidizing gas, based on the apparent denitrification rate constant k N 0 (1 / wt% · min) when decarburizing molten steel 2 is a diagram showing the relationship between the ratio k N / k N 0 of the denitrification rate constant k N (1 / wt% · min) and the decarburization rate Vc [wt% / min].

【図2】本発明を実施するための脱ガス設備の一例を示
す図面である。
FIG. 2 is a drawing showing an example of a degassing facility for carrying out the present invention.

【図3】真空槽雰囲気圧力0.1mmHg以下で測定した見
掛けの脱窒速度定数kN 0 と各圧力下で測定した見掛け
の脱窒速度定数kN の値の比kN /kN 0 と、真空槽内
圧力との関係を示す図面である。
FIG. 3 shows the apparent denitrification rate constant k N 0 measured under a vacuum chamber atmosphere pressure of 0.1 mmHg or less and the ratio k N / k N 0 of the apparent denitrification rate constant k N measured under each pressure. 2 is a drawing showing the relationship with the pressure in the vacuum chamber.

【図4】真空槽に付着した、脱炭にともなう地金付着量
指数W/Woと真空槽内圧力との関係を示す図面であ
る。
FIG. 4 is a diagram showing a relationship between a metal adhesion amount index W / Wo associated with decarburization attached to a vacuum chamber and a pressure in the vacuum chamber.

【図5】脱窒処理中の[N]、[C]、[O]濃度の経
時変化(比較例)を示す図面である。
FIG. 5 is a drawing showing changes over time in [N], [C], and [O] concentrations during denitrification treatment (comparative example).

【図6】脱窒処理中の[N]、[C]、[O]濃度の経
時変化(実施例3)を示す図面である。
FIG. 6 is a drawing showing changes over time in [N], [C], and [O] concentrations during denitrification treatment (Example 3).

【図7】各圧力、各脱炭速度での脱窒速度定数kN と、
各圧力、各脱炭速度で[O]濃度が0.01wt%の時に
得られる脱窒速度定数kN 0.01との比kN /kN 0.01
[O]濃度との関係を示す図面である。
FIG. 7: Denitrification rate constant k N at each pressure and each decarburization rate,
Each pressure, each decarburization rate [O] concentration is a drawing-showing the relationship between the ratio k N / k N 0.01 with the denitrification rate constant k N 0.01 obtained when the 0.01 wt% and [O] concentration ..

【符号の説明】[Explanation of symbols]

1 溶鋼 2 酸化性ガス吹込みノズル 3 真空槽(RH型真空槽) 4 攪拌用吹込みプラグ 5 酸素ガス吹付けランス 6 取鍋 7 還流用ガス吹込みノズル 1 Molten Steel 2 Oxidizing Gas Injection Nozzle 3 Vacuum Tank (RH Type Vacuum Tank) 4 Stirring Injection Plug 5 Oxygen Gas Injection Lance 6 Ladle 7 Reflux Gas Injection Nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の一部を減圧槽に導きつつ脱炭させ
ながら該溶鋼の脱窒処理を実施するにあたり、脱炭速度
あるいは単位時間当りに換算した溶鋼の脱炭量を0.0
05[wt%/min ]以上とし、且つ溶鋼の酸素濃度
[O]を0.030wt%以下に制御し、溶鋼の炭素濃度
[C]を0.010wt%以上に保持しつつ、溶鋼に酸化
性ガスを直接吹込むことを特徴とする極低窒素鋼の溶製
方法。
1. When performing denitrification of molten steel while introducing a portion of the molten steel into a decompression tank and decarburizing the molten steel, the decarburization rate or the decarburization amount of molten steel converted per unit time is 0.0
05 [wt% / min] or more, the oxygen concentration [O] of the molten steel is controlled to 0.030 wt% or less, and the carbon concentration [C] of the molten steel is maintained at 0.010 wt% or more, while the oxidizing property of the molten steel is increased. A method for smelting ultra-low nitrogen steel characterized by directly blowing gas.
【請求項2】 請求項1記載の方法において、溶鋼自由
表面が接する真空槽の雰囲気圧力を、70mmHg以下に制
御することを特徴とする極低窒素鋼の溶製方法。
2. The method for melting ultra-low nitrogen steel according to claim 1, wherein the atmospheric pressure of the vacuum chamber in contact with the free surface of molten steel is controlled to 70 mmHg or less.
【請求項3】 請求項1記載の方法において、溶鋼の
[C]濃度を0.010wt%以上に保持するために、コ
ークス、石炭あるいは炭化水素系ガスを炭素源として、
この炭素源の1種もしくは2種以上を溶鋼に連続的にあ
るいは断続的に供給することを特徴とする極低窒素鋼の
溶製方法。
3. The method according to claim 1, wherein in order to maintain the [C] concentration of the molten steel at 0.010 wt% or more, coke, coal or hydrocarbon gas is used as a carbon source.
A method for smelting ultra-low nitrogen steel, which comprises continuously or intermittently supplying one or more carbon sources to the molten steel.
【請求項4】 請求項1記載の方法において、脱窒期間
中の脱炭で発生するCOガスを、真空槽内に酸素ガスを
供給して燃焼させることを特徴とする極低窒素鋼の溶製
方法。
4. The method according to claim 1, wherein CO gas generated by decarburization during the denitrification period is burned by supplying oxygen gas into the vacuum chamber. Manufacturing method.
JP31821991A 1991-12-02 1991-12-02 Production of extremely low nitrogen steel Pending JPH05156343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31821991A JPH05156343A (en) 1991-12-02 1991-12-02 Production of extremely low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31821991A JPH05156343A (en) 1991-12-02 1991-12-02 Production of extremely low nitrogen steel

Publications (1)

Publication Number Publication Date
JPH05156343A true JPH05156343A (en) 1993-06-22

Family

ID=18096763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31821991A Pending JPH05156343A (en) 1991-12-02 1991-12-02 Production of extremely low nitrogen steel

Country Status (1)

Country Link
JP (1) JPH05156343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435500B1 (en) * 2002-09-09 2004-06-10 주식회사 포스코 Preparation of Molten Steel Containing Low Nitrogen in Electric Furnace
JP2016069670A (en) * 2014-09-29 2016-05-09 新日鐵住金株式会社 Method for producing alloy
WO2024038715A1 (en) * 2022-08-18 2024-02-22 Jfeスチール株式会社 Method for denitrifying melted steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435500B1 (en) * 2002-09-09 2004-06-10 주식회사 포스코 Preparation of Molten Steel Containing Low Nitrogen in Electric Furnace
JP2016069670A (en) * 2014-09-29 2016-05-09 新日鐵住金株式会社 Method for producing alloy
WO2024038715A1 (en) * 2022-08-18 2024-02-22 Jfeスチール株式会社 Method for denitrifying melted steel
TWI842597B (en) * 2022-08-18 2024-05-11 日商杰富意鋼鐵股份有限公司 Denitrogenation method for molten steel

Similar Documents

Publication Publication Date Title
JPH05156343A (en) Production of extremely low nitrogen steel
JP2002339014A (en) Method for producing extra low sulfur steel
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JPH09165615A (en) Denitrifying method for molten metal
JP2668568B2 (en) Melting method of extremely low nitrogen steel
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
EP0688877A1 (en) Process for producing low-carbon chromium-containing steel
JPH01217A (en) Vacuum refining method for molten steel
US4154603A (en) Method of producing alloy steels having an extremely low carbon content
JPH0153329B2 (en)
JPS6138248B2 (en)
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JP2678779B2 (en) Manufacturing method of ultra-low nitrogen and ultra-low carbon molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH06306442A (en) Production of extra low sulfur steel
JPH06145769A (en) Smelting method of extra-low nitrogen steel
JPH0819456B2 (en) Manufacturing method of ultra low nitrogen steel
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JPH07173515A (en) Decarburization refining method of stainless steel
JPH0436414A (en) Smelting method of extralow carbon and extralow nitrogen steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JP2515059B2 (en) Decarburization refining method for molten steel containing chromium
JPH0619102B2 (en) Ultra low carbon steel melting method
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JPH0154409B2 (en)