JPS5829243B2 - Hydrogen production method - Google Patents

Hydrogen production method

Info

Publication number
JPS5829243B2
JPS5829243B2 JP17023680A JP17023680A JPS5829243B2 JP S5829243 B2 JPS5829243 B2 JP S5829243B2 JP 17023680 A JP17023680 A JP 17023680A JP 17023680 A JP17023680 A JP 17023680A JP S5829243 B2 JPS5829243 B2 JP S5829243B2
Authority
JP
Japan
Prior art keywords
reaction
arsenic
hydrogen
acid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17023680A
Other languages
Japanese (ja)
Other versions
JPS5795802A (en
Inventor
泰良 加藤
敦子 今橋
邦彦 小西
雅夫 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP17023680A priority Critical patent/JPS5829243B2/en
Publication of JPS5795802A publication Critical patent/JPS5795802A/en
Publication of JPS5829243B2 publication Critical patent/JPS5829243B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は水素の製造方法に係り、特に−酸1ヒ炭素また
は炭fヒ水素のような還元性ガスを用いて水素を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen, and more particularly to a method for producing hydrogen using a reducing gas such as arsenic or arsenic.

水素は[ヒ学工業の重要な原料の一つであり、需要が大
きい上に、近年、重質油の水添脱硫や石炭の液[ヒある
いは石炭のガス[ヒといった水素を多量に消費するプロ
セスの開発によって、安価で高純度の水素の需要が大幅
に増大している。
Hydrogen is one of the important raw materials for Higaku Kogyo, and is in high demand. Process developments have significantly increased the demand for cheap, high-purity hydrogen.

水素の合或は、水を原料とする方法と炭fヒ水素を原料
とする方法とに大別されるが、近年では主に後者が主流
になっている。
Hydrogen synthesis is broadly classified into methods using water as a raw material and methods using carbon and arsenic as raw materials, but in recent years the latter has become the mainstream.

この方法は、例えば石油のクラッキングから生じる炭[
ヒ水素の混合物と水蒸気とをニッケル触媒等の共存下で
800℃前後の条件で反応させるものである。
This method uses, for example, coal produced from the cracking of petroleum [
A mixture of arsenic and water vapor are reacted at around 800°C in the coexistence of a nickel catalyst or the like.

この方法においては、式(1)に例示されるように反応
が進行し、副生ずる一酸fヒ炭素から、400℃前後に
おいて式(2)の反応により水素が発生する。
In this method, the reaction proceeds as exemplified by formula (1), and hydrogen is generated from the by-produced monoacid f carbon by the reaction of formula (2) at around 400°C.

C3H6+3H20→3 CO+ 6 H2O(1)3
CO+3HO→3H+3CO(2> 2 2 2 しかしながら、このプロセスにおいては、800℃とい
う高温の反応条件を必要とし、このため装置材料には耐
熱鋼のような高級材料が必要となり、また、水素の精製
のため、反応終了後のガスから未反応成分、水蒸気、炭
酸ガス等の分離操作が必要となり、プロセスは複雑なも
のとなる。
C3H6+3H20→3 CO+ 6 H2O(1)3
CO + 3HO → 3H + 3CO (2> 2 2 2 However, this process requires high-temperature reaction conditions of 800°C, which requires high-grade materials such as heat-resistant steel for the equipment, and also Therefore, it is necessary to separate unreacted components, water vapor, carbon dioxide, etc. from the gas after the reaction is completed, making the process complicated.

本発明者らは、上記に鑑み、比較的低温度において、C
Oまたは炭1ヒ水素と水蒸気とから、高純度の水素を製
造する方法を研究し、−酸1ヒ炭素(CO)または炭[
ヒ水素をロジウム、白金、パラジウム、ルテニウム等の
ような白金族元素を添加したモリブデン(MO)、タン
グステン(W)、バナジウム(V)、ウラン(U)、鉄
(Fe)、ニッケル(Ni)等の遷移金属酸fヒ物と3
00ないし500℃の温度域で反応させ、この還元状態
にある酸[ヒ物に水蒸気を導くと、すみやかに反応して
水素を発生することを見出し、別途、特許出願をした。
In view of the above, the present inventors have discovered that C
We researched a method to produce high-purity hydrogen from O or carbon, arsenic, and water vapor.
Molybdenum (MO), tungsten (W), vanadium (V), uranium (U), iron (Fe), nickel (Ni), etc. with arsenide added with platinum group elements such as rhodium, platinum, palladium, ruthenium, etc. Transition metal acid f arsenide and 3
They discovered that when water vapor is introduced into the reduced acid (arsenic acid) at a temperature range of 00 to 500°C, it reacts quickly to generate hydrogen, and a separate patent application has been filed.

上記方法は、前記の遷移金属酸1ヒ物をCOまたは炭1
ヒ水素で還元する工程Aと、上記還元された遷移金属酸
(ヒ物に水蒸気を作用させて酸[ヒ状態にし、同時に水
素を発生させる工程Bとからなるが、これらの酸1ヒ還
元反応においては、金属酸(ヒ物は電子の授受にとどま
らず、酸素原子の移動を伴なうため、酸化物は体積変化
や強度変化を生じ、固形物としての物性が変動してくる
In the above method, the transition metal acid 1 arsenide is converted into CO or charcoal 1 arsenide.
It consists of step A of reducing with arsenic, and step B of applying water vapor to the reduced transition metal acid (arsenic) to make it into an acid [arsenic] state and simultaneously generating hydrogen. In metal acids (arsenic oxides), the oxide not only transfers electrons but also moves oxygen atoms, resulting in changes in volume and strength, and its physical properties as a solid substance change.

すなわち、上記方法に採用される金属酸化物は、顆粒ま
たは加圧成形したベレット状のものが代表的であるが、
これらの粒子は、上記反応により機械的物性変1ヒ、特
に粒子の粉化と機械的強度の変fヒを受ける。
That is, the metal oxide employed in the above method is typically in the form of granules or pressure-molded pellets;
These particles undergo changes in mechanical properties, particularly particle pulverization and changes in mechanical strength, due to the above reaction.

ところで、異なる2反応を1つの作用体(ここでは金属
酸化物)で繰返して行なうためには、反応のガス流路を
切換えるか、または作用体を移動させる必要があるが、
後者の方法は上述の粒子の粉fヒを促進するので適切で
はなく、このため、通常、作用体を移動させないで、ガ
ス流路を切換る方法が広く採用されている。
By the way, in order to repeatedly perform two different reactions with one effector (metal oxide in this case), it is necessary to switch the reaction gas flow path or move the effector.
The latter method is not suitable because it promotes the above-mentioned particle dusting, and for this reason, a method in which the gas flow path is switched without moving the effecting body is generally adopted.

しかしながら、上記プロセスを実施する場合、(a)
工程AとBとは反応の難易度において等価ではなく、
発熱反応である工程Aよりも吸熱反応である工程Bの方
が反応性が劣る。
However, when carrying out the above process, (a)
Processes A and B are not equivalent in terms of reaction difficulty;
The reactivity of Step B, which is an endothermic reaction, is lower than that of Step A, which is an exothermic reaction.

(b) 従って、従来技術である2基式でガス流路切
換によって本プロセスを実施する場合、装填した金属酸
でヒ物に対する反応は工程Aの方が先に完了し、工程B
の方は反応が未完となり、水素の発生および回収が不十
分な状態となる。
(b) Therefore, when carrying out this process by switching the gas flow paths in a two-unit system, which is the conventional technology, the reaction of the loaded metal acid to the arsenic is completed in step A first, and in step B.
In this case, the reaction is incomplete, resulting in insufficient generation and recovery of hydrogen.

このような状態で、ガス流路を切換え、両工程をそれぞ
れ逆転させた場合、水素未回収状態にある反応塔内では
金属酸[ヒ物と還元性ガスとの反応量が低減し、装填し
た金属酸[ヒ物の利用率は低いものとなる。
In such a situation, if the gas flow path is switched and both processes are reversed, the amount of reaction between the metal acid [arsenic] and the reducing gas will decrease in the reaction column where hydrogen has not been recovered, and the amount of reaction between the charged The utilization rate of metal acids [arsenic] is low.

(c) (b)の問題を避けるため、金属酸1ヒ物の
装填量を変えるとしても、両工程を繰返して逆転させる
必要があるため、その操作はきわめて複雑なものとなる
(c) In order to avoid the problem in (b), even if the loading amount of metal acid 1 is changed, both steps must be repeated and reversed, making the operation extremely complicated.

等の問題があった。There were other problems.

本発明の目的は、上記した従来技術の欠点をなくシ、金
属酸1ヒ物に対する還元性ガスによる還元工程Aと水蒸
気による酸1ヒおよび水素発生工程Bを実施せしめる反
応の時間比率を変えることにより、金属酸1ヒ物の利用
効率を高め、プロセスのフローを簡略fヒすることがで
きる水素の製造方法を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to change the time ratio of the reaction in which the reduction step A using a reducing gas and the acid step A and hydrogen generation step B using water vapor are carried out for the metal acid arsenic. It is an object of the present invention to provide a method for producing hydrogen that can increase the utilization efficiency of a metal acid and simplify the process flow.

本発明は、基本的には金属酸[ヒ物を装填した等価な反
応器を3基以上設置し、各基を直列の連結管、バイパス
管および切換弁を介して接続し、工程AとBとの反応時
間比率に応じた個数の反応器で両工程の反応を行なうよ
うにしたものである。
The present invention basically involves installing three or more equivalent reactors loaded with metal acids [arsenic], connecting each reactor through series connecting pipes, bypass pipes, and switching valves. The reactions in both steps are carried out in a number of reactors depending on the reaction time ratio between the two steps.

すなわち、本発明は、白金族元素を添加したモリブデン
、タングステン、バナジウム等の遷移金属酸1ヒ物が装
填され、それぞれ還元性ガスおよび水蒸気の導入、排出
の各配管および切換弁を備えた等価の反応器を三基以上
使用し、前記金属酸(ヒ物を還元性ガスと接触させて還
元処理する工程と、該還元処理された前記金属酸1ヒ物
に水蒸気を接触させて水素を発生させろ工程とを、それ
ぞれの工程の反応時間に応じた個数の前記反応器に前記
ガスを通過させて交互に行うことを特徴とする。
That is, the present invention provides an equivalent system loaded with a transition metal acid monoarsenic such as molybdenum, tungsten, or vanadium to which a platinum group element is added, and equipped with respective reducing gas and water vapor introduction and discharge piping and switching valves. Using three or more reactors, a step of reducing the metal acid (arsenic) by contacting it with a reducing gas, and bringing water vapor into contact with the reduced metal acid (arsenic) to generate hydrogen. The step is characterized in that the steps are performed alternately by passing the gas through a number of reactors corresponding to the reaction time of each step.

本発明における反応塔の基数は3基以上であればよく、
異なる2つの反応の反応時間を等価な反応塔の基数に割
当てることができれはよい。
The number of reaction towers in the present invention may be 3 or more,
It is good if the reaction times of two different reactions can be assigned to an equivalent number of reaction columns.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、反応塔3基を配した本発明の実施例を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of the present invention in which three reaction columns are arranged.

金属酸1ヒ物を装填した反応塔1〜3はいずれも等価で
あって、それぞれ連絡管11〜13により直列の閉ルー
プを形成している。
The reaction towers 1 to 3 loaded with metal acid arsenic are all equivalent, and form a series closed loop through communication pipes 11 to 13, respectively.

連結管11〜13には、ガスのオンオフ切換ができるよ
うに、ダンパ110,120および130がそれぞれ設
けられている。
The connecting pipes 11 to 13 are provided with dampers 110, 120, and 130, respectively, so that gas can be switched on and off.

また各反応塔の一方には、それぞれ還元性ガスおよび水
蒸気を導入するための管21〜23および管31〜33
が切換弁を介して接続され、また他方にはそれぞれ廃ガ
ス排出管41〜43および水素ガス取出管51〜53が
切換弁を介して接続されている。
Further, one side of each reaction tower is provided with pipes 21 to 23 and pipes 31 to 33 for introducing reducing gas and steam, respectively.
are connected to each other via a switching valve, and waste gas discharge pipes 41 to 43 and hydrogen gas extraction pipes 51 to 53 are respectively connected to the other via a switching valve.

上記の構成において、還元性ガスは、還元性ガス導入管
20によって導かれ、切換弁200を介し還元性ガス分
岐管21〜23により各反応塔にオンオフ的に供給され
る。
In the above configuration, the reducing gas is guided by the reducing gas introduction pipe 20, and is supplied to each reaction tower via the switching valve 200 and the reducing gas branch pipes 21 to 23 in an on-off manner.

水蒸気も同様に水蒸気導入管30によって導かれ、各反
応塔に対し切換弁300を介し、水蒸気分岐管31〜3
3によりオンオフ的に供給される。
Steam is similarly led through the steam introduction pipe 30, and is passed through the switching valve 300 to each reaction tower through the steam branch pipes 31 to 3.
3, it is supplied on and off.

反応を終えた還元ガス系の廃ガスは、廃ガス排出管41
〜43を通じ、切換弁400を介して廃ガス排出管40
へ導かれる。
After the reaction, the reducing gas system waste gas is discharged through the waste gas discharge pipe 41.
~ 43, the waste gas discharge pipe 40 via the switching valve 400
be led to.

この廃ガスは通常の燃焼排ガスと同様、必要に応じて熱
回収したり、除塵無害[ヒ等が施された後、大気中へ放
出される。
This waste gas, like normal combustion exhaust gas, is released into the atmosphere after being subjected to heat recovery, dust removal, etc. as necessary.

水蒸気系の排ガス、すなわち水素含有排ガスは、水素取
出管51〜53を通じ、切換弁500を介して水素取出
管50へ導かれろ。
Steam-based exhaust gas, that is, hydrogen-containing exhaust gas, is guided to the hydrogen extraction pipe 50 via the hydrogen extraction pipes 51 to 53 and the switching valve 500.

このガス中には水素の他に未反応水蒸気、さらに反応塔
に残存した還元工程排ガスが含まれており、これら不純
物は別に設置された水蒸気トラップ等で分離することに
より、水素が純1ヒされる。
In addition to hydrogen, this gas contains unreacted water vapor and reduction process exhaust gas that remained in the reaction tower. By separating these impurities with a separately installed steam trap, the hydrogen is purified. Ru.

次に本発明の具体的な操作例について説明する。Next, a specific example of operation of the present invention will be explained.

先ず、反応塔1を還元工程とし、反応塔2および3を酸
1ヒエ程(水素発生工程)とする。
First, reaction tower 1 is used for the reduction process, and reaction towers 2 and 3 are used for the acid production process (hydrogen generation process).

このとき、連絡管11〜13に設置されたダンパは、ダ
ンパ110および130を閉じ、ダンパ120を開いて
おく。
At this time, the dampers installed in the communication pipes 11 to 13 close dampers 110 and 130 and leave damper 120 open.

還元性ガスは導入管20、切換弁200およびガス分岐
管21を通して反応塔1へ導かれ、反応後の廃ガスは連
絡管11から廃ガス排出管41、切換弁400および排
出管40を経て排出される。
The reducing gas is led to the reaction tower 1 through the inlet pipe 20, the switching valve 200, and the gas branch pipe 21, and the waste gas after the reaction is discharged from the connecting pipe 11 through the waste gas exhaust pipe 41, the switching valve 400, and the exhaust pipe 40. be done.

一方、水蒸気は、導入管30、切換弁300および分岐
管32を通して反応塔2へ導かれ、塔内の金属酸[ヒ物
と接触反応して水素を発生する。
On the other hand, the steam is led to the reaction tower 2 through the introduction pipe 30, the switching valve 300, and the branch pipe 32, and reacts with the metal acid [arsenic] in the tower to generate hydrogen.

水素を含む水蒸気は次に連絡管12を通して反応塔3へ
導かれ、さらに水素発生反応(酸1ヒ反応)を進行させ
、生成ガスは連絡管13、水素取出管53、切換弁50
0および水素取出管50を通して取出される。
The water vapor containing hydrogen is then led to the reaction tower 3 through the connecting pipe 12, where a hydrogen generation reaction (acid-1-arsenic reaction) is further advanced, and the generated gas is passed through the connecting pipe 13, the hydrogen extraction pipe 53, and the switching valve 50.
0 and hydrogen extraction pipe 50.

反応塔1において、装填した金属酸[ヒ物に対する還元
反応が終了すると、反応塔3において還元工程を、また
反応塔1および2において酸(ヒエ程を行なうようにダ
ンパおよび切換弁を操作し、それぞれのガス流路を設定
する。
In the reaction tower 1, when the reduction reaction for the charged metal acid [arsenic] is completed, the damper and the switching valve are operated so that the reduction step is carried out in the reaction tower 3, and the acid (burning step) is carried out in the reaction towers 1 and 2. Set each gas flow path.

その次の段階は、反応塔2において還元工程を、反応塔
3および1において酸1ヒエ程を行なうわけがあるが、
その操作は上記と同様である。
The next step is to perform a reduction step in reaction tower 2 and an acid step in reaction towers 3 and 1.
The operation is the same as above.

以下、元の段階に戻って反応塔1で還元工程を、および
反応塔2,3で酸1ヒエ程を行ない、同様な操作を繰返
す。
Thereafter, the process returns to the original stage and the reduction step is carried out in reaction tower 1, and the acidic acid step is carried out in reaction towers 2 and 3, and the same operation is repeated.

上記実施例によれば、反応時間の遅い酸1ヒエ程を2基
の反応塔で、また反応時間の早い還元工程を1基の反応
塔で行なうようにしたので、各反応に応じた滞留時間を
とることができ、各反応を充分に行ない、また反応工程
の切換を合理的に行なうことができる。
According to the above example, the reaction time of 1 acid per hour, which has a slow reaction time, is carried out in two reaction towers, and the reduction step, which has a quick reaction time, is carried out in one reaction tower, so the residence time is adjusted according to each reaction. Each reaction can be carried out satisfactorily, and the reaction steps can be switched rationally.

上記実施例において、反応塔は3基使用し、各反応の時
間比率を1:2として操作したか、反応温度等の操作条
件によっては1:3が適する場合があり、このときには
4塔を、また、時間比率が2=3となる場合には5塔を
設け、それぞれの工程を反応時間に応じて割尚てること
ができる。
In the above example, three reaction towers were used, and the time ratio for each reaction was operated at 1:2, or depending on the operating conditions such as reaction temperature, 1:3 may be suitable, and in this case, four towers were used. Furthermore, when the time ratio is 2=3, five columns can be provided and each step can be reassigned according to the reaction time.

以上、本発明によれば、反応塔の基数を選び、還元およ
び酸1ヒの両反応の所要時間に応じてこれらの基数を割
当てることにより、該両反応の反応量が最適値になるよ
うに調節することができ、従って、作用体である金属酸
fヒ物の利用率を高く維持しながら、効率よく水素を製
造することができる。
As described above, according to the present invention, by selecting the number of reaction columns and allocating these numbers according to the time required for both the reduction and acid-1 reactions, the reaction amounts of both reactions can be optimized. Therefore, it is possible to efficiently produce hydrogen while maintaining a high utilization rate of the metal acid arsenate, which is an effector.

また、反応塔を3基以上直列に連結し、閉ループを形成
したことにより、両反応工程の切換をすみやかに行ない
、プロセスの連続1ヒが可能になる等の効果が得られる
Furthermore, by connecting three or more reaction towers in series to form a closed loop, effects such as the ability to quickly switch between both reaction steps and the continuous process can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基本となる反応塔3基を配した実施
例を示す装置系統図である。 1.2.3・・・・・・反応器、11,12,13・・
・・・・連絡管、20・・・・・・還元性ガス導入管、
30・・・・・・水蒸気導入管、40・・・・・・廃ガ
ス排出管、50・・・・・・水素取出管。
FIG. 1 is an apparatus system diagram showing an example in which three reaction towers are arranged, which is the basis of the present invention. 1.2.3... Reactor, 11, 12, 13...
...Connection pipe, 20...Reducing gas introduction pipe,
30... Steam introduction pipe, 40... Waste gas discharge pipe, 50... Hydrogen extraction pipe.

Claims (1)

【特許請求の範囲】 1 白金族元素を添加したモリブデン、タングステン、
バナジウム等の遷移金属酸fヒ物が装填され、それぞれ
還元性ガスおよび水蒸気の導入、排出の各配管および切
換弁を備えた等価の反応器を三基以上使用し、前記金属
酸[ヒ物を還元性ガスと接触させて還元処理する工程と
、該還元処理された前記金属酸fヒ物に水蒸気を接触さ
せて水素を発生させる工程とを、それぞれの工程の反応
時間に応じた個数の前記反応器に前記ガスを通過させて
交互に行うことを特徴とする水素の製造方法。 2、特許請求の範囲第1項において、白金族元素がロジ
ウム、白金、パラジウム、ルテニウムから選はれた少く
とも一種の元素またはその酸fヒ物であることを特徴と
する水素の製造方法。 3 特許請求の範囲第1項または第2項において、還元
性ガスが一酸[ヒ炭素または炭[ヒ水素であることを特
徴とする水素の製造方法。
[Claims] 1. Molybdenum, tungsten, added with platinum group elements,
Three or more equivalent reactors each loaded with a transition metal acid such as vanadium and an arsenic compound each equipped with reducing gas and water vapor introduction and exhaust piping and switching valves are used. A step of contacting with a reducing gas to perform a reduction treatment, and a step of contacting the reduced metal acid arsenide with water vapor to generate hydrogen are performed in a number of times corresponding to the reaction time of each step. A method for producing hydrogen, characterized in that the gas is passed through a reactor alternately. 2. The method for producing hydrogen according to claim 1, wherein the platinum group element is at least one element selected from rhodium, platinum, palladium, and ruthenium, or an acid or arsenate thereof. 3. The method for producing hydrogen according to claim 1 or 2, characterized in that the reducing gas is monoacid [arsenic] or carbon [arsenic].
JP17023680A 1980-12-04 1980-12-04 Hydrogen production method Expired JPS5829243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17023680A JPS5829243B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17023680A JPS5829243B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Publications (2)

Publication Number Publication Date
JPS5795802A JPS5795802A (en) 1982-06-14
JPS5829243B2 true JPS5829243B2 (en) 1983-06-21

Family

ID=15901183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17023680A Expired JPS5829243B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Country Status (1)

Country Link
JP (1) JPS5829243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442995Y2 (en) * 1984-08-24 1992-10-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442995Y2 (en) * 1984-08-24 1992-10-12

Also Published As

Publication number Publication date
JPS5795802A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
JP4903339B2 (en) Method for producing carbon monoxide by catalytic reverse conversion
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US4439412A (en) Process for producing hydrogen from hydrogen sulphide in a gas fluidized bed reactor
KR102184878B1 (en) Manufacturing method for carbon monoxide by chemical looping combustion
EA034603B1 (en) Process for the production of formaldehyde
UA119697C2 (en) Process for making ammonia
CN110155948A (en) A kind of biomass graded gasification hydrogen-producing method
CN108946661A (en) A kind of gasification of biomass prepares the method and system of hydrogen
US10280079B2 (en) Method for producing hydrogen
US3749762A (en) Process for producing sulfur from sour gas
KR101632888B1 (en) Energy reduction high efficiency water gas shift reaction system
JP2005509016A (en) Method for producing methanol using a catalyst and apparatus for carrying out the method
JPS6241701A (en) Pressure swing type gas separator in methanol decomposition apparatus
JPS5829243B2 (en) Hydrogen production method
US1921856A (en) Production of gaseous mixtures containing hydrogen and nitrogen from methane
JPH0261410B2 (en)
Zuo et al. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept
JP3782311B2 (en) Chemical reactor
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
JPH10152302A (en) Chemical reaction apparatus and recovery of main formed gas
CN114955999B (en) Biological glycerol chemical chain reforming hydrogen production CO 2 In-situ trapping and utilizing process and device thereof
RU2088517C1 (en) Method of two-step catalytic conversion of hydrocarbon raw material
CN114955992B (en) Production process for producing hydrogen by using blast furnace gas
KR20130070796A (en) Apparatus for simultaneous production of synthetic oil and electricity using fischer-tropsch synthesis reactor unit and fuel cell unit and method thereof
JPH0465302A (en) Pressure-swing hydrogen purification method