JPS5828566A - Method and device for controlling air fuel ratio of internal combustion engine - Google Patents

Method and device for controlling air fuel ratio of internal combustion engine

Info

Publication number
JPS5828566A
JPS5828566A JP11689981A JP11689981A JPS5828566A JP S5828566 A JPS5828566 A JP S5828566A JP 11689981 A JP11689981 A JP 11689981A JP 11689981 A JP11689981 A JP 11689981A JP S5828566 A JPS5828566 A JP S5828566A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
sensor
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11689981A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kobayashi
伸行 小林
Hiroshi Ito
博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11689981A priority Critical patent/JPS5828566A/en
Publication of JPS5828566A publication Critical patent/JPS5828566A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:In an engine in which the air fuel ratio of the mixture is feedback-controlled depending on the concentration of oxygen, to adequately reaccelerate the engine after its deceleration in which the temperature of cooling water is lower than a prescribed level, by ceasing the feedback control at the time of said deceleration. CONSTITUTION:In an air fuel ratio control method, an electronic control circuit 38 first judges on the basis of the output of a throttle valve opening degree sensor 22 whether or not a throttle valve 20 is completely closed. When the throttle valve 20 is not completely closed, the operation of the engine is regarded as ordinary and the feedback compensation of a basic injection time Tp calculated from the outputs of an air flow meter 12 and a distributor 14 is carried out by the output of an oxygen sensor 28. When the throttle valve 20 is completely closed, a fuel injection signal is determined on the basis of the outputs of a water temperature sensor 16, the oxygen sensor 28 and a vehicle speed sensor 32. For example, the fuel injection signal is determined without the air fuel ratio feedback compensation of the basic injection time Tp, at the time of such deceleration of the engine that the temperature of cooling water is lower than 70 deg.C and the vehicle speed is not lower than 10km/h.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比制御方法及び装置に係り、
特に1排気ガス浄化対策が施された自動車用内燃機関に
用いる好適な、排気ガス中の酸素濃度に応じて、混合気
の空燃比が理論空燃比近傍となるよう、混合気の空燃比
tフィードバック制御するようにした内燃機関の空燃比
制御方法及び装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method and device for an internal combustion engine,
Particularly suitable for use in automobile internal combustion engines that have undergone exhaust gas purification measures, t-feedback of the air-fuel ratio of the air-fuel mixture is performed so that the air-fuel ratio of the air-fuel mixture becomes close to the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas. The present invention relates to improvements in an air-fuel ratio control method and device for an internal combustion engine.

自動車用内燃機関、特に、三元触媒コンバータを備えた
自動車用内燃機関においては、該三元触媒コンバータに
おいて十分な排気ガス浄化性能が発揮されるためには、
三元触媒コンバータに流入する排気ガス中の酸素濃度が
、理論空燃比近傍の混合気を燃焼させた場合に相当する
酸素濃度である必要がある。従って、従来から、排気系
に排気ガス中の酸素濃度を検出する酸素濃度センサを設
け、該酸素濃度センサ出力の排気ガス中の酸素濃度に応
じて、混合気の空燃比が理論空燃比近傍となるよう、燃
料供給量或いは空気供給量を変えることにより、混合気
の空燃比をフィードバック制御するようにした空燃比制
御方法が知られている。
In an automobile internal combustion engine, particularly an automobile internal combustion engine equipped with a three-way catalytic converter, in order for the three-way catalytic converter to exhibit sufficient exhaust gas purification performance,
It is necessary that the oxygen concentration in the exhaust gas flowing into the three-way catalytic converter corresponds to the oxygen concentration when a mixture near the stoichiometric air-fuel ratio is combusted. Therefore, conventionally, an oxygen concentration sensor is provided in the exhaust system to detect the oxygen concentration in the exhaust gas, and the air-fuel ratio of the air-fuel mixture becomes close to the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas output from the oxygen concentration sensor. An air-fuel ratio control method is known in which the air-fuel ratio of an air-fuel mixture is feedback-controlled by changing the amount of fuel or air supplied.

このよ5な空燃比フィードバック制御は、通常時には極
めて有効なものである。しかし、エンジン暖機が終了し
、酸素濃度センサが十分に活性化する前に、フィードバ
ック制御を働かせると、酸素濃度センサの出力異常によ
り、空燃比制御手段が誤動作して、混合気の空燃比が理
論空燃比近傍とはならない。又、エンジン始動時には、
混合気の空燃比が理論空燃比近傍よりリッチ側である方
がエンジン始動性能が良い。更に、無負荷運転時には、
排気ガスの温度低下により酸素濃度センサが不活性化す
ると、出力異常となる虞れがある等の理由により、エン
ジン始動時、始動後増量中、高負荷走行時、エンジン冷
却水温が所定温度、例えば50°C以下である場合、無
負荷運転時等の%足の運転状態においては、前記フィー
ドバック制御を停止し、各運転状態に適した所定の空燃
比でエンジンを運転するようにしている。しかしながら
従来は、減速中については、通常時と同様にフィードバ
ック制御が行なわれていた。しかし、この減速中は、員
多弁が閉じられることによって、吸気マニホルドの内壁
等に付着した燃料が急激に気化して燃焼室に吸入される
ため、酸素濃度センサで検出される酸素濃度が小となり
、第1図(fiJK示す如く、混合気の空燃比が一方的
にリーン側に制御されてしまう。そのため、減速後の再
加速時には、混合気の空燃比が過度にリーン側に外れて
おり、再加速時の加速性能が劣るという欠点を有した。
Such air-fuel ratio feedback control is extremely effective under normal conditions. However, if feedback control is activated before the engine warms up and the oxygen concentration sensor is fully activated, the air-fuel ratio control means malfunctions due to an abnormal output from the oxygen concentration sensor, causing the air-fuel ratio of the mixture to The air-fuel ratio will not be close to the stoichiometric air-fuel ratio. Also, when starting the engine,
Engine starting performance is better when the air-fuel ratio of the air-fuel mixture is richer than near the stoichiometric air-fuel ratio. Furthermore, during no-load operation,
If the oxygen concentration sensor becomes inactive due to a drop in exhaust gas temperature, there is a risk of output abnormality. Therefore, when starting the engine, increasing the amount after starting, or driving under high load, the engine cooling water temperature should not be set to a predetermined temperature, e.g. When the temperature is 50° C. or lower, the feedback control is stopped in operating states such as no-load operation, and the engine is operated at a predetermined air-fuel ratio suitable for each operating state. However, conventionally, during deceleration, feedback control was performed in the same way as in normal times. However, during this deceleration, the fuel valve is closed and the fuel adhering to the inner wall of the intake manifold is rapidly vaporized and sucked into the combustion chamber, so the oxygen concentration detected by the oxygen concentration sensor decreases. As shown in Figure 1 (FIJK), the air-fuel ratio of the mixture is unilaterally controlled to the lean side.As a result, when reaccelerating after deceleration, the air-fuel ratio of the mixture deviates excessively to the lean side. It had the disadvantage of poor acceleration performance during re-acceleration.

この現象は、特にエンジン冷却水温が低い低温時に顕著
に現われる。
This phenomenon is particularly noticeable when the engine cooling water temperature is low.

本発明は、前記従来の欠点を解消するべくなされたもの
で、低温減速後の再加速時における加速性能に優れた内
燃機関の空燃比制御方法及び装置を提供することを目的
とする。
The present invention was made to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide an air-fuel ratio control method and apparatus for an internal combustion engine that has excellent acceleration performance during re-acceleration after low-temperature deceleration.

本発明は、排気ガス中の酸素濃度に応じて、混合気の空
燃比が理論空燃比近傍となるよう、混合 。
The present invention mixes the air-fuel mixture so that the air-fuel ratio of the air-fuel mixture becomes close to the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas.

気の空燃比をフィードバック制御するようにした内燃機
関の空燃比制御方法において、エンジン冷却水温か所定
値未満の減速時は、前記フィート°)(ツク制御を停止
するようにして、前記目的を達成したものである。
In the air-fuel ratio control method for an internal combustion engine, the air-fuel ratio of the engine is feedback-controlled, and when the engine cooling water temperature is less than a predetermined value and the engine decelerates, the above-mentioned feet ° This is what I did.

又、前記フィートノ(ツク制御t1絞り弁dl全閉状態
にあり、エンジン冷却水温が所定値未満であり、且つ、
車両の走行速度が所定値以上である時に、停止するよう
にしたものである。
Further, the throttle valve dl is in a fully closed state, the engine cooling water temperature is less than a predetermined value, and
The vehicle is configured to stop when the traveling speed of the vehicle is equal to or higher than a predetermined value.

更に、前記方法が実施される内燃機関の空燃比制御装置
を、エンジンの吸入空気量を検出する吸入空気量センサ
と、エンジン回転数を検出する回転数センサと、エンジ
ン冷却水温を検出する冷却水温センサと、絞り弁が全閉
状態にあることを検出する絞9弁開度センサと、排気ガ
ス中の酸素濃度を検出する酸素濃度センサと、車両の走
行速度を検出する車速センサと、エンジン内に燃料全噴
射するインジェクタと、エンジンの吸入空気蓋とエンジ
ン回転数に応じて基本の燃料噴射時間を算出すると共に
、通常時は、前記酸素濃度センサ出力の排気ガス中の酸
素濃度に応じて前記燃料噴射時間をフィードバック補正
し、一方、絞り弁が全閉状態にあり、エンジン冷却水温
が所定値未満であり、且つ、車両の走行速度が所定値以
上である時は、前記燃料噴射時間をフィードバック補正
することなく、燃料噴射信号を前記インジェクタに出力
する電子制御回路と、を用いて構成したものである。
Furthermore, an air-fuel ratio control device for an internal combustion engine in which the method is implemented includes an intake air amount sensor that detects the intake air amount of the engine, a rotation speed sensor that detects the engine rotation speed, and a cooling water temperature that detects the engine cooling water temperature. A sensor, a throttle valve opening sensor that detects whether the throttle valve is in a fully closed state, an oxygen concentration sensor that detects the oxygen concentration in exhaust gas, a vehicle speed sensor that detects the vehicle running speed, and an engine internal sensor. The basic fuel injection time is calculated based on the injector that fully injects the fuel, the intake air cover of the engine, and the engine speed. The fuel injection time is corrected by feedback. On the other hand, when the throttle valve is fully closed, the engine cooling water temperature is less than a predetermined value, and the vehicle running speed is above a predetermined value, the fuel injection time is feedback-corrected. and an electronic control circuit that outputs a fuel injection signal to the injector without correction.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の空燃比制御方法が採用された電
子制御式燃料噴射装置の実施例は、第2図及び第3図に
示す如く、エンジンの吸気通路10に配設された、エン
ジンの吸入空気量を検出するエアフローメータ12と、
エンジン回転に応じたパルス信号を発生するディストリ
ビュータ14と、エンジン冷却水温を検出する冷却水温
センサ16と、前記エアフローメータ12内に配設され
た、エンジン吸入空気温を検出する吸入空気温センサ1
8と、吸気通路10に配設され九絞り弁20の開度及び
絞り弁開度変化全検出するスロットルポジションセンサ
22と、エンジン始動中にスタータ信号を発生するスタ
ータスイッチ24と、排気通路26に配設された、排気
ガス中の酸素濃度を検出する酸素濃度センサ28と、変
速機30の軸の回転数から車両の走行速fTh検出する
ための車速センサ32と、エンジンの吸気マニホルド3
4内に燃料を噴射する九めのインジェクタ36と、エン
ジンの吸入空気量とエンジン回転数に応じて基本の燃料
噴射時間を算出すると共に、通常時は、前記酸素濃度セ
ンナ28出力の排気ガス中の酸素濃度に応じて前記燃料
噴射時間をフィードバック補正し、一方、絞り弁が全閉
状態にあり、エンジン冷却水温が所定値未満であり、且
つ、車両の走行速度が所定値以上である時は、前記燃料
噴射時間をフィードバック補正することなく、燃料噴射
信号を前記インジェクタ36に出力するデジタル電子制
御回路38とから構成されている。第2図において、4
0はエアクリーナ、42はサージタンク、44は点火プ
ラグ、46は触媒コンバータであり、第3図において、
48はバッテリである。
An embodiment of an electronically controlled fuel injection device employing the air-fuel ratio control method for an internal combustion engine according to the present invention is as shown in FIGS. an air flow meter 12 that detects the amount of intake air;
A distributor 14 that generates a pulse signal according to engine rotation, a cooling water temperature sensor 16 that detects the engine cooling water temperature, and an intake air temperature sensor 1 that detects the engine intake air temperature, which is disposed within the air flow meter 12.
8, a throttle position sensor 22 disposed in the intake passage 10 that detects the opening of the throttle valve 20 and all changes in the throttle valve opening, a starter switch 24 that generates a starter signal during engine starting, and a starter switch 24 that generates a starter signal during engine starting; An oxygen concentration sensor 28 for detecting the oxygen concentration in exhaust gas, a vehicle speed sensor 32 for detecting the running speed fTh of the vehicle from the rotation speed of the shaft of the transmission 30, and an intake manifold 3 of the engine are provided.
The ninth injector 36 injects fuel into the fourth injector, calculates the basic fuel injection time according to the intake air amount of the engine and the engine speed, and normally injects fuel into the exhaust gas of the oxygen concentration sensor 28 output. The fuel injection time is feedback-corrected according to the oxygen concentration of , and a digital electronic control circuit 38 that outputs a fuel injection signal to the injector 36 without feedback correcting the fuel injection time. In Figure 2, 4
0 is an air cleaner, 42 is a surge tank, 44 is a spark plug, and 46 is a catalytic converter.
48 is a battery.

前記デジタル電子制御回路38は、第3図に詳細に示す
如く、エアフローメータ12(吸入空気温センサ18を
含む)、冷却水温センサ16及びバッテリ48出力のア
ナログ信号をデジタル信号に変換するためのアナログ−
デジタル変換器50と、前記ディストリビュータ14、
スロットルポジションセンサ22、スタータスイッチ2
4、II素濃度センサ28、車速センサ32出力のデジ
タル信号を入力する九めの入力インターフェース回路5
2と、中央演算処理回路54と、リードオンリーメモリ
56と、ランダムアクセスメモリ58と、中央演算処理
回路54における演算結果をインジェクタ36に出力す
るのに適した溶料噴射信号に変換する出力インターフェ
ース回路60とから構成されている。
As shown in detail in FIG. 3, the digital electronic control circuit 38 is an analog circuit for converting analog signals output from the air flow meter 12 (including the intake air temperature sensor 18), the cooling water temperature sensor 16, and the battery 48 into digital signals. −
a digital converter 50; the distributor 14;
Throttle position sensor 22, starter switch 2
4. Ninth input interface circuit 5 that inputs digital signals of the II elementary concentration sensor 28 and vehicle speed sensor 32 outputs
2, a central processing circuit 54, a read-only memory 56, a random access memory 58, and an output interface circuit that converts the calculation results in the central processing circuit 54 into a solvent injection signal suitable for outputting to the injector 36. It consists of 60.

以下動作を説明する。まずデジタル電子制御回路38は
、エアフローメーター2出力の吸入空気量Qとディスト
リビュータ14出力から算出されるエンジン回転数Nに
より、次式を用いて、基本噴射時間’rpを算出する。
The operation will be explained below. First, the digital electronic control circuit 38 calculates the basic injection time 'rp using the following equation based on the intake air amount Q of the air flow meter 2 output and the engine rotation speed N calculated from the distributor 14 output.

T、=に一且・・・・・・・・・・・・・・・・・・・
・・・・・・・・(1)ここでKは係数である。
T、=に一且・・・・・・・・・・・・・・・・・・
(1) Here, K is a coefficient.

更に、各センナからの信号に応じて二次式を用いて前記
基本噴射時間TPヲ補正することにより、有効同期噴射
時間で1を算出する。
Furthermore, by correcting the basic injection time TP using a quadratic formula according to the signals from each sensor, 1 is calculated as the effective synchronous injection time.

TI = Tp−f(A/F) ・f(wt、) ・f
(TnA) ・(1+f(*sE)+f(u+v) +
f(oTp) ) (1−f(Rs ) )−=(2)
ここで、f(ψ)は空燃比補正係数、fCvn、)は暖
機増量補正係数、f(TEA)は吸入空気温補正係数、
f(ムaX)は始動後増量補正係数、f(AEW)は暖
機時加速増量補正係数、f(oTp)はオーバーと一ト
(出力)増量係数、Z(as)は減量係数である。
TI = Tp-f(A/F) ・f(wt,) ・f
(TnA) ・(1+f(*sE)+f(u+v) +
f(oTp) ) (1-f(Rs) )-=(2)
Here, f(ψ) is an air-fuel ratio correction coefficient, fCvn, ) is a warm-up increase correction coefficient, f(TEA) is an intake air temperature correction coefficient,
f(muaX) is an increase correction coefficient after startup, f(AEW) is an acceleration increase correction coefficient during warm-up, f(oTp) is an over and one (output) increase coefficient, and Z(as) is a reduction coefficient.

このようにして求められる有効同期噴射時間でIK1次
式に示す如く、バッテリ電圧が低下した際のインジェク
タ36の応答遅れ時間に対応する無効噴射時間γ7t−
加えることにより、同期・、噴射時間1Bを算出する。
With the effective synchronous injection time obtained in this way, as shown in the IK linear equation, the invalid injection time γ7t- corresponds to the response delay time of the injector 36 when the battery voltage decreases.
By adding, the synchronous injection time 1B is calculated.

78=7□+τ7・・・・・・・・・・・・・・・・・
・・・・・・・・・・(8)この同期噴射時間7sVc
対応する燃料噴射信号が、インジェクタ36に出力され
、エンジン回転と同期してインジェクタ36が同期噴射
時間−だけ開かれて、エンジンの吸気マニホルド34内
に燃料が噴射される。
78=7□+τ7・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(8) This synchronous injection time 7sVc
A corresponding fuel injection signal is output to the injector 36, and in synchronization with engine rotation, the injector 36 is opened for a synchronous injection time to inject fuel into the intake manifold 34 of the engine.

本実施例における空燃比フィートノくツク制御は次のよ
うにして行なわれる。即ち、第4図に示す如く、マス、
前記スロットルポジションセンサ22の出力に応じて、
絞り弁が全閉状態であるか否かが判定される。絞り弁が
全閉状態でない時には、通常時であると判定して、前記
基本噴射時間’rpf:前記酸素濃度センサ28の出力
に応じて、前出(2)式によりフィードバック補正する
ことによって、燃料噴射信号f:求める。一方、絞り弁
が全閉状態にある時には、前記冷却水温センサ16の出
力に応じて、エンジン冷却水温が70℃未満であるが否
かが判定される。エンジン冷却水@が7o℃以上である
時には、やはり、通常時であると判定して、前記基本噴
射t’rptl−前記酸素濃度センサ28の出力に応じ
てフィードバック補正する。一方、エンジン冷却水温が
70℃未満である場合には、更に1前記車速センサ32
の出力に応じて、車両の走行速度、即ち車速か10b/
h以上であるか否かが判定される。車速か10Km/h
未満である場合には、やはり、通常時であると判定して
、前記基本噴射時間Tpi前記酸素一度センサ28の出
力に応じてフィードバック補正する。一方、車速か10
に/h以上である時、即ち、絞り弁が全閉状態にあり、
エンジン冷却水温が70C未満であり、且つ、車両の走
行速度が101m/h以上である低温減速時には、前記
基本噴射時間TPに対して空燃比フィードバック補正を
行なうことなく燃料噴射信号會求める。従って、本実施
例における低温減速中及び減速後の再加速時における混
合気の9燃比は、第1図CB)に示す如くとなり、いず
れも、理論空欝比近傍となる。従って、再加速時におけ
る空燃比が、従来のように、空燃比フィードバック補正
の影響により、過度にリーン側となってしまうことがな
く、再加速時に良好な加速性能を得ることができる。
The air-fuel ratio foot check control in this embodiment is performed as follows. That is, as shown in FIG.
According to the output of the throttle position sensor 22,
It is determined whether the throttle valve is in a fully closed state. When the throttle valve is not in the fully closed state, it is determined that it is normal, and the basic injection time 'rpf: is adjusted according to the output of the oxygen concentration sensor 28 by feedback correction according to equation (2) above. Injection signal f: Find. On the other hand, when the throttle valve is in the fully closed state, it is determined whether the engine cooling water temperature is less than 70° C. according to the output of the cooling water temperature sensor 16. When the temperature of the engine coolant @ is 70° C. or higher, it is determined that it is normal, and feedback correction is performed according to the basic injection t'rptl - the output of the oxygen concentration sensor 28. On the other hand, if the engine cooling water temperature is less than 70°C, one more vehicle speed sensor 32
Depending on the output of the vehicle, the traveling speed of the vehicle, that is, the vehicle speed or
It is determined whether or not it is greater than or equal to h. Vehicle speed: 10km/h
If it is less than 100%, it is determined that it is normal, and the basic injection time Tpi is feedback corrected according to the output of the oxygen sensor 28. On the other hand, the vehicle speed is 10
/h or more, that is, the throttle valve is fully closed,
During low-temperature deceleration when the engine cooling water temperature is less than 70C and the vehicle running speed is 101 m/h or more, a fuel injection signal is obtained without performing air-fuel ratio feedback correction for the basic injection time TP. Therefore, the 9 fuel ratios of the air-fuel mixture during low-temperature deceleration and during re-acceleration after deceleration in this embodiment are as shown in FIG. Therefore, the air-fuel ratio at the time of re-acceleration does not become excessively lean due to the influence of air-fuel ratio feedback correction as in the conventional case, and good acceleration performance can be obtained at the time of re-acceleration.

尚、前記実施例は、本発明を、電子制御式燃料噴射装置
が配設された内燃機関に適用したものであるが、本発明
の適用範囲はこれに限定されず、気化器等を用いた内燃
機関にも同様に適用できることは明らかである。
In the above embodiment, the present invention is applied to an internal combustion engine equipped with an electronically controlled fuel injection device, but the scope of application of the present invention is not limited to this, and the present invention is applied to an internal combustion engine equipped with an electronically controlled fuel injection device. It is clear that the same applies to internal combustion engines.

以上説明したとおり、本発明によれば、低温減速中に混
合気の空燃比が過度にリーン側になってしまうことがな
く、従って、良好な再加速性能を得ることができるとい
う優れた効果を有する。
As explained above, according to the present invention, the air-fuel ratio of the air-fuel mixture does not become excessively lean during low-temperature deceleration, and therefore excellent re-acceleration performance can be obtained. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例及び本発明の実施例における低温減速
時及び再加速時の空燃比の変化状態を示す線図、第2図
は、本発明に係る内燃機関の空燃比制御方法が採用され
た空燃比制御装置の実施例である、電子制御式燃料噴射
装置が配設された内燃機関を示す、一部ブロック線図?
含む断面図、第3図は、前記電子制御式燃料噴射装置の
回路構成を示すブロック線図、第4図は、前記実施例に
おける空燃比フィードバックルーチンの一部を示す流れ
図である。 12°°・エア70−メータ、 14・パデイストリビュータ、 16・・・冷却水温センサ、 20す・絞り弁、22・
・・スロットルポジションセンサ、26・・・排気通路
、   28・・・酸素濃度センサ、32・・・車速セ
ンサ、  36・・・インジェクタ、38・・・デジタ
ル電子制御回路。 代理人 弁理士 高 矢   論 C11か1名) 第 f 図 リーン
FIG. 1 is a diagram showing how the air-fuel ratio changes during low-temperature deceleration and re-acceleration in the conventional example and the embodiment of the present invention, and FIG. 2 is a diagram showing how the air-fuel ratio control method for an internal combustion engine according to the present invention is adopted. A partial block diagram showing an internal combustion engine equipped with an electronically controlled fuel injection device, which is an embodiment of the air-fuel ratio control device.
FIG. 3 is a block diagram showing the circuit configuration of the electronically controlled fuel injection device, and FIG. 4 is a flowchart showing part of the air-fuel ratio feedback routine in the embodiment. 12°°・Air 70-meter, 14・Pad distributor, 16・Cooling water temperature sensor, 20・Throttle valve, 22・
... Throttle position sensor, 26... Exhaust passage, 28... Oxygen concentration sensor, 32... Vehicle speed sensor, 36... Injector, 38... Digital electronic control circuit. Agent Patent attorney Takaya Ron C11 or 1 person) Figure f Lean

Claims (1)

【特許請求の範囲】 (1)  排気ガス中の酸素濃度に応じて、混合気の空
燃比が理論空燃比近傍となるよう、混合気の空燃比をフ
ィードバック制御するようにした内燃機関の空燃比制御
方法において、エンジン冷却水温が所定値未満の減速時
は、前記フィードバック制御を停止するようにしたこと
を特徴とする内燃機関の空燃比制御方法。 (2)前記フィードバック制御が、絞り弁が全閉状態に
あり、エンジン冷却水温が所定値未満であり、且つ、車
両の走行速度が所定値以上である時に、停止するように
されている特許請求の範囲第1項に記載の内燃機関の空
燃比制御方法。 (8)エンジンの吸入空気量を検出する吸入空気量セン
サと、エンジン回転数を検出する回転数センサと、エン
ジン冷却水温を検出する冷却水温センナと、絞り弁が全
閉状態にあることを検出する絞り弁開度センサと、排気
ガス中の酸素濃度を検出する酸素濃度センサと、車両の
走行速度全検出する車速センサと、エンジン内に燃料を
噴射するインジェクタと、エンジンの吸入空気量とエン
ジン回転数に応じて基本の燃料噴射時間’tl出すると
共に、通常時は、前記酸素濃度センサ出力の排気ガス中
の酸素濃度に応じて前記燃料噴射時間をフィードバック
補正し、一方、絞り弁が全閉状態にあり、エンジン冷却
水温が所定値未満であり、且つ、車両の走行速度が所定
値以上である時は、前記燃料噴射時間°をフィードバッ
ク補正することなく、燃料噴射信号を前記インジェクタ
に出力する電子制御回路と、全備えたことe*徴とする
内燃機関の空燃比制御装置。
[Scope of Claims] (1) An air-fuel ratio of an internal combustion engine that performs feedback control of the air-fuel ratio of the air-fuel mixture so that the air-fuel ratio of the air-fuel mixture becomes close to the stoichiometric air-fuel ratio according to the oxygen concentration in exhaust gas. An air-fuel ratio control method for an internal combustion engine, characterized in that the feedback control is stopped during deceleration when the engine cooling water temperature is less than a predetermined value. (2) A patent claim in which the feedback control is stopped when the throttle valve is in a fully closed state, the engine cooling water temperature is less than a predetermined value, and the vehicle running speed is above a predetermined value. The air-fuel ratio control method for an internal combustion engine according to item 1. (8) An intake air amount sensor that detects the intake air amount of the engine, a rotation speed sensor that detects the engine speed, a coolant temperature sensor that detects the engine coolant temperature, and detects that the throttle valve is in the fully closed state. an oxygen concentration sensor that detects the oxygen concentration in exhaust gas; a vehicle speed sensor that detects the entire running speed of the vehicle; an injector that injects fuel into the engine; The basic fuel injection time 'tl is calculated according to the rotation speed, and under normal conditions, the fuel injection time is feedback-corrected according to the oxygen concentration in the exhaust gas output from the oxygen concentration sensor. When the valve is in the closed state, the engine cooling water temperature is less than a predetermined value, and the vehicle speed is greater than or equal to a predetermined value, a fuel injection signal is output to the injector without feedback correction of the fuel injection time. An air-fuel ratio control device for an internal combustion engine that is equipped with an electronic control circuit and all e* characteristics.
JP11689981A 1981-07-24 1981-07-24 Method and device for controlling air fuel ratio of internal combustion engine Pending JPS5828566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11689981A JPS5828566A (en) 1981-07-24 1981-07-24 Method and device for controlling air fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11689981A JPS5828566A (en) 1981-07-24 1981-07-24 Method and device for controlling air fuel ratio of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5828566A true JPS5828566A (en) 1983-02-19

Family

ID=14698389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11689981A Pending JPS5828566A (en) 1981-07-24 1981-07-24 Method and device for controlling air fuel ratio of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101643A (en) * 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Air-fuel ratio controlling apparatus
JPS61244848A (en) * 1985-04-22 1986-10-31 Nissan Motor Co Ltd Air-fuel ratio controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101643A (en) * 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Air-fuel ratio controlling apparatus
JPS61244848A (en) * 1985-04-22 1986-10-31 Nissan Motor Co Ltd Air-fuel ratio controller
JPH0461180B2 (en) * 1985-04-22 1992-09-30 Nissan Motor

Similar Documents

Publication Publication Date Title
JPH0286936A (en) Air-fuel ratio feedback control method for internal combustion engine
JPH0670388B2 (en) Air-fuel ratio controller
JPS58220934A (en) Control method for supply of fuel at accelerating time of internal-combustion engine
JPS62147033A (en) Air-fuel ratio control device for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS61118538A (en) Air-fuel ratio control of internal-combustion engine
JPS5828566A (en) Method and device for controlling air fuel ratio of internal combustion engine
JPS5828537A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS5828552A (en) Method and device for electronically controlled fuel injection to internal combustion engine
JPH0251057B2 (en)
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6187935A (en) Air-fuel ratio controller for internal-combution engine
JPS5828553A (en) Method and device for electronically controlled fuel injection to internal combustion engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS5823967Y2 (en) Air-fuel ratio correction control device for internal combustion engines
JPS5828538A (en) Electronically controlled fuel injection process in internal-combustion engine and equipment
JPS5828543A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS5828539A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS5828535A (en) Electronically controlled fuel injection process and equipment in internal combution engine
JPH0531647B2 (en)
JPS6116243A (en) Air-fuel ratio learning value controlling method of internal-combustion engine
JPS60111038A (en) Air-fuel ratio control method of internal-combustion engine
JPS5825543A (en) Air-to-fuel ratio control method for internal combustion engine