JPS6116243A - Air-fuel ratio learning value controlling method of internal-combustion engine - Google Patents

Air-fuel ratio learning value controlling method of internal-combustion engine

Info

Publication number
JPS6116243A
JPS6116243A JP13668184A JP13668184A JPS6116243A JP S6116243 A JPS6116243 A JP S6116243A JP 13668184 A JP13668184 A JP 13668184A JP 13668184 A JP13668184 A JP 13668184A JP S6116243 A JPS6116243 A JP S6116243A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
learning
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13668184A
Other languages
Japanese (ja)
Other versions
JPH0680297B2 (en
Inventor
Hisao Iyoda
久雄 伊予田
Toshiaki Isobe
磯部 敏明
Hidehiro Oba
秀洋 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59136681A priority Critical patent/JPH0680297B2/en
Publication of JPS6116243A publication Critical patent/JPS6116243A/en
Publication of JPH0680297B2 publication Critical patent/JPH0680297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To keep off a worthening of stability in an engine speed, by stopping the increase or decrease in a learning value when such a state that the engine speed is below the specified value still continues for the specified period long, while also stopping feedback control over an air-fuel ratio when this state further continues for the specified period. CONSTITUTION:During engine operation, fundamental fuel injection time is calculated on the basis of each output out of a suction pipe pressure sensor 10 and an engine speed sensor 28 at a control circuit 30. And, the fundamental fuel injection time is compensated on the basis of an air-fuel ratio feedback compensation factor to be determined according to the output of an oxygen sensor 34 and a learning value to be varied in time of idling so as to cause a mean value of this compensation factor to become a value within the specified range. At this time, when such a state that an engine speed is below the specified value still continues for the specified period, the increase and decrease of the learning value are stopped. And, when this state furthermore continues for the specified period long, compensation control (air-fuel ratio control) is made so as to be stopped as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の空燃比学習制御方法に係シ、特に、
機関負荷と機関回転数とによって定まる基本燃料噴射時
間、Otセセンの出力信号に基づいて得られる空燃比フ
ィードバック補正係数、空燃比フィードバック補正係数
の平均値が所定範囲内の値になるようにアイドリング時
に増減される学習値に基づいて空燃比をフィードバック
制御するアイドリング時の内燃機関の空燃比学習制御方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air-fuel ratio learning control method for an internal combustion engine, and in particular,
During idling, the basic fuel injection time determined by the engine load and engine speed, the air-fuel ratio feedback correction coefficient obtained based on the output signal of the engine, and the average value of the air-fuel ratio feedback correction coefficient are within a predetermined range. The present invention relates to an air-fuel ratio learning control method for an internal combustion engine during idling, which performs feedback control of the air-fuel ratio based on a learning value that is increased or decreased.

〔従来の技術〕[Conventional technology]

従来よシ、排ガス中の一酸化炭素、炭化水素および窒素
酸化物を同時に浄化するために三元触媒が用いられてお
シ、この三元触媒の浄化率を良好にするためO,センサ
によシ排ガス中の残留酸素濃度を検出して空燃比を推定
し、空燃比を理論空燃比近傍に制御するフィードバック
制御が行なわれている。このフィードバック制御を行な
うにあたっては、機関負荷(吸気管圧力PMまたは機関
1回転当りの吸入空気量Q/Ml)と機関回転数とKよ
って定まる基本燃料噴射時間TPに、0.センサから出
力されかつ信号処理された空燃比信号に基づいて燃料噴
射時間を比例積分動作させるための第2図に示す空燃比
フィードバック補正係数FAF を乗算して燃料噴射時
間T、AUを求め、この燃料噴射時間TAUに相当する
時間燃料噴射弁を開弁することにより空燃比を理論空燃
比近傍に制御している。しかし、環境変化や経時変化等
により、タペットフライアンスの変化によるパルプタイ
ミングの変化、圧力センサやエアフ′ローメータの特性
変化、燃料噴射弁の特性変化が生じ、燃料噴射量をエン
ジンの要求燃料噴射量に制御できなくなって空燃比を理
論空燃比近傍に制御できないことがある。このため、空
燃比学習制御を行ない、空燃比が常に理論空燃比近傍に
なるよ、うに制御することが行なわれている。この学習
制御は、4次式に示すように所定条件で学習される学習
値TAUG、KGを用いて空燃比フィードバック補正係
数の平均値FAFAVが所定値になるように制御するも
のである。
Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas. Feedback control is performed to detect the residual oxygen concentration in the exhaust gas, estimate the air-fuel ratio, and control the air-fuel ratio to near the stoichiometric air-fuel ratio. In performing this feedback control, 0. Based on the air-fuel ratio signal output from the sensor and subjected to signal processing, the fuel injection time T and AU are determined by multiplying by the air-fuel ratio feedback correction coefficient FAF shown in FIG. The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by opening the fuel injection valve for a time corresponding to the fuel injection time TAU. However, due to environmental changes and changes over time, changes occur in the pulp timing due to changes in the tappet flance, changes in the characteristics of the pressure sensor and air flow meter, and changes in the characteristics of the fuel injection valve. The air-fuel ratio may not be able to be controlled close to the stoichiometric air-fuel ratio. For this reason, air-fuel ratio learning control is performed so that the air-fuel ratio is always near the stoichiometric air-fuel ratio. This learning control uses learning values TAUG and KG learned under predetermined conditions as shown in a quartic equation to control the average value FAFAV of the air-fuel ratio feedback correction coefficient to a predetermined value.

TAU=(TP+ TAUG ) −KG 、 FAF
 @F(t)−=−・(1まただし、TAUGは吸気絞
り弁(スロットル弁)がアイドル位置での学習値、KG
は吸気絞り弁がアイドル位置にないときでの学習値、F
(1)は暖機増量i数や始動時増量係数等の補正係数で
ある。
TAU=(TP+TAUG)-KG,FAF
@F(t)-=-・(1) However, TAUG is the learned value when the intake throttle valve (throttle valve) is in the idle position, KG
is the learned value when the intake throttle valve is not in the idle position, F
(1) is a correction coefficient such as the warm-up increase i number and the start-up increase coefficient.

また、学習値KGは機関負荷によって定められており、
例えば、吸気管圧力が200〜300+nHJ+のとき
KG、、300〜400tmHIのときKG、、400
〜500隨HjlのときKGsが採用される。
In addition, the learning value KG is determined by the engine load,
For example, when the intake pipe pressure is 200-300+nHJ+, KG, when the intake pipe pressure is 300-400tmHI, KG, 400
KGs is adopted when ~500 Hjl.

これらの学習値TAUG、KG(KG、、KG、、KG
、)は、空燃比フィードバック制御中でかつ機関冷却水
温が所定値(例えば、80℃)を越えるとき補正係数F
AFが所定回スキップする毎に次の方法によって学習さ
れる。まず、空燃比フィードバック補正係数FAFが所
定回スキップする毎に補正係数FA、Fの最大最小値の
相加平均値FAFAV、す々わち、FAFAv=A十B
  一旦二FC、C+D、、、−0(212ゝ   2
  ゝ   2X を求め、平均値FAFAVの値が所定範囲(例えば、理
論空燃比の値に対して±2%の範囲)外の値になったと
き学習によって学習値TAUG、KGを所定値増減する
。すなわち、平均値FAFAVが1.02を越えたとき
に学習値TAUG、KGを所定値増加させ、平均値FA
FAVが0.98未満になったときに学習値TAUGX
KGを所定値減少させる。
These learning values TAUG, KG (KG, , KG, , KG
, ) is the correction coefficient F when the engine cooling water temperature exceeds a predetermined value (for example, 80°C) during air-fuel ratio feedback control.
Each time AF skips a predetermined number of times, learning is performed by the following method. First, every time the air-fuel ratio feedback correction coefficient FAF skips a predetermined number of times, the arithmetic average value FAFAV of the maximum and minimum values of the correction coefficient FA and F is calculated, that is, FAFAv=A0B.
Once 2 FC, C + D,, -0 (212ゝ 2
2X is determined, and when the value of the average value FAFAV becomes a value outside a predetermined range (for example, a range of ±2% with respect to the value of the stoichiometric air-fuel ratio), the learned values TAUG and KG are increased or decreased by a predetermined value by learning. That is, when the average value FAFAV exceeds 1.02, the learned values TAUG and KG are increased by a predetermined value, and the average value FAAV is increased by a predetermined value.
Learning value TAUGX when FAV becomes less than 0.98
Decrease KG by a predetermined value.

そして、上記のように学習された学習値TAUG、KG
は、吸気絞り弁の開閉状態および吸気管圧力(または機
関1回転当りの吸入空気量)の大きさに応じて上記(1
)式に適用され、燃料噴射時間TAUが求められる。こ
の結果、平均値F A F AVが1.02を越えると
きには学習値が大きくされて空燃比がリッチ側に制御さ
れ、平均値FAFAVが0.98未満のときには学習値
が小さくされて空燃比がリーン側に制御され、平均値F
AFAVが1すなわち理論空燃′比に近づくよう学習制
御される。
Then, the learned values TAUG, KG learned as above
is determined by the above (1
) is applied to determine the fuel injection time TAU. As a result, when the average value FAFAV exceeds 1.02, the learned value is increased and the air-fuel ratio is controlled to the rich side, and when the average value FAFAV is less than 0.98, the learned value is decreased and the air-fuel ratio is controlled to the rich side. Controlled to lean side, average value F
Learning control is performed so that AFAV approaches 1, that is, the stoichiometric air-fuel ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、かかる従来の空燃比制御方法においては
、0.センサが低温雰囲気中にさらさせると不活性化し
0.センサの内部抵抗が増加してO!セセンから出力さ
れる電圧が徐々に低下してしまうため、0.センサ出力
より得られる空燃比信号の反転時期が理論空燃比に対応
する時期から徐々にずれてしまう。このずれ量は、0.
センサが低温雰囲気中にさらされている時間が長くなる
ほど大きくなる。従来の空燃比制御方法では、このよう
な状態においても学習が行なわれるため、学習値がずれ
ることによシ空燃比が理論空燃比に制御できなくなり、
アイドル回転の安定性、アイドル時のエミッションが悪
化する、という問題があった。
However, in such conventional air-fuel ratio control methods, 0. When the sensor is exposed to a low temperature atmosphere, it becomes inactive and 0. The internal resistance of the sensor increases and O! Since the voltage output from the sensor gradually decreases, 0. The inversion timing of the air-fuel ratio signal obtained from the sensor output gradually deviates from the timing corresponding to the stoichiometric air-fuel ratio. This amount of deviation is 0.
The longer the sensor is exposed to the low-temperature atmosphere, the larger it becomes. In conventional air-fuel ratio control methods, learning is performed even in such conditions, so if the learned value deviates, the air-fuel ratio cannot be controlled to the stoichiometric air-fuel ratio.
There were problems with the stability of idle rotation and worsening of emissions during idle.

また、上記の状態が長時間継続すると、空燃比フィード
−・ツク補正係数が理論空燃比に対応する値からずれフ
ィードバック制御によっても空燃比が′理論空燃比に制
御できなくなり、アイドル回転の安定性、アイドル時の
エミッションが悪化する、という問題があった。
In addition, if the above condition continues for a long time, the air-fuel ratio feed correction coefficient will deviate from the value corresponding to the stoichiometric air-fuel ratio, and the air-fuel ratio will no longer be able to be controlled to the stoichiometric air-fuel ratio even with feedback control, resulting in poor idle rotation stability. , there was a problem in that the emissions at idle worsened.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために成されたもので、
機関負荷と機関回転数とによって定まる基本燃料噴射時
間と、排ガス中の残留酸素濃度を検出する0、センナの
出力信号に基づいて得られる空燃比フィードバック補正
係数と、前記空燃比フィードバック補正係数の平均値が
所定範囲内の値になるようにアイドリング時に値が増減
される学習値とに基づいて空燃比をフィードバック制御
する内燃機関の空燃比学習制御方法において、機関回転
数が所定値以下の状態が所定期間継続したとき前記学習
値の増減を停止し、前記機関回転数が所定値以下の状態
が更に所定期間継続したとき前記空燃比のフィードバッ
ク制御を停止したととを特徴とする。
The present invention has been made to solve the above problems,
The basic fuel injection time determined by the engine load and engine speed, the air-fuel ratio feedback correction coefficient obtained based on the output signal of the zero sensor that detects the residual oxygen concentration in the exhaust gas, and the average of the air-fuel ratio feedback correction coefficients. In an air-fuel ratio learning control method for an internal combustion engine in which the air-fuel ratio is feedback-controlled based on a learned value that is increased or decreased during idling so that the value is within a predetermined range, a state in which the engine speed is below a predetermined value is detected. The invention is characterized in that the increase/decrease of the learned value is stopped when the learned value continues for a predetermined period of time, and the feedback control of the air-fuel ratio is stopped when the engine speed remains below the predetermined value for a further predetermined period.

〔作用〕[Effect]

本発明によれば、機関回転数が所定値以下の状態が所定
期間継続したとき、すなわち低温の排ガス中に0.セン
サが所定期間さらされたときには、学習値の増減が停止
され、増減が停止されたときの一定の学習値と、基本燃
料噴射時間と、空燃比フィードバック補正係数とに基づ
いて空燃比がフィードバック制御される。また、機関回
転数が所定値以下の状態が更に所定期間継続したときに
は、低温の排ガス中に0.センサが長期間さらされたと
判断されてフィードバック制御を中止し、フィードフォ
ワード制御により所定量の燃料が噴射される。
According to the present invention, when the engine speed remains below a predetermined value for a predetermined period of time, that is, when the engine speed remains below a predetermined value, zero. When the sensor is exposed for a predetermined period of time, the increase or decrease of the learning value is stopped, and the air-fuel ratio is feedback-controlled based on the constant learning value when the increase or decrease is stopped, the basic fuel injection time, and the air-fuel ratio feedback correction coefficient. be done. In addition, when the engine speed remains below a predetermined value for a further predetermined period, 0. When it is determined that the sensor has been exposed for a long period of time, feedback control is stopped, and a predetermined amount of fuel is injected using feedforward control.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、Otセセンが低温排ガス中に
さらされた初期の状態では学習を中止し、0、センサが
低温排ガス中に長期間さらされた状態ではフィードバッ
ク制御を中止し、0.センサの環境に対する特性の影響
でアイドリング時の機関回転数の安定性の悪化、アイド
リング時のエミッションの悪化を防止することができる
、という効果が得られる。
Therefore, according to the present invention, learning is stopped in the initial state where the sensor is exposed to low temperature exhaust gas, feedback control is stopped in the state where the sensor is exposed to low temperature exhaust gas for a long period of time, and 0. This provides the effect of preventing deterioration of the stability of the engine speed during idling and deterioration of emissions during idling due to the influence of the sensor's environmental characteristics.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例が適用される空燃比制御装置
を備えた内燃機関(エンジン)の概略図である。
FIG. 3 is a schematic diagram of an internal combustion engine equipped with an air-fuel ratio control device to which an embodiment of the present invention is applied.

エアクリーナ(図示せず)の下流側には吸入空気の温度
を検出して吸気温信号を出力する吸気温センサ2が取付
けられている。吸気温センサの下流側にはスロットル弁
4が配置され、このスロットル弁4に連動しかつスロッ
トル弁全閉時にオンとなりかつスロットル弁が開いたと
きにオフとなるアイドルスイッチ6が取付けられている
。スロットル弁4の下流側には、サージタンク8が設け
られ、このサージタンク8にスロットル弁下流側の吸気
管圧力を検出して吸気管圧力信号を出力する圧力センサ
10が取付けられている。サージタンク8は、インテー
クマニホールド12を介してエンジンの燃焼室14に連
通されている。このインテークマニホールド12には、
燃料噴射弁16が各気筒毎に取付けられている。エンジ
ンの燃焼室14はエキゾーストマニホールドを介して三
元触媒を充填した触媒コンバータ(図示せず)に連通さ
れている。また、エンジンブロックには、エンジンの冷
却水温を検出して水温信号を出力する水温センサ20が
取付けられている。エンジンの燃焼室14には、点火プ
ラグ22の先端が突出され、点火プラグ22にはディス
トリビュータ24が接続されている。ディストリビュー
タ24には、ディストリビュータハウジングに固定され
たピックアップとディストリビュータシャフトに固定さ
れたシグナルロータとで各々構成された気筒判別センサ
26およびエンジン回転数センサ28が設けられている
。気筒判別センサ26は例えば720゜CA毎に気筒判
別信号をマイクロコンピュータ等で構成された制御回路
30へ出力し、エンジン回信号を制御回路30へ出力す
る。そして、ディストリビュータ24はイグナイタ32
に接続されている。なお、34は排ガス中の残留酸度を
検出して第2図に示す空燃比信号を出力するO、センサ
である。
An intake temperature sensor 2 is installed downstream of an air cleaner (not shown) to detect the temperature of intake air and output an intake temperature signal. A throttle valve 4 is arranged downstream of the intake air temperature sensor, and an idle switch 6 is attached which is connected to the throttle valve 4 and turns on when the throttle valve is fully closed and turns off when the throttle valve opens. A surge tank 8 is provided downstream of the throttle valve 4, and a pressure sensor 10 is attached to the surge tank 8 to detect the intake pipe pressure downstream of the throttle valve and output an intake pipe pressure signal. The surge tank 8 is communicated with a combustion chamber 14 of the engine via an intake manifold 12. This intake manifold 12 has
A fuel injection valve 16 is attached to each cylinder. The combustion chamber 14 of the engine is communicated via an exhaust manifold with a catalytic converter (not shown) filled with a three-way catalyst. Further, a water temperature sensor 20 is attached to the engine block to detect the engine cooling water temperature and output a water temperature signal. A tip of a spark plug 22 projects into the combustion chamber 14 of the engine, and a distributor 24 is connected to the spark plug 22. The distributor 24 is provided with a cylinder discrimination sensor 26 and an engine rotation speed sensor 28, each of which includes a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft. The cylinder discrimination sensor 26 outputs a cylinder discrimination signal to a control circuit 30 constituted by a microcomputer or the like every 720° CA, for example, and outputs an engine speed signal to the control circuit 30. And the distributor 24 is an igniter 32
It is connected to the. Note that 34 is an O sensor that detects the residual acidity in the exhaust gas and outputs an air-fuel ratio signal shown in FIG.

制御回路30は第4図に示すように、中央処理装置(C
PU)36、リードオンリメモリ(ROM)38、ラン
ダムアクセスメモリ(RAM)40、バックアップラム
(BU  RAM)42、入出力ポート(■10)44
、アナログディジタル変換器(ADC)46およびこれ
らを接続するデータバスやコントロールバス等のバスヲ
含んで構成されている。工1044には、気筒判別信号
、クランク角信号、空燃比信号、アイドルスイッチ6か
ら出力・されるスロットル信号が入力されると共に、駆
動回路を介して燃料噴射弁16の開閉時間を制御する燃
料噴射信号およびイグナイタ32のオンオフ時間を制御
する点火信号が出力される。また、ADC46には、吸
気管圧力信号、吸気温信号および水温信号が入力されて
ディジタル信号に変換される。上記のROM33には、
以下の処理′ルーチンで説明する制御プログラム等が予
め記憶されている。
As shown in FIG. 4, the control circuit 30 includes a central processing unit (C
PU) 36, read only memory (ROM) 38, random access memory (RAM) 40, backup RAM (BU RAM) 42, input/output port (■10) 44
, an analog/digital converter (ADC) 46, and buses such as a data bus and a control bus that connect these. A cylinder discrimination signal, a crank angle signal, an air-fuel ratio signal, and a throttle signal output from the idle switch 6 are input to the engine 1044, and a fuel injection controller 1044 controls the opening/closing time of the fuel injection valve 16 via a drive circuit. A signal and an ignition signal that controls the on/off time of the igniter 32 are output. Further, an intake pipe pressure signal, an intake air temperature signal, and a water temperature signal are input to the ADC 46 and converted into digital signals. In the above ROM33,
Control programs and the like, which will be explained in the following processing routine, are stored in advance.

本実施例においては、以下の(3)式に従って燃料噴射
時間TAυが演算される。
In this embodiment, the fuel injection time TAυ is calculated according to the following equation (3).

TAU=(TP+TAUG) 、 (1+KGn) @
?WL @、FAF・FTHA・(1−1−FT(1)
+τ7・・・・・°・・・・(3)ただし、TPは吸気
管圧力とエンジン回転数とで定まる基本燃料噴射時間、
TAUGはアイドリング時で、o学習値、KGn(n=
1+  2+ ”” )は例えば第1表に示すように複
数に分割された吸気管圧力の領域に応じて定められたオ
フアイドルでの学習値、FWLは暖機補正係数、FAF
は第2図に示す空燃比フィードバック補正係数、FTH
Aけ吸気温補正係数、FTCは過渡時補正係数、τVは
電圧補償のための無効噴射時間である。
TAU=(TP+TAUG), (1+KGn) @
? WL @, FAF・FTHA・(1-1-FT(1)
+τ7...°...(3) However, TP is the basic fuel injection time determined by the intake pipe pressure and engine speed;
TAUG is the o learning value, KGn (n=
1+ 2+ "") is the off-idle learning value determined according to the intake pipe pressure region divided into multiple regions as shown in Table 1, FWL is the warm-up correction coefficient, FAF
is the air-fuel ratio feedback correction coefficient shown in Fig. 2, FTH
A is an intake air temperature correction coefficient, FTC is a transient correction coefficient, and τV is an invalid injection time for voltage compensation.

第  1  表 吸気管圧力P M    −K G n100mH#≦
PM (200mHI   KGI200順H1≦PM
(300關HJI   KG。
Table 1 Intake pipe pressure P M -K G n100mH #≦
PM (200mHI KGI200 order H1≦PM
(300km HJI KG.

300闘HJI≦PM(400關Hp   K()。300 HJI≦PM (400 Hp K().

400 mad’≦PM(500龍Hjl   KG。400 mad'≦PM (500 Dragon Hjl KG.

500 mHI≦PM (600mHj   KG。500mHI≦PM (600mHj KG.

なお、上記の過渡時補正係数FTCは、加速時には正の
所定値とされ、減速時には負の所定値とされ、そして定
常状態では0とされる。
The above-mentioned transient correction coefficient FTC is set to a positive predetermined value during acceleration, a negative predetermined value during deceleration, and 0 in a steady state.

上記の学習値TAUG、KGn は以下で説明する第5
図の学習ルーチンによって学習され、学習値TAUGは
全運転領域において上記(3)式に適用され、KGnは
学習された領域において上記(3)式に適用される。た
だし、KG、はPM(100譚HJIの領域においても
上記(3)式に適用され、KGllFiPM≧600酊
Hjの領域においても(3)式に適用される。
The above learning values TAUG and KGn are the fifth values explained below.
Learned by the learning routine shown in the figure, the learned value TAUG is applied to the above equation (3) in all operating regions, and KGn is applied to the above equation (3) in the learned region. However, KG is also applied to the above equation (3) in the region of PM (100 Tan HJI), and is also applied to the equation (3) in the region of KGllFiPM≧600HJI.

次に第1図を参照して本実施例のメインルーチンについ
て説明する。まず、ステップ80においてスロットル信
号に基づいてアイドルスイッチがオンか否かを判断し、
アイドルスイッチがオフと判断されたときにはステップ
90で空燃比フィードバック補正係数FAFのスキップ
回数のカウント値5KIPを0としてステップ91で学
習処理を実行する。
Next, the main routine of this embodiment will be explained with reference to FIG. First, in step 80, it is determined whether the idle switch is on based on the throttle signal,
When it is determined that the idle switch is off, the count value 5KIP of the number of skips of the air-fuel ratio feedback correction coefficient FAF is set to 0 in step 90, and a learning process is executed in step 91.

一方、アイドルスイッチオンと判断されたときには、ス
テップ81においてエンジン回転?NBが、0.センサ
が不活性になる排ガス温に相当する所定回転数(例えば
、1ooorpm)以下か否かを判断し、エンジン回転
数Ngが所定回転数を越えていればステップ90および
ステップ91を実行し、エンジン回転数NEiが所定回
転数以下であればステップ82で空燃比フィードバック
補正係数FAT がスキップしたか否かを判断する。そ
して、この補正係数FAFがスキップしたと判断された
ときは、ステップ83でカウント値5KIPを1インク
リメントする。次のステップ84では、カウント値5K
IPが所定値A(0,センサの環境特性が学習値に影響
する程度の値)を越えているか否かを判断し、カウント
値5KIPが所定値A以下であればステップ91で学習
処理を実行し、カウント値5KIPが所定値Aを越えて
いれば学習処理を実行することなくステップ85へ進む
On the other hand, when it is determined that the idle switch is on, step 81 determines whether the engine is rotating? NB is 0. It is determined whether the engine rotation speed Ng is below a predetermined rotation speed (for example, 1ooorpm) corresponding to the exhaust gas temperature at which the sensor becomes inactive, and if the engine rotation speed Ng exceeds the predetermined rotation speed, steps 90 and 91 are executed, and the engine If the rotational speed NEi is below the predetermined rotational speed, it is determined in step 82 whether or not the air-fuel ratio feedback correction coefficient FAT has been skipped. When it is determined that the correction coefficient FAF has been skipped, the count value 5KIP is incremented by one in step 83. In the next step 84, the count value 5K
It is determined whether the IP exceeds a predetermined value A (0, a value to which the environmental characteristics of the sensor affect the learned value), and if the count value 5KIP is less than the predetermined value A, the learning process is executed in step 91. However, if the count value 5KIP exceeds the predetermined value A, the process proceeds to step 85 without executing the learning process.

ステップ85では、カウント値5KIPが所定値Aより
大きい所定値B(Otセセンの環境特性がフィードバッ
ク制御に影響する程度の値)以下か否かを判断し、カウ
ント値5KIPが所定値B以下であればステップ86で
Otセセン出力より得られる空燃比信号に基づいて空燃
比フィードバック補正係数FAFを計算し、一方カウン
ト値5KIPが所定値Bを越えていればステップ89に
おいて空燃比フィードバック補正係数FAFを一定値(
例えば、0.98〜1.02の範囲内の一定値)にして
シイ−ドパツク制御が行なわれないようにしてステップ
87へ進む。そして、ステップ87において−・2〜回
転数Nmと吸気管圧力P’MMIJに基づいて基本燃料
噴射時間T P (T P == k 、 g71F’
、ただし、kは定数)を演算し、ステップ88で上記(
3)式に基づいて燃料噴射時間TAUを演算し、図示し
ないステップにおいて燃料噴射時間TAUに相当する燃
料が噴射されるように燃料噴射弁を制御する。
In step 85, it is determined whether or not the count value 5KIP is less than or equal to a predetermined value B that is larger than the predetermined value A (a value to which the environmental characteristics of the sensor affect feedback control). For example, in step 86, the air-fuel ratio feedback correction coefficient FAF is calculated based on the air-fuel ratio signal obtained from the Otsen output, and if the count value 5KIP exceeds the predetermined value B, the air-fuel ratio feedback correction coefficient FAF is kept constant in step 89. value(
For example, a constant value within the range of 0.98 to 1.02) is set so that the seed pack control is not performed, and the process proceeds to step 87. Then, in step 87, the basic fuel injection time T P (T P == k , g71F'
, where k is a constant), and in step 88 the above (
3) The fuel injection time TAU is calculated based on the formula, and the fuel injection valve is controlled in a step not shown so that fuel corresponding to the fuel injection time TAU is injected.

以上の結果、アイドルスイッチオンのとき、アイドルス
イッチオンでエンジン回転数が所定回転数を越えるとき
、アイドルスイッチオンでエンジン回転数が所定回転数
以下かつ空燃比フィートノ(ツク補正係数がA回スキツ
、プするまでは学習値が学習されると共に空燃比フィー
トノくツク制御が行なわれる。また、アイドルスイッチ
オン、エンジン回転数が所定回転数以下かつ空燃比フィ
ード・(ツク補正係数がA回スキップした後は学習が禁
止されて空燃比フィードバック制御のみが行がわれ、そ
の後空燃比フィードバック補正係数がB、−A回スキッ
プした後は学習の禁止に加え、空燃比フィードバック制
御が禁止される。また、上記のように制御したときの学
習禁止領域と空燃比フィードバック禁止領域とを第7図
に示す。
As a result of the above, when the idle switch is on, when the engine speed exceeds the predetermined speed with the idle switch on, when the engine speed is below the predetermined speed with the idle switch on and the air-fuel ratio is The learning value is learned and the air-fuel ratio foot check control is performed until the air-fuel ratio feed is skipped A number of times. Learning is prohibited and only air-fuel ratio feedback control is performed, and after the air-fuel ratio feedback correction coefficient has skipped B and -A times, learning is prohibited and air-fuel ratio feedback control is also prohibited. FIG. 7 shows the learning prohibited area and air-fuel ratio feedback prohibited area when controlled as follows.

次に第1図のステップ91の詳細を第5図および第6図
に示す。まず、ステップ100においてアイドルスイッ
チがオフか否かを判断する。アイドルスイッチがオフの
ときは、ステップ101において吸気管圧力PMが10
On+H#から600藤Hg  の範囲に入っているか
、すなわち吸気管圧力PMが学習領域内に入っているか
を判断する。この吸気管圧力の範囲は定状走行状態での
吸気管圧力を示している。吸気管圧力PMが学習領域内
に入っているときはステップ103以下の学習条件を判
断して学習値の学習を行ない、吸気管圧力PMが学習領
域内に入っていないときは学習することなくそのま1次
のルアーチンへ進む。一方、アイドルスイッチがオンの
ときはステップ102においてエンジン回転数Nεが所
定値(例えば、101000rp未満でかつ吸気管圧力
PMが所定値(例えば、1oomHII)を越えている
か否かを判断する。
Next, details of step 91 in FIG. 1 are shown in FIGS. 5 and 6. First, in step 100, it is determined whether the idle switch is off. When the idle switch is off, the intake pipe pressure PM is set to 10 in step 101.
It is determined whether the intake pipe pressure PM is within the range from On+H# to 600 Fuji Hg, that is, whether the intake pipe pressure PM is within the learning range. This intake pipe pressure range indicates the intake pipe pressure under steady running conditions. When the intake pipe pressure PM is within the learning range, the learning conditions from step 103 onwards are judged and the learning value is learned; when the intake pipe pressure PM is not within the learning range, the learning value is learned without learning. Proceed to the first Luachin. On the other hand, when the idle switch is on, it is determined in step 102 whether the engine speed Nε is less than a predetermined value (for example, 101,000 rpm) and the intake pipe pressure PM exceeds a predetermined value (for example, 1oomHII).

ステップ102の判断が肯定の場合、すなわち通常のア
イドリングの場合はステップ103以下の学習条件を判
断して学習値の学習を行ない、ステップ102の判断が
否定の場合、すなわちクランキング時やアイドルアップ
時等の場合は学習することなく次のルーチンへ進む。
If the judgment in step 102 is affirmative, that is, in the case of normal idling, the learning conditions from step 103 onwards are judged and the learning value is learned, and if the judgment in step 102 is negative, that is, in the case of cranking or idle up. etc., proceed to the next routine without learning.

ステップ】03では0.センサの出力信号に基づいて空
燃比が理論空燃比になるようにフィードバック制御をし
ているか否かを判断する。フィードバック制御中でない
場合、例えばリーン制御を行なっている場合は、異常学
習が行なわれることがあるため学習するととなく次のル
ーチンへ進み、フィードバック制御中のときはステップ
104でエンジン冷却水温TRYが所定値(例えば、8
0℃)を越えているか否かを判断する。冷却水温THW
が所定値以下のときにはエンジン暖機中であるため学習
を行なわず、冷却水温THWが所定値を越えるときはス
テップ105で吸気温センサによって検出される吸気温
THAが所定範囲内(例えば40℃<THA〈90℃)
の温度であるか否かを判断する。吸気温THAが所定範
囲外の温度のときすなわち極低温時および高温時には学
習を行なわず、吸気温THAが所定範囲内の温度のとき
ステップ106で空燃比フィードバック補正係数FAF
がスキップしたか否かを判断し、スキップしたときのみ
ステップ107学習値の学習を行なう。
Step】03 is 0. Based on the output signal of the sensor, it is determined whether feedback control is being performed so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. If feedback control is not being performed, for example if lean control is being performed, abnormal learning may occur, so the process immediately proceeds to the next routine. If feedback control is being performed, the engine coolant temperature TRY is set to a predetermined value in step 104. value (e.g. 8
0°C). Cooling water temperature THW
When is below a predetermined value, learning is not performed because the engine is warming up, and when the coolant temperature THW exceeds a predetermined value, step 105 determines that the intake air temperature THA detected by the intake air temperature sensor is within a predetermined range (for example, 40°C< THA (90℃)
Determine whether the temperature is at or below. Learning is not performed when the intake air temperature THA is outside the predetermined range, that is, at extremely low temperatures or high temperatures, and when the intake air temperature THA is within the predetermined range, the air-fuel ratio feedback correction coefficient FAF is determined in step 106.
It is determined whether or not it has been skipped, and only when it has been skipped, the learning value is learned in step 107.

上記ステップ107の学習値計算の一例を第6図に基づ
いて説明する。なお、第6図では主としてアイドルスイ
ッチオン時に行なわれる学習値TAUGの学習について
示した。まず、ステップ110において空燃比フィード
バック補正係数FATが所定値(Aより小さい値)スキ
ップしたか否かを判断し、所定回スキップした場合はス
テップ111で上記第(2)式に基づいて空燃比フィー
ドバック補正係数の平均値FAFAVを計算する。
An example of the learning value calculation in step 107 will be explained based on FIG. 6. Note that FIG. 6 mainly shows learning of the learning value TAUG that is performed when the idle switch is turned on. First, in step 110, it is determined whether or not the air-fuel ratio feedback correction coefficient FAT has skipped a predetermined value (a value smaller than A). If the air-fuel ratio feedback correction coefficient FAT has skipped a predetermined number of times, in step 111, the air-fuel ratio is feedback based on the above equation (2). Calculate the average value FAFAV of the correction coefficients.

次のステップ112ではアイドルスイッチがオンか否か
を判断し、アイドルスイッチがオフならばステップ11
5において学習値KGnの学習を実行する。一方、アイ
ドルスイッチがオンならばステップ113およびステッ
プ1 ’1 ’4において空燃比フィードバック補正係
数FAFの平均値FATAVが所定範囲(例、えば、1
.02≦FAFAV≧0.98)内の値か否かを判定し
、平均値FAFAVが上限値を越えていればステップ1
16で学習値T A V、Gをを所定値K(例えば、δ
β友)増加し、平均値F’ A F A Vが下限値未
満であればステップ117で学習値T A U Gを所
定値に減少させる。
In the next step 112, it is determined whether the idle switch is on or not, and if the idle switch is off, step 11
In step 5, learning of the learning value KGn is executed. On the other hand, if the idle switch is on, in step 113 and step 1'1'4, the average value FATAV of the air-fuel ratio feedback correction coefficient FAF is within a predetermined range (for example, 1
.. 02≦FAFAV≧0.98), and if the average value FAFAV exceeds the upper limit, step 1
16, the learning value T A V,G is set to a predetermined value K (for example, δ
If the average value F'AFAV is less than the lower limit value, the learned value TAUG is decreased to a predetermined value in step 117.

以上により、空燃比フィードバック補正係数が所定範囲
内の値になるように学習値TAUGO値が増減される。
As described above, the learning value TAUGO value is increased or decreased so that the air-fuel ratio feedback correction coefficient becomes a value within a predetermined range.

第8図に本実施例による学習値TAUG1補正係数の平
均値FAFAV、空燃比の各変化とB回スキップする壕
で学習を継続してB回スキップ後フィードバック制御を
中止した場合の比較例の学習値’r A U G 、補
正係数の平均値PAFAV、空燃比の各空化とを比較し
て示す。なお、実線は比較例の変化を示し、破線は本実
施例の変化を示す。
FIG. 8 shows the average value FAFAV of the learning value TAUG1 correction coefficient according to this embodiment, each change in air-fuel ratio, and a comparative example of learning in the case where learning is continued with B skipping grooves and feedback control is discontinued after B skipping. The value 'r AU G , the average value PAFAV of the correction coefficient, and each emptying of the air-fuel ratio are compared and shown. Note that the solid line indicates changes in the comparative example, and the broken line indicates changes in the present example.

なお、上記ではスキップ回数によって学習およびフィー
ドバック制御を禁止する例について説明したが、学習お
よびフィードバック制御を禁止する領域を時間によって
決定してもよい。また、上記ではエンジン回転数と吸気
管圧力とにより基本燃料噴射時間を定める例について説
明したが、エンジン回転数とエンジン1回転当りの吸入
空気量とによって基本燃料噴射時間を定めるエンジンに
ついても本発明を適用することが可能である。
In addition, although the example in which learning and feedback control are prohibited based on the number of skips has been described above, the area in which learning and feedback control are prohibited may be determined based on time. Furthermore, although the example in which the basic fuel injection time is determined based on the engine speed and the intake pipe pressure has been described above, the present invention also applies to an engine in which the basic fuel injection time is determined based on the engine speed and the amount of intake air per engine revolution. It is possible to apply

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のメインルーチンを示す流れ
図、第2図は空燃比フィードバック補正係数等の変化を
示す線図、第3図は本発明が適用されるエンジンを示す
概略図、第4図は第3図の制御回路の詳細を示すブロッ
ク図、第5図は上記実施例の学習ルーチンを示す流れ図
、第6図は第5図の学習値計算の詳細を示す流れ図、第
7図は本実施例の学習禁止領域およびフィードバック制
御禁′止領域を説明する線図、第8図は本実施例と比較
例との学習値の変化等を示す線図でちる。 lO・・・圧力センサ、  16・・・燃料噴射弁、3
0・・・制御回路、   34・・・0.センサ。
FIG. 1 is a flowchart showing the main routine of an embodiment of the present invention, FIG. 2 is a diagram showing changes in the air-fuel ratio feedback correction coefficient, etc., and FIG. 3 is a schematic diagram showing an engine to which the present invention is applied. 4 is a block diagram showing details of the control circuit of FIG. 3, FIG. 5 is a flowchart showing the learning routine of the above embodiment, FIG. 6 is a flowchart showing details of the learning value calculation of FIG. 5, and FIG. The figure is a diagram illustrating the learning prohibited area and the feedback control prohibited area of this embodiment, and FIG. 8 is a diagram showing changes in learning values between this embodiment and a comparative example. lO...Pressure sensor, 16...Fuel injection valve, 3
0...control circuit, 34...0. sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)機関負荷と機関回転数とによつて定まる基本燃料
噴射時間と、排ガス中の残留酸素濃度を検出するO_2
センサの出力信号に基づいて得られる空燃比フィードバ
ック補正係数と、前記空燃比フィードバック補正係数の
平均値が所定範囲内の値になるようにアイドリング時に
値が増減される学習値とに基づいて空燃比をフィードバ
ック制御する内燃機関の空燃比学習制御方法において、
機関回転数が所定値以下の状態が所定期間継続したとき
前記学習値の増減を停止し、前記機関回転数が所定値以
下の状態が更に所定期間継続したとき前記空燃比のフィ
ードバック制御を停止したことを特徴とする内燃機関の
空燃比学習制御方法。
(1) O_2 detects the basic fuel injection time determined by the engine load and engine speed and the residual oxygen concentration in the exhaust gas
The air-fuel ratio is adjusted based on the air-fuel ratio feedback correction coefficient obtained based on the output signal of the sensor and a learned value whose value is increased or decreased during idling so that the average value of the air-fuel ratio feedback correction coefficient falls within a predetermined range. In an air-fuel ratio learning control method for an internal combustion engine that performs feedback control of
When the engine speed continues to be below a predetermined value for a predetermined period, the learning value stops increasing or decreasing, and when the engine speed continues to be below the predetermined value for a further predetermined period, the air-fuel ratio feedback control is stopped. An air-fuel ratio learning control method for an internal combustion engine, characterized in that:
JP59136681A 1984-07-02 1984-07-02 Air-fuel ratio learning control method for internal combustion engine Expired - Lifetime JPH0680297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136681A JPH0680297B2 (en) 1984-07-02 1984-07-02 Air-fuel ratio learning control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136681A JPH0680297B2 (en) 1984-07-02 1984-07-02 Air-fuel ratio learning control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6116243A true JPS6116243A (en) 1986-01-24
JPH0680297B2 JPH0680297B2 (en) 1994-10-12

Family

ID=15180983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136681A Expired - Lifetime JPH0680297B2 (en) 1984-07-02 1984-07-02 Air-fuel ratio learning control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0680297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100330A (en) * 1985-10-28 1987-05-09 ゼロツクス コ−ポレ−シヨン Self-function retention type feeding module
EP0265079A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567051A (en) * 1979-06-27 1981-01-24 Beckman Instruments Inc Solid electrode for measuring quantity of ion concentration
JPS593136A (en) * 1982-06-29 1984-01-09 Toyota Motor Corp Learning control of air-fuel ratio of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567051A (en) * 1979-06-27 1981-01-24 Beckman Instruments Inc Solid electrode for measuring quantity of ion concentration
JPS593136A (en) * 1982-06-29 1984-01-09 Toyota Motor Corp Learning control of air-fuel ratio of internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100330A (en) * 1985-10-28 1987-05-09 ゼロツクス コ−ポレ−シヨン Self-function retention type feeding module
EP0265079A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine

Also Published As

Publication number Publication date
JPH0680297B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
US4732130A (en) Apparatus for controlling air-fuel ratio for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6116243A (en) Air-fuel ratio learning value controlling method of internal-combustion engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6111433A (en) Air-fuel learning control method in internal-combustion engine
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58150058A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS6187935A (en) Air-fuel ratio controller for internal-combution engine
JPS62186029A (en) Abnormality judging method for lean sensor
JPS6075737A (en) Air/fuel ratio control method for internal-combustion engine
JP3319167B2 (en) Control device for internal combustion engine
JPS59206636A (en) Method of controlling learning of air-fuel ratio of internal-combustion engine
JPH08291739A (en) Air-fuel ratio control device
JPS6116242A (en) Fuel supply controlling method of internal-combustion engine
JPS60233329A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPH1193814A (en) Ignition timing control device for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JP3559164B2 (en) Atmospheric pressure correction advance angle control method for internal combustion engine
JPS6143232A (en) Control device of fuel injection quantity in internal-combustion engine
JPS6098136A (en) Air-fuel ratio control method of internal-combustion engine
JPH0531647B2 (en)
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JPS5828566A (en) Method and device for controlling air fuel ratio of internal combustion engine