JPS5828552A - Method and device for electronically controlled fuel injection to internal combustion engine - Google Patents

Method and device for electronically controlled fuel injection to internal combustion engine

Info

Publication number
JPS5828552A
JPS5828552A JP11737281A JP11737281A JPS5828552A JP S5828552 A JPS5828552 A JP S5828552A JP 11737281 A JP11737281 A JP 11737281A JP 11737281 A JP11737281 A JP 11737281A JP S5828552 A JPS5828552 A JP S5828552A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
injection time
cooling water
detects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11737281A
Other languages
Japanese (ja)
Other versions
JPH0313421B2 (en
Inventor
Nobuyuki Kobayashi
伸之 小林
Hiroshi Ito
博 伊藤
Takahide Hisama
隆秀 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11737281A priority Critical patent/JPS5828552A/en
Publication of JPS5828552A publication Critical patent/JPS5828552A/en
Publication of JPH0313421B2 publication Critical patent/JPH0313421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To easily attain a point of compatibility of the temperature of exhaust gas and the output of an engine, the injected fuel quantity of which is compensated depending on the engine condition etc., by setting the maximum value of the injected fuel quantity as a function of the rotational frequency of the engine and the temperature of its cooling water. CONSTITUTION:In the normal operation of an engine, an electronic control circuit 38 calculates a basic injection time Tp from the outputs of an air flow meter 12 and a distributor 14 and compensates the time Tp on the basis of the signals of sensors 16, 22 etc. to determine an effective synchronous injection time gammal. When the temperature of cooling water has exceeded 70 deg.C, the control circuit 38 reads out a table value gammamax stored in a read-only memory 56, on the basis of the output of the cooling water temperature sensor 16. When the effective synchronous injection time gammal is longer than the table value gammamax, the table value is used as the effective synchronous injection time. When the effective synchronous injection time gammal is longer than the upper limit gammau of the table value gammamax, the upper limit is used as the effective synchronous injection time. An ineffective injection time gammav determined at the time of the fall in the battery voltage is added to the effective synchronous injection time gammal to determine a synchronous injection time gammas to control injection valves 36.

Description

【発明の詳細な説明】 本発明は、内燃機関の電子制御式炉料噴射方決及び装置
に係り、特に、自動車用内燃機関に用いるに好適な、エ
ンジンの吸入空気量とエンジン回転数に応じて基本の燃
料噴射量を算出すると共に、エンジン状態に応じて前記
燃料噴射量を補正するようにした内燃機関の電子制御燃
料噴射方法及び装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled furnace fuel injection method and device for an internal combustion engine, and in particular, to an electronically controlled furnace fuel injection method and device for an internal combustion engine. The present invention relates to an improvement in an electronically controlled fuel injection method and device for an internal combustion engine, which calculates a basic fuel injection amount and also corrects the fuel injection amount according to engine conditions.

内燃機関(エンジンと称する)の燃焼室に所定空燃比の
混合気を供給する方法の1つに、いわゆる電子制御式燃
料噴射装置を用いるものがある。
One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine (referred to as an engine) is to use a so-called electronically controlled fuel injection device.

これは、エンジン内に燃料を噴射するためのインジェク
タを、例えば、エンジンの吸気マニホルド或いはスロッ
トルボディにエンジン気筒数個或いは1個配設し、該イ
ンジェクタの開弁時間をエンジンの運転状態に応じて制
御することにより、所定の空燃比の混合気がエンジン燃
焼室に供給されるようにするものである。このような電
子制御式燃料噴射装置としては、捕々あるが、特VC近
年は、電子制御回路がデジタル化されたデジタル電子制
御式燃料噴射装置が開発されている。このような電子制
御式燃料噴射袋NVcおいて、通常は、エアフローメー
タ等を用いて検出されたエンジン吸入空気量と、ディス
トリビュータから入力されるエンジン回転信号から検出
されたエンジン回転数に応じて算出される基本の燃料噴
射量に、エンジン各部に配設されたセンサから入力され
るエンジン状態等に応じ良信号による補正を加え、エン
ジン回転と同期して常に同じクランク位置で噴射する同
期噴射と、始動性或いは加速直後の応答性を向上するた
め、通常の同期噴射とは別に、走行状態に合わせてセン
ナからの信号が入った直後だけ所定量の噴射を行なう非
同期噴射が行なわれている。
In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several engine cylinders or in one engine cylinder, and the opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. There are many such electronically controlled fuel injection devices, but in recent years, especially in VC, digital electronically controlled fuel injection devices in which the electronic control circuit has been digitalized have been developed. In such an electronically controlled fuel injection bag NVc, the calculation is usually based on the engine intake air amount detected using an air flow meter, etc., and the engine rotation speed detected from the engine rotation signal input from the distributor. Synchronized injection, in which the basic fuel injection amount is corrected based on good signals input from sensors installed in each part of the engine according to the engine status, etc., and the fuel is injected at the same crank position in synchronization with the engine rotation. In order to improve startability or responsiveness immediately after acceleration, asynchronous injection is used in addition to normal synchronous injection, in which a predetermined amount of injection is performed only immediately after a signal from the Senna is received in accordance with the driving condition.

前記同期噴射に対応してインジェクタを開いている同期
噴射時間は、例えば、エアフローメータからの吸入空気
量とディストリビュータからの回転信号を用いて算出さ
れる基本噴射時間に、各センナからの信号により、冷間
時、加速時等その時のエンジン状MIC応じて噴射時間
を補正するための補正係数を乗算し、更に、電圧変動に
よるインジェクタの作動遅れを補正するための無効噴射
時間を加えることによって決定されている。前記基本噴
射時間は、例えば、エンジン始動性の向上を図るため、
エンジン始動時には吸入空気量、エンジン回転数に拘ら
ず所定時間とされることによって、始動特権補正され、
又、始動直後のエンジン回転を安定させるため、エンジ
ン始動後の一定時間は増量されることによって、始動後
増量補正され、更に、吸入空気温が低い時に空気密度が
太き(なって空気量が増大することによる空燃比のずれ
を防止するため、吸入空気温が低い時に増量されること
によって、吸入空気温補正され、又、冷間時の運転性確
保のため、冷却水温の低い時は増量されることによって
、暖機増蓋補正され、更に、加速直後のもたつきの防止
及び加速性能の向上を図るため、加速直後の一定時間は
増量を行なうことによって暖機時加速増量補正され、又
、高飯荷時にエンジン出力を増大させるため、絞り弁開
寂が例えば600以上の高負荷時に増量を行なうことに
よって、出力増量補正され、更に、混合気の空燃比を所
定空燃比、例えば理論空燃比近傍とするため、排気ガス
中の酸素澁[K応じて増量比を変化させることによって
、空燃比フィードバック補正されている。又、触媒コン
バータの過熱防止及び燃費節減の喪め、或いは、車速を
強制的に押えるため、エンジンブレーキ時、或いは、車
速か規定最高速を越えた時には、燃料噴射を停止して燃
料カットを行なうようにされている。
The synchronous injection time during which the injector is open in response to the synchronous injection is, for example, the basic injection time calculated using the intake air amount from the air flow meter and the rotation signal from the distributor, and the signal from each senna, It is determined by multiplying the injection time by a correction coefficient to correct the injection time according to the engine condition MIC at that time, such as when cold or accelerating, and further adding the invalid injection time to correct the injector operation delay due to voltage fluctuation. ing. The basic injection time is, for example, in order to improve engine startability,
When starting the engine, the starting privilege is corrected by setting it as a predetermined time regardless of the intake air amount and engine speed.
In addition, in order to stabilize the engine rotation immediately after starting, the amount is increased for a certain period of time after starting the engine, and the amount is corrected after starting.Furthermore, when the intake air temperature is low, the air density increases (and the air amount decreases). In order to prevent deviations in the air-fuel ratio caused by an increase in air-fuel ratio, the intake air temperature is corrected by increasing the amount when the intake air temperature is low.Also, to ensure drivability in cold conditions, the amount is increased when the cooling water temperature is low. In addition, in order to prevent sluggishness immediately after acceleration and improve acceleration performance, the amount is increased for a certain period of time immediately after acceleration to compensate for the increase in the amount of acceleration during warm-up. In order to increase the engine output at high load times, the output increase is corrected by increasing the throttle valve opening at high loads, e.g. 600 or more. In order to keep the air-fuel ratio close to In order to reduce fuel consumption, fuel injection is stopped and fuel is cut during engine braking or when the vehicle speed exceeds a specified maximum speed.

このような電子制御式燃料噴射装置、特にデジタル化さ
れたデジタル電子制御式燃料噴射装置によれば、燃料噴
射量を極めて精密に制御することが可能となるという特
徴を有する。
Such an electronically controlled fuel injection device, particularly a digital electronically controlled fuel injection device, is characterized in that it is possible to control the fuel injection amount extremely precisely.

しかしながら、従来の電子制御式燃料噴射装置、%に、
吸入空気量の検出を1.第1図及び第2図に示すような
、回動自在なシャ7)12aに固着された。a気道路中
に挿入されるメジャリングプレート12bと、該メジャ
リングプレー)12bを吸気通路を閉じる方向に付勢す
るリターンスプリング12eと、前記シャツ)12mの
一端に配−されたポテンショメータ12dとを有し、吸
気通路中を流れる空気による開き方向の力とリターンス
プリング12eKよる閉じ方向の力との釣合によって決
まるメジャリングプレート12bの開度を、ポテンシ目
メータ12dによって検出して出力するエアフローメー
タ12により行なうようにしたものへおいては、吸入空
気量が非常に太き(なる高速時や高負荷時に、吸入空気
の脈動によりメジャリングプレート12bが開きすぎて
、エンジンの吸入空気量が過大評価され、燃料噴射量も
過大となって、いわゆるオーバーリッチを発生すること
があった。図において、12eはコンベンセーションプ
レートである。前記のような欠点を防止するべく、エア
70−メータ内にフルロードストッパを設けてメジャリ
ングプレートの開きすぎを防止したり、或いは、燃料噴
射量の最大値fmaXを設定することが行なわれている
が、必らずしも十分な効果をあげることはできなかった
。特に、後者の方法において、最大値τmaxを、第3
図の二点鎖@IK示す如く、エンジン回転数によらず一
定とした場合には、エンジン高回転時に、燃料噴射量の
制−が殆んど効かなくなり、やはりオーバーリッチとな
ってエンジン出力が低下してしオう。一方、最大値’m
&Xを、第3図の一点鎖11!B或いは破線CK示す如
く、エンジン回転数に応じて2段階に変化させることも
考えられるが、一点鎖線Bで示す如く、エンジン高回転
時に十分な出力が得られるように、エンジン高回転時の
最大値rmawを比効的小さな値に設定すると、エンジ
ン中回転域において、τmax icよる制限が効きす
ぎて、空燃比が比較的リーンとなり、第4図の一点鎖線
BK示す如く、エンジン中回転域で排気ガス温度が上昇
してしまうことがある。又、嬉3図の破線CK示す如く
、エンジン中回転域での排気ガス温度の上昇を防止する
べく、エンジン高回転時の最大値τma工を比較的大き
な値に設定すると、エンジン高回転時にオーバーリッチ
となってエンジン出力が低下してしまうという問題点を
有した。更に、エンジン冷却水温に拘らず、最大値fm
LXを段階的に減少させてしまうと、エンジン冷却水温
が低い時に、十分な増量補正が行なわれなくなってしま
う可能性があった。
However, traditional electronically controlled fuel injection devices,%
Detection of intake air amount 1. It was fixed to a rotatable shaft 7) 12a as shown in FIGS. 1 and 2. A measuring plate 12b inserted into the airway, a return spring 12e that biases the measuring plate 12b in the direction of closing the intake passage, and a potentiometer 12d disposed at one end of the shirt 12m. An air flow meter that detects and outputs the opening degree of the measuring plate 12b, which is determined by the balance between the force in the opening direction due to the air flowing in the intake passage and the force in the closing direction due to the return spring 12eK, using a potentiometer 12d. 12, the amount of intake air is very large (at high speeds or under high load, the measuring plate 12b opens too much due to the pulsation of the intake air, resulting in an excessive amount of intake air in the engine). In the figure, 12e is a convention plate.In order to prevent the above-mentioned drawbacks, the air 70-meter is Efforts have been made to install a full load stopper to prevent the measuring plate from opening too much, or to set the maximum value fmax of the fuel injection amount, but these methods are not always effective. In particular, in the latter method, the maximum value τmax was
As shown in the double-dot chain @IK in the figure, if the engine speed is constant regardless of the engine speed, the control of the fuel injection amount becomes almost ineffective when the engine speed is high, resulting in over-richness and the engine output. Let's lower it. On the other hand, the maximum value 'm
&X, one-point chain 11 in Figure 3! It is conceivable to change the speed in two stages according to the engine speed, as shown by B or the broken line CK, but in order to obtain sufficient output at high engine speeds, as shown by the dashed line B, the maximum If the value rmaw is set to a relatively small value, the restriction by τmax ic becomes too effective in the engine mid-speed range, and the air-fuel ratio becomes relatively lean, as shown by the dashed line BK in Figure 4. Exhaust gas temperature may rise. In addition, as shown by the broken line CK in Figure 3, if the maximum value τma at high engine speeds is set to a relatively large value in order to prevent the exhaust gas temperature from rising in the middle engine speed range, overflow occurs at high engine speeds. The problem was that the engine became rich and the engine output decreased. Furthermore, regardless of the engine cooling water temperature, the maximum value fm
If LX was decreased in stages, there was a possibility that sufficient increase correction would not be made when the engine coolant temperature was low.

本発明は、前記従来の欠点を解消するべくなされたもの
で、排気ガス温1とエンジン出力との両立点を容易に得
ることができ、しかも、エンジン冷却水温に適した燃料
噴射制御が打力われる内燃機関の電子制御式燃料噴射方
法及び装置を提供することを目的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and it is possible to easily achieve a balance between exhaust gas temperature 1 and engine output, and moreover, the fuel injection control suitable for the engine cooling water temperature is effective. An object of the present invention is to provide an electronically controlled fuel injection method and device for an internal combustion engine.

本発明は、エンジンの吸入空気量とエンジン回転数に応
じて基本の燃料噴射量を算出すると共に、エンジン状態
等に応じて前記燃料噴射itを補正するようにした内燃
機関の電子制御式燃料噴射方法において、燃料噴射量の
最大値を、エンジン回転数及びエンジン冷却水温の関数
として設定するようにして、前記目的を達成したもので
ある。
The present invention provides an electronically controlled fuel injection system for an internal combustion engine that calculates a basic fuel injection amount according to the intake air amount and engine speed of the engine, and also corrects the fuel injection it according to the engine condition etc. In the method, the maximum value of the fuel injection amount is set as a function of the engine speed and the engine cooling water temperature, thereby achieving the above object.

又、前記燃料噴射量の最大値を、エンジン冷却水温の低
温時には、エンジン回転数に拘らず一定とし、エンジン
冷却水温の高温時Kq、エンジン回転数に応じて、エン
ジン高回転時はほぼ直線的に減少するようにしたもので
ある。
Further, the maximum value of the fuel injection amount is constant regardless of the engine speed when the engine cooling water temperature is low, and is approximately linear when the engine speed is high depending on Kq when the engine cooling water temperature is high and the engine speed. It was designed to decrease to

更に、前記方法が実施される内燃機関の電子制御式燃料
噴射装置を、エンジンの吸入空気量を検出する吸入空気
量センサと、エンジン回転数を検出する回転数センサと
、エンジン冷却水温を検出する冷却水温センサと、エン
ジン吸入空気温を検出する吸入空気°温センサと、絞り
弁開1及び絞り弁開度変化を検出する絞り弁Nilセン
サと、エンジン始動中であることを検出する始動センサ
と、排気ガス中の酸素製置を検出する酸素鎖環センサと
、車両の走行速寂を検出する車速センサと、エンジン内
に燃料を噴射するインジェクタと、エンジンの吸入空気
量とニンジン回転数に応じて基本の燃料噴射時間を算出
すると共に、エンジン状態等に応じて前記燃料噴射時間
を補正し、更に、補正された燃料噴射時間がぜエンジン
回転数及びエンジン冷却水温の関数として設定された燃
料噴射時間の最大値を越えないように制限して、燃料噴
射信号を前記インジェクタに出力する電子制御回路と、
を用いて構成したものである。
Furthermore, an electronically controlled fuel injection device for an internal combustion engine in which the method is carried out includes an intake air amount sensor that detects the intake air amount of the engine, a rotation speed sensor that detects the engine rotation speed, and an engine cooling water temperature. A cooling water temperature sensor, an intake air temperature sensor that detects the engine intake air temperature, a throttle valve Nil sensor that detects throttle valve opening 1 and a change in throttle valve opening, and a starting sensor that detects that the engine is starting. , an oxygen chain sensor that detects the presence of oxygen in exhaust gas, a vehicle speed sensor that detects the vehicle's running speed, an injector that injects fuel into the engine, and In addition to calculating the basic fuel injection time, the fuel injection time is corrected according to the engine condition, etc., and the corrected fuel injection time is then set as a function of the engine speed and the engine cooling water temperature. an electronic control circuit that outputs a fuel injection signal to the injector while limiting the time so as not to exceed a maximum value;
It was constructed using

以下図面を参照して、本発明の実施例を畔#に説明する
Embodiments of the present invention will be described below with reference to the drawings.

本発明に係る内燃機関の電子制御式燃料噴射方法が採用
された電子制御式燃料噴射装置の実施例は、第5図及び
第6図に示す如く、エンジンの吸気通路10に配設され
た、エンジンの吸入空気量を検出する、前記のようなエ
アフローメータ12と、エンジン回転に応じたパルス信
号を発生するディストリビュータ14と、エンジン冷却
水温を検出する冷却水温センサ16と、前記エアフロー
メータ12内に配設された、エンジン吸入空気温を検出
する吸入空気温センサ18と、“吸気通路10に配設さ
れた絞り弁20の開度及び絞り弁開度変化を検出するス
ロットルポジションセンサ22と、エンジン始動中にス
タータ信号を発生するスタータスイッチ24と、排気通
路26に配設された、排気ガス中の酸素濃度を検出する
酸素濃飲センサ28と、変速機30の軸の回転数から車
両の走行速度を検出するための車速センサ32と、エン
ジンの吸気マニホルド34内Kffi料を噴射するため
のインジェクタ36と、エンジンの吸入空気量とエンジ
ン回転数に応じて基本の燃料噴射時間を算出すると共に
、エンジン状態等に応じて前記燃料噴射時間を補正し、
更に、補正された燃料噴射時間がエンジン回転数及びエ
ンジン冷却水温の関数として設定された燃料噴射時間の
最大値τmaxを越えないように制限して、燃料噴射信
号を前記インジェクタ36に出力するデジタル電子制御
回路38とから構成されている。F、5図において、4
0はエアクリーナ、42はサージタンク、44は点火プ
ラグ、46#′i触媒コンバータであり、又、第6図に
おいて、48はバッテリである。
An embodiment of an electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as shown in FIGS. 5 and 6, and is arranged in an intake passage 10 of an engine. The air flow meter 12 as described above detects the intake air amount of the engine, the distributor 14 generates a pulse signal according to the engine rotation, the coolant temperature sensor 16 detects the engine coolant temperature, and the air flow meter 12 includes: An intake air temperature sensor 18 that detects the engine intake air temperature, a throttle position sensor 22 that detects the opening of the throttle valve 20 disposed in the intake passage 10 and changes in the throttle valve opening, and the engine. The starter switch 24 generates a starter signal during startup, the oxygen concentration sensor 28 is installed in the exhaust passage 26 and detects the oxygen concentration in the exhaust gas, and the rotation speed of the shaft of the transmission 30 determines whether the vehicle is running. A vehicle speed sensor 32 for detecting the speed, an injector 36 for injecting the Kffi fuel in the intake manifold 34 of the engine, and calculating the basic fuel injection time according to the intake air amount and engine speed of the engine, Correcting the fuel injection time according to engine conditions etc.,
Furthermore, a digital electronic device outputs a fuel injection signal to the injector 36 by limiting the corrected fuel injection time so that it does not exceed a maximum value τmax of the fuel injection time set as a function of engine speed and engine cooling water temperature. It is composed of a control circuit 38. F, In figure 5, 4
0 is an air cleaner, 42 is a surge tank, 44 is a spark plug, 46 is a catalytic converter, and in FIG. 6, 48 is a battery.

前記デジタル電子制御回路38は、第6図に詳細に示す
如く、エアフローメータ12(吸入空気温センサ18を
含む)、冷却水温センサ16.及び、バッテリ48出力
のアナログ信号をデジタル信号に変換するためのアナロ
グ−デジタル信号器50と、前記ディストリビュータ1
4、スロットルポジションセンサ22、スタータスイッ
チ24、酸素濃度センサ28、車速センサ32出力のデ
ジタル信号を入力するための入力インターフェース回路
52と、中央演算処理回路54と、リードオンリーメモ
リ56と、ランダムアクセスメモリ58と、中央演算処
理回路54 Kおける演算結果をインジェクタ36に出
力するのに適した燃料噴射信号に変換する出力インター
フェース回路60とから構成されている。
As shown in detail in FIG. 6, the digital electronic control circuit 38 includes an air flow meter 12 (including an intake air temperature sensor 18), a cooling water temperature sensor 16. and an analog-to-digital signal generator 50 for converting the analog signal output from the battery 48 into a digital signal, and the distributor 1
4. An input interface circuit 52 for inputting digital signals output from the throttle position sensor 22, starter switch 24, oxygen concentration sensor 28, and vehicle speed sensor 32, a central processing circuit 54, a read-only memory 56, and a random access memory. 58, and an output interface circuit 60 that converts the calculation result in the central processing circuit 54K into a fuel injection signal suitable for outputting to the injector 36.

以下第7図を参照して動作を説明する。まずデジタル電
子制御回路38Fi、エアフローメータ12出力の吸入
空気量Qとディストリビュータ14出力から算出される
エンジン回転数NKより、次式を用いて、基本噴射時間
Tpを算出する。
The operation will be explained below with reference to FIG. First, the basic injection time Tp is calculated from the digital electronic control circuit 38Fi, the intake air amount Q of the air flow meter 12 output, and the engine rotational speed NK calculated from the distributor 14 output using the following equation.

ここでKは係数である。Here K is a coefficient.

更に、各センサからの信号に応じて、次式を用いて前記
基本噴射時間Tpを補正することにより、有効同期噴射
時間f、を算出する。
Furthermore, the effective synchronous injection time f is calculated by correcting the basic injection time Tp using the following equation according to the signals from each sensor.

’ + =Tp−f (A’? ) ・f (WL) 
・f (THA) ’ (1+f (ASE ) 、 
' + =Tp-f (A'?) ・f (WL)
・f (THA) ' (1+f (ASE),
.

d(ffl)+f(OTP))(1−f(R8))−・
・−・(2)こむで、f(A/F)は空燃比補正係数−
f(WL)は暖機増量補正係数、f(THA)は吸入空
気温補正係数、f(ASE)は始動後増量補正係数。
d(ffl)+f(OTP))(1-f(R8))-・
...(2) In Komu, f (A/F) is the air-fuel ratio correction coefficient -
f(WL) is a warm-up increase correction coefficient, f(THA) is an intake air temperature correction coefficient, and f(ASE) is a post-start increase correction coefficient.

f(AEW)は暖機時加速増量補正係数、f(OTP)
はオーバーヒート(出力)増量係数、f(R8)は減量
係数である。
f (AEW) is acceleration increase correction coefficient during warm-up, f (OTP)
is an overheat (output) increase coefficient, and f(R8) is a decrease coefficient.

次いで、前記冷却水温センサ16の出力に応じて、冷却
水温が、例えば70℃を越えている高温時には、リード
オンリーメ七り56に記憶されている、第3図の実線り
に示すようなテーブル値を読み出し、これt ’max
とする。この−aXと前記v1を比軟し、τ1がfmB
xt越えている場合には、テーブルから読みこまれた’
mJLXをτ、とする。更に、このようにして求められ
たτ、とτmaxの上限値τ6が比較され、τ1がru
lに越えている場合には、このガがV、とされる。又、
冷却水温が70℃以下である低温時には、τm□の上限
「。
Next, in accordance with the output of the cooling water temperature sensor 16, when the cooling water temperature is high, for example exceeding 70°C, a table as shown in the solid line in FIG. 3, which is stored in the read-only menu 56, is displayed. Read the value, this is t'max
shall be. Comparing this -aX and the above v1, τ1 becomes fmB
If it exceeds xt, it is read from the table.
Let mJLX be τ. Furthermore, τ obtained in this way is compared with the upper limit value τ6 of τmax, and τ1 is ru
If it exceeds l, this g is taken as V. or,
At low temperatures when the cooling water temperature is 70°C or less, the upper limit of τm□.

と”r′ft比較し、τ9Iがfut−越えていれば、
とのτ5が「、とされる。
If τ9I exceeds fut-, then
τ5 is assumed to be .

このようにして求められる有効同期噴射時間f1ニ、次
式に示す如く、バッテリ電圧が低下し良際のインジェク
タ36の応答遅れ時間に対応する無効噴射時間τ7を加
えることにより、同一噴射時間τ、を算出する。
To the effective synchronous injection time f1 obtained in this way, as shown in the following equation, by adding an invalid injection time τ7 corresponding to the response delay time of the injector 36 when the battery voltage drops and the injector 36 is in good condition, the same injection time τ, Calculate.

’@=’*+”v  ・・・・・・・・・・・・(3)
この同期噴射時間r、 K対応する燃料噴射信号が、イ
ンジェクタ36に出力され、エンジン回転と同期してイ
ンジェクタ36が同期噴射時間τSだけ開かれて、エン
ジンの吸気マニホルド34内に燃料が噴射される。
'@='*+”v ・・・・・・・・・・・・(3)
A fuel injection signal corresponding to the synchronous injection times r, K is output to the injector 36, and the injector 36 is opened for the synchronous injection time τS in synchronization with the engine rotation, and fuel is injected into the intake manifold 34 of the engine. .

尚、前記実施例においては、エンジン冷却水温が70℃
以下である低温時[ti、τmaxをτUと一致させ、
エンジン回転数に拘らず一定とするようにしていたが、
エンジン冷却水温の低温時には、高温時とは異なる別の
テーブルを使うようにしても勿論構わない。
In the above embodiment, the engine cooling water temperature was 70°C.
At a low temperature below [ti, τmax is made equal to τU,
I tried to keep it constant regardless of the engine speed, but
Of course, when the engine cooling water temperature is low, a different table may be used than when it is high.

以上説明した通り、本発明によれば、排気ガス温度、と
エンジン出力との両立を図ることができ、しかも、エン
ジン冷却水温の低温時には’maxを必要以上に制限【
7ないようにしたので、良好な燃料増量補正が行なわれ
るという優れた効果を有する。
As explained above, according to the present invention, it is possible to achieve both exhaust gas temperature and engine output, and moreover, when the engine cooling water temperature is low, 'max is unnecessarily limited.
7, it has the excellent effect of performing a good fuel increase correction.

【図面の簡単な説明】[Brief explanation of drawings]

gt図は、従来の電子制御式燃料噴射装置におい【使用
されているエア70−メータの構成を示す分解斜視図、
第2図は、同じく断面図、第3図は、従来例及び本発明
の実施例におけるエンジン回転数°と燃料噴射量の最大
値の関係を示す線図、第4図は、同じくエンジン回転数
と排気ガス温縦の関係を示す線図、第5図は、本発明に
係る内燃機関の電子制御式燃料噴射方法が採用された電
子制御式燃料噴射装置の実施例が配設された内燃機関を
示す、一部ブロック線図を含む断面図、第6図は、前記
実施例の回路構成を示すブロック線図、第7図は、同じ
く前記実施例における燃料噴射時間の計算ルーチンを示
す流れ図である。 12・・・エアフローメータ、14・・・ディストリビ
ュータ、16・・・冷却水温センサ、18・・・吸入空
気温センサ、22・・・スロットルポジションセンナ、
24・・・スタータスイッチ、28・・・酸素m度セン
ナ、32・・・車速センサ、36・・・インジェクタ、
38・・・デジタル電子制御回路。 代理人  高 矢   論 (ほか1名): 奈l 図 2 第2 図 亙 弗7 図 ↑ セ
gt diagram is an exploded perspective view showing the configuration of an air meter used in a conventional electronically controlled fuel injection system.
FIG. 2 is a sectional view, FIG. 3 is a diagram showing the relationship between the engine speed and the maximum fuel injection amount in the conventional example and the embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between the engine speed and the maximum fuel injection amount. FIG. 5 is a diagram showing the vertical relationship between the temperature and the exhaust gas temperature, and FIG. FIG. 6 is a block diagram showing the circuit configuration of the embodiment, and FIG. 7 is a flowchart showing the fuel injection time calculation routine in the embodiment. be. 12... Air flow meter, 14... Distributor, 16... Cooling water temperature sensor, 18... Intake air temperature sensor, 22... Throttle position sensor,
24...Starter switch, 28...Oxygen m degree sensor, 32...Vehicle speed sensor, 36...Injector,
38...Digital electronic control circuit. Agent Takaya Ron (and 1 other person): Nal Figure 2 Figure 2 庙弗7 Figure ↑ Se

Claims (3)

【特許請求の範囲】[Claims] (1)  エンジンの吸入空気量とエンジン回転数に応
じて基本の燃料噴射量を算出すると共に、エンジン状態
等に応じて前記燃料噴射量を補正するようにした内燃機
関の電子制御式燃料噴射方法において、燃料噴射量の最
大値を、エンジン回転数及びエンジン冷却水温の関数と
して設定するようにし九ことを特徴とする内燃機関の電
子制御式燃料噴射方法。
(1) An electronically controlled fuel injection method for an internal combustion engine in which a basic fuel injection amount is calculated according to the engine intake air amount and engine rotation speed, and the fuel injection amount is corrected according to the engine condition, etc. An electronically controlled fuel injection method for an internal combustion engine, characterized in that the maximum value of the fuel injection amount is set as a function of engine speed and engine cooling water temperature.
(2)前記燃料噴射量の最大値が、エンジン冷却水温の
低温時には、エンジン回転数に拘らず一定とされ、エン
ジン冷却水温のiI6温時には、エンジン回転数に応じ
て、エンジン高回転時はほぼ直線的に減少するようにさ
れている特許請求の範囲第1x)4rs:記載の内燃機
関の電子制御式燃料噴射方法。
(2) When the engine cooling water temperature is low, the maximum value of the fuel injection amount is constant regardless of the engine rotation speed, and when the engine cooling water temperature is iI6 temperature, the maximum value of the fuel injection amount is approximately constant depending on the engine rotation speed when the engine rotation speed is high. Claim 1x) 4rs: Electronically controlled fuel injection method for an internal combustion engine as described in claim 1x) 4rs, which is linearly decreasing.
(3)エンジンの吸入空気量を検出する吸入空気量セン
サと、エンジン回転数を検出する回1数センサと、エン
ジン冷却水温を検出する冷却水温センサと、エンジン吸
入空気温を検出する吸入空気温センサと、絞り弁開度及
び絞り弁開度変化を検出する絞り弁141 [センサと
、エンジン始動中であることを検出する始動センサと、
排気ガス中の酸素濃度を検出する酸素濃度センサと、車
両の走行速質を検出する車速センサと、エンジン内に燃
料を噴射するインジェクタと、エンジンの吸入空気量と
エンジン回転数に応じて基本の燃料噴射時間を算出する
と共に、エンジン状態等に応じて前記燃料噴射時間を補
正し、更に、補正された燃料噴射時間が、エンジン回転
数及びエンジン冷却水温の関数として設定された燃料噴
射時間の最大値を越え゛ないように制限して、燃料噴射
信号を前記インジェクタに出力する電子制御回路と、を
備えたことを特徴とする内燃機関の電子制御式燃料噴射
装置。
(3) An intake air amount sensor that detects the intake air amount of the engine, a frequency sensor that detects the engine rotation speed, a cooling water temperature sensor that detects the engine cooling water temperature, and an intake air temperature that detects the engine intake air temperature. A sensor, a throttle valve 141 that detects the throttle valve opening degree and a change in the throttle valve opening degree [Sensor, a starting sensor that detects that the engine is being started,
There is an oxygen concentration sensor that detects the oxygen concentration in exhaust gas, a vehicle speed sensor that detects the running speed of the vehicle, and an injector that injects fuel into the engine. In addition to calculating the fuel injection time, the fuel injection time is corrected according to the engine condition, etc., and the corrected fuel injection time is the maximum fuel injection time set as a function of the engine rotation speed and the engine cooling water temperature. 1. An electronically controlled fuel injection device for an internal combustion engine, comprising: an electronic control circuit that outputs a fuel injection signal to the injector while limiting the fuel injection signal so as not to exceed a predetermined value.
JP11737281A 1981-07-27 1981-07-27 Method and device for electronically controlled fuel injection to internal combustion engine Granted JPS5828552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11737281A JPS5828552A (en) 1981-07-27 1981-07-27 Method and device for electronically controlled fuel injection to internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11737281A JPS5828552A (en) 1981-07-27 1981-07-27 Method and device for electronically controlled fuel injection to internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5828552A true JPS5828552A (en) 1983-02-19
JPH0313421B2 JPH0313421B2 (en) 1991-02-22

Family

ID=14710019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11737281A Granted JPS5828552A (en) 1981-07-27 1981-07-27 Method and device for electronically controlled fuel injection to internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828552A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896132A (en) * 1981-12-04 1983-06-08 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device of internal-combustion engine
JPS59170432A (en) * 1983-03-18 1984-09-26 Toyota Motor Corp Electronic fuel injector for internal-combustion engine
JPS6189955A (en) * 1984-10-04 1986-05-08 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fuel supply amount controller of internal combustion engine
JPS61241431A (en) * 1985-04-16 1986-10-27 Nippon Denso Co Ltd Fuel injection controlling method
US4915078A (en) * 1987-07-21 1990-04-10 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598624A (en) * 1979-01-24 1980-07-26 Nippon Denso Co Ltd Fuel injection controlling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598624A (en) * 1979-01-24 1980-07-26 Nippon Denso Co Ltd Fuel injection controlling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896132A (en) * 1981-12-04 1983-06-08 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device of internal-combustion engine
JPS6338535B2 (en) * 1981-12-04 1988-08-01 Nippon Denshi Kiki Kk
JPS59170432A (en) * 1983-03-18 1984-09-26 Toyota Motor Corp Electronic fuel injector for internal-combustion engine
JPS6189955A (en) * 1984-10-04 1986-05-08 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fuel supply amount controller of internal combustion engine
JPS61241431A (en) * 1985-04-16 1986-10-27 Nippon Denso Co Ltd Fuel injection controlling method
US4915078A (en) * 1987-07-21 1990-04-10 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine

Also Published As

Publication number Publication date
JPH0313421B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
JPS58148238A (en) Electron control fuel injection method for internal- combustion engine
JPS61223247A (en) Fuel feed control method for internal-combustion engine in acceleration
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6231179B2 (en)
JPS5828552A (en) Method and device for electronically controlled fuel injection to internal combustion engine
JPH0251057B2 (en)
JPS5828537A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH057546B2 (en)
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS5828553A (en) Method and device for electronically controlled fuel injection to internal combustion engine
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPS5828540A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58144634A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS5828544A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS5828566A (en) Method and device for controlling air fuel ratio of internal combustion engine
JPS5828538A (en) Electronically controlled fuel injection process in internal-combustion engine and equipment
JPS58150045A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS5828543A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPH0868348A (en) Method for correcting fuel injection amount after complete warming up
JP2600718B2 (en) Fuel injection amount control method for internal combustion engine
JPS5828539A (en) Electronically controlled fuel injection process and equipment in internal combustion engine