JPS5828527A - Flow-passage controller for intake port - Google Patents

Flow-passage controller for intake port

Info

Publication number
JPS5828527A
JPS5828527A JP56118517A JP11851781A JPS5828527A JP S5828527 A JPS5828527 A JP S5828527A JP 56118517 A JP56118517 A JP 56118517A JP 11851781 A JP11851781 A JP 11851781A JP S5828527 A JPS5828527 A JP S5828527A
Authority
JP
Japan
Prior art keywords
branched
passage
flow
branch
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56118517A
Other languages
Japanese (ja)
Other versions
JPH021966B2 (en
Inventor
Kiyoshi Nakanishi
清 中西
Takeshi Okumura
猛 奥村
Tokuta Inoue
井上 悳太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56118517A priority Critical patent/JPS5828527A/en
Publication of JPS5828527A publication Critical patent/JPS5828527A/en
Publication of JPH021966B2 publication Critical patent/JPH021966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/042Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To obtain at all times proper swirling flow and a high charging efficiency irrespective of the loading state of an engine by branching the main branched passage branched from the inlet passage part in a helical-type intake port into two branched passages and connecting them to the terminal part and the starting part of the swirl part respectively. CONSTITUTION:A helical-type intake port 6 consists of the inlet passage part A having a slightly curved axis line of a flow passage and the swirl part B formed around an intake valve, and installed in a cylinder head 3. In this case, a main branched passage 13 is branched from the vicinity of the inlet opening of the inlet passage A, and further branched to the first and the second branched passages 14 and 15. The inlet opening 16 of the main branched passage 13 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage part A, and the exit openings 17 and 19 of the first and the second branched passages 14 and 15 are respectively formed in the swirl terminating part C and the swrirl starting part D respectively. A flow-passage controlling valve 22 in a cantilevered thin lear form is arranged in the branched part 20 of the both branched parts 14 and 15, and said valve 22 controls switching according to the loaded state of an engine.

Description

【発明の詳細な説明】 本発明は吸気/−)の流路制御装置に関する。[Detailed description of the invention] The present invention relates to an intake/-) flow path control device.

燃焼室内に強力な旋回流を発生せしめることのできる吸
気−一部として、吸気弁脚りに形成された渦巻部と、こ
の゛渦巻部に接線状に接続されかつほぼまつすぐに延び
る入口通路部とによシ構成されたヘリカル減吸気?−ト
が知られている。しかしながらこのようなヘリカルWi
吸気−−トを用いて吸入空気量の少ない機関低速低負荷
運転時に機関燃焼室内に強力な旋回流を発生せしめよう
とすると吸気−一部形状が流れ抵抗の大きな形状にな−
ってしまうので吸入空気量の多い機関高速高負荷運転時
に充填効率が低下するという問題を生じる・一方、この
ようなヘリカル飄吸気−−トの渦巻部側壁面は吸気弁弁
体の外局縁よシも外方に膨出するように形成されるので
渦巻部の渦巻半径線吸気弁弁体の半径よシもかなシ大き
くなシ、従って機関の構造上、例えばll&!気筒の吸
気4−ト或いは排気ポートと干渉してしまうのでこのよ
うなヘリ・カル製吸気−一部を使用できない場合もある
。このような場合には渦巻部の渦巻半径を小さくせざる
を得ないが渦壱半径管小さくすると機関低速低負荷運転
時に燃焼室内に強力な旋回流管発生させるのが困難とな
る。
Intake air that can generate a strong swirling flow in the combustion chamber - includes, in part, a volute formed on the intake valve foot and an inlet passage tangentially connected to this volute and extending almost straight. Toyoshi configured helical reduced intake? - is known. However, such helical Wi
When trying to generate a strong swirling flow in the combustion chamber of an engine using an air intake when the engine is operating at low speed and low load with a small amount of intake air, the shape of some of the air intakes becomes shaped with large flow resistance.
This causes a problem of reduced filling efficiency during high-speed, high-load operation of the engine with a large amount of intake air.On the other hand, the side wall surface of the spiral part of such a helical air intake is close to the outer edge of the intake valve body. Since the diameter is also formed to bulge outward, the spiral radius of the spiral part and the radius of the intake valve body are large. In some cases, it may not be possible to use some of these Heli-Cal intakes because they interfere with the cylinder's intake port or exhaust port. In such a case, the swirl radius of the swirl portion must be made smaller, but if the swirl radius tube is made smaller, it becomes difficult to generate a strong swirling flow tube inside the combustion chamber during low-speed, low-load operation of the engine.

本発明は機関高速高負荷運転時に高い充填効率を確保で
きると共に機関吸入空気量が少ないときに燃焼室内に強
力な旋回流を発生せしめることのできる吸気4−トを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air intake system that can ensure high charging efficiency during high-speed, high-load operation of the engine, and can also generate a strong swirling flow within the combustion chamber when the amount of intake air in the engine is small.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダブロック1上に固定されたシリンダヘッド
、4はピストン2とシリンダへ、23間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド≦内に形成され
た吸気ポート、7は排気弁、8は排気/−)を夫々示し
、図面には示さないが燃焼室4内に社点火栓が配置され
る。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder head fixed on the cylinder block 1; 4 is a combustion chamber formed between the piston 2 and the cylinder; 5 is an intake valve; 6 is an intake port formed within the cylinder head; 7 is a combustion chamber formed between the piston 2 and the cylinder; The exhaust valves 8 and 8 respectively indicate exhaust valves, and although not shown in the drawings, an ignition plug is disposed within the combustion chamber 4.

第1図かられかるように吸気−一部6はヘリカル形状を
有し、以下ヘリカル型吸気/−)6に基いて本発明を説
明するがここで云うヘリカル製吸気/−)6とは渦巻部
の半径が大きいものから小さ。
As can be seen from Fig. 1, the intake part 6 has a helical shape, and the present invention will be explained below based on the helical type intake/-)6. The radius of the part is from large to small.

いものまで含み、渦巻部において旋回流が発生せしめら
れる構造の全ての吸気ポートを指している、。
It refers to all intake ports that have a structure where a swirling flow is generated in the spiral part, including those that have a spiral flow.

従って渦巻部が吸気弁軸線周シの円筒形状をなすものま
で含んでいることは明らかである。
Therefore, it is clear that the spiral portion includes a cylindrical shape around the intake valve axis.

第3図並びに第4図に第2図のヘリカル製吸気−一部6
の形状を図解的に示す。このヘリカル型吸気ポート6は
第4図に示されるように流路軸線aがわずかに彎曲した
入口通路部Aと、吸気弁5の弁軸間シに形成された渦巻
部Bとによシ構成され、入口通路部Aは渦巻部Bに接線
状に接続される。第3図、第4図並びに第7図に示され
るように入口通路部ムの渦巻軸線すに近い側のiui面
9の上方側壁面9aは下方を向いた傾斜面に形成され、
この傾斜面9&の巾は渦巻@Bに近づくに従って広くな
シ、入口通路部人と渦巻部Bとの接続部においては第7
図に示されるように側壁面9の全体が下方に向いた傾斜
面9aに形成される。側′壁面9の上半分は吸気弁ガイ
ド10(第2図)周シの吸気/−)土壁面上に形成され
た円筒状突起11の周壁面に滑らかに接続され、一方何
壁面9の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。
Figures 3 and 4 show the helical air intake shown in Figure 2 - part 6.
The shape of is shown diagrammatically. As shown in FIG. 4, this helical intake port 6 has an inlet passage section A in which the flow path axis a is slightly curved, and a spiral section B formed between the valve stems of the intake valve 5. The inlet passage section A is tangentially connected to the spiral section B. As shown in FIGS. 3, 4, and 7, the upper side wall surface 9a of the IUI surface 9 on the side closer to the spiral axis of the inlet passage part M is formed as a downwardly oriented inclined surface,
The width of this inclined surface 9& becomes wider as it approaches the spiral @B, and the width of the inclined surface 9& becomes wider as it approaches the spiral @B.
As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of the cylindrical protrusion 11 formed on the earthen wall surface of the intake valve guide 10 (FIG. 2), while the lower half of the side wall surface 9 The half is connected to the side wall surface 12 of the spiral portion B at the spiral end C of the spiral portion B.

一方、第1図から第5図に示されるように入口通路部A
の入口開口近傍から主分岐路13が分岐され、この主分
岐路13は更に第1分岐路14と第2分岐路15とに分
岐される。主分岐路13の入口開口16は入口通路部A
の入口開口の近傍において入口通路部Aの側壁面9上に
形成され、また第1分岐路14の出口開口17は渦巻終
端部Cの渦巻部上壁面18近傍において渦巻部Bの側壁
面12上に形成される。更に、第2分岐路15の出口開
口19は渦巻部Bの渦巻開始部りにおいて入口通路部A
の傾斜側壁面9a上に形成される。
On the other hand, as shown in FIGS. 1 to 5, the inlet passage section A
A main branch road 13 is branched from near the entrance opening of the main branch road 13, and this main branch road 13 is further branched into a first branch road 14 and a second branch road 15. The inlet opening 16 of the main branch path 13 is the inlet passage section A.
The outlet opening 17 of the first branch passage 14 is formed on the side wall surface 9 of the inlet passage section A in the vicinity of the inlet opening of the spiral section A, and the outlet opening 17 of the first branch passage 14 is formed on the side wall surface 12 of the spiral section B in the vicinity of the spiral section upper wall surface 18 of the spiral terminal section C. is formed. Further, the outlet opening 19 of the second branch passage 15 is connected to the inlet passage part A at the beginning of the spiral part B.
It is formed on the inclined side wall surface 9a of.

第1分岐路14と第2分岐路15との分岐部20内には
弁軸21によシ支持された片持ち薄板状流路制御弁22
が配置される。第4図並びに第5図かられかるようにこ
の流路制御弁22は第1分岐路14を全閉したときに第
2分岐路15を全開し、第1分岐路14を全開し九′と
きに第2分岐路15を全閉する・弁軸21の上端部はシ
リンダへ、ド3から上方に突出し、第9図に示されるよ
うに弁軸21の突出上端部にアーム23が固着される。
A cantilevered thin plate-shaped flow control valve 22 supported by a valve shaft 21 is provided in the branching portion 20 between the first branching passage 14 and the second branching passage 15.
is placed. As can be seen from FIGS. 4 and 5, this flow path control valve 22 fully opens the second branch path 15 when the first branch path 14 is fully closed, and fully opens the first branch path 14 at 9'. The second branch passage 15 is fully closed. The upper end of the valve shaft 21 protrudes upward from the cylinder 3 and the arm 23 is fixed to the protruding upper end of the valve shaft 21 as shown in FIG. .

このアーム23の先端部は負圧ダイヤフラム装置30の
ダイアフラム31に固着された制御口、ド32に連結ロ
ッド24を介して連結される。
The tip of this arm 23 is connected via a connecting rod 24 to a control port 32 fixed to a diaphragm 31 of a negative pressure diaphragm device 30 .

負圧ダイアフラム装置30はダイアフラム31によシ隔
離された負圧室33と大気圧室34を具備し、負圧室3
3内に紘ダイアフラム押圧用圧縮ばね35が挿入される
。この負圧室33は負圧導管36並びに電磁制御弁37
を介して負圧アキュムレータ29に接続される。電磁制
御弁37は弁室38と、負圧アキュムレータ29に連通
する負圧/ −) 39と、大気に連通ずる大気/−)
40と、負圧/ −) 39並びに大気/−)40の開
閉制御をする弁体41と、弁体41に連結された可動プ
ランジャ42と、可動グランジャ吸引用のソレノイr4
3とを具備し、このソレノイド43は電子制御ユニット
50の出力端子に接続される。一方、吸気−一部6には
吸気管44が接続され、この吸気管44には図示しない
気化器が取付けられる。
The negative pressure diaphragm device 30 includes a negative pressure chamber 33 and an atmospheric pressure chamber 34 separated by a diaphragm 31.
A compression spring 35 for pressing the diaphragm is inserted into the diaphragm 3. This negative pressure chamber 33 includes a negative pressure conduit 36 and an electromagnetic control valve 37.
It is connected to the negative pressure accumulator 29 via. The electromagnetic control valve 37 communicates with the valve chamber 38, the negative pressure accumulator 29 (-) 39, and the atmosphere (-) which communicates with the atmosphere.
40, negative pressure/-) 39 and atmosphere/-) 40, a valve body 41 that controls opening/closing, a movable plunger 42 connected to the valve body 41, and a solenoid r4 for movable granger suction.
3, and this solenoid 43 is connected to the output terminal of the electronic control unit 50. On the other hand, an intake pipe 44 is connected to the intake part 6, and a carburetor (not shown) is attached to this intake pipe 44.

負圧アキュムレータ29は負圧アキ、ムレータ29から
吸気管44に向けてのみ流通可能な逆止弁45を介して
吸気管44内に接続される。逆止弁4!Sは吸気管44
内の負圧が負圧アキ、ムレータ29内の負圧よシも大き
くなると開弁し、吸気管44内の負圧が負圧アキュムレ
ータ29内の負圧よシも小さくなると閉弁するので負圧
アキュムレータ29内の負圧は吸気管44内に発生、し
九最、大負圧に維持される。一方、吸気管44には吸気
管44の負圧を検出するための負圧センサ46が堆付け
られ、との負圧センサ46は電子制御ユニット50の入
力端子に接続される。また、流路制御弁22の弁軸21
には流路制御弁22の第1分岐路14に対する開口面積
を検出するためのfテンシ、メータ47が取付けられる
。この4テンシ、メータ47は弁軸21に連結されて弁
軸21と共に回転する摺動子47&と、固定抵抗47b
とによシ構成され、摺動子471は固定抵抗47b上を
接触しつグ摺動する。従って摺動子47mには流路制御
弁22の第1分岐路1′4に対する開口面積に比例し九
電圧が発生する。この摺動子47&は電子制御エニy)
50の入力端子に接続される。
The negative pressure accumulator 29 is connected to the intake pipe 44 through a check valve 45 that allows flow only from the negative pressure accumulator 29 to the intake pipe 44 . Check valve 4! S is intake pipe 44
The valve opens when the negative pressure in the intake pipe 44 becomes negative and the negative pressure in the accumulator 29 also becomes smaller, and the valve closes. Negative pressure in the pressure accumulator 29 is generated in the intake pipe 44 and is maintained at a large negative pressure. On the other hand, a negative pressure sensor 46 for detecting negative pressure in the intake pipe 44 is mounted on the intake pipe 44, and the negative pressure sensor 46 is connected to an input terminal of the electronic control unit 50. In addition, the valve shaft 21 of the flow path control valve 22
An f-tension meter 47 for detecting the opening area of the flow path control valve 22 with respect to the first branch path 14 is attached to the holder. This 4-tension meter 47 includes a slider 47 & which is connected to the valve shaft 21 and rotates together with the valve shaft 21, and a fixed resistor 47b.
The slider 471 is configured to be in contact with and slide on the fixed resistor 47b. Therefore, nine voltages are generated in the slider 47m in proportion to the opening area of the flow path control valve 22 with respect to the first branch path 1'4. This slider 47 & is electronically controlled any)
50 input terminals.

一方、機関クランクシャフトの回転数を検出するために
回転数センサ48が電子制御ユニツ)50の入力端子に
接続される。
On the other hand, a rotation speed sensor 48 is connected to an input terminal of an electronic control unit 50 to detect the rotation speed of the engine crankshaft.

電子制御ユニット50はディジタルコンビ、−タからな
シ、各種の演算処理を行なうマイクロフロセッサ(MP
U)51、ランダムアクセスメモリ 。
The electronic control unit 50 is a digital combination, microprocessor (MP) that performs various arithmetic processing.
U) 51, Random access memory.

(RAM) 52 、制御プログラム並びに演算定数等
が予め格納されているリードオンリメモリ(ROM)5
3、入力ポート54並びに出力l−ト55が双方向性パ
ス56を介して互に接続されている。更に、電子制御ユ
ニット50内には各種のクロック信号を発生するクロッ
ク発生器57が設けられる。
(RAM) 52, read-only memory (ROM) 5 in which control programs, calculation constants, etc. are stored in advance.
3. The input port 54 and the output port 55 are connected to each other via a bidirectional path 56. Furthermore, a clock generator 57 is provided within the electronic control unit 50 to generate various clock signals.

第9図に示されるように入力l−ト54には夫々対応す
るAD変換器58.59を介して負圧センサ46並びに
?テンシ、メータ47が接続され、更に入力ポート54
には回転数センサ48が接続される・負圧センサ46は
吸気管44内の負圧に比例した出力電圧を発生し、この
電圧がムD変換器5Bにおいて対応する2進数に変換さ
れてこの2進数が入力/ −) 54並びにパス56を
介してMPU51に読み込まれる。一方、−テンシ嘗メ
ータ47は流路制御弁22の第1分岐路14に対する開
口面積に比例した出力電圧を発生し、この電圧がムD変
換器59において対応する2進数に変換されてこの2進
数が入力/ −) 54並びにパス56を介してMPU
51に読み込まれる。を九、回転数センナ48はクラン
クシャフトが所定クランク角度回転する毎にノ4ルスを
発生し、このノ々ルスが入力l−ト54並びにパス56
を介してMPU51に読み込まれる・ 出力l−ト55は電磁制御弁37な作動するためのデー
タを出力するために設けられておシ、この出力l−ト5
5には2進数のデータがMPU51からパス56を介し
て書き込まれる。出力l−ト55の各出力端子は、ダウ
ンカウンタ60の対応する各入力端子に接続されている
。ダウンカウンタ60はMPU51から書き込まれ九2
進数のデータをそれに対応する時間の長さに変換するた
めに設けられており、このダウンカウンタ60は出力/
−)55から送り込まれたデータのダウンカウントをク
ロック発生器57のクロック信号によって開始し、カウ
ント値が0になるとカウントを完了して出力端子にカウ
ント完了信号を発生する。
As shown in FIG. 9, the input port 54 is connected to the negative pressure sensor 46 and ? Tensile strength and meter 47 are connected, and input port 54 is also connected.
A rotation speed sensor 48 is connected to the negative pressure sensor 46. The negative pressure sensor 46 generates an output voltage proportional to the negative pressure in the intake pipe 44, and this voltage is converted into a corresponding binary number in the mu D converter 5B. The binary number is read into the MPU 51 via the input/−) 54 and path 56. On the other hand, the -tensimeter 47 generates an output voltage proportional to the opening area of the flow path control valve 22 with respect to the first branch 14, and this voltage is converted into a corresponding binary number by the D converter 59. The base number is input/-) 54 and the MPU via path 56.
51. 9. The rotation speed sensor 48 generates a pulse every time the crankshaft rotates by a predetermined crank angle, and this pulse is transmitted to the input l-t 54 and the pass 56.
The output port 55 is provided to output data for operating the electromagnetic control valve 37.
5, binary data is written from the MPU 51 via a path 56. Each output terminal of the output port 55 is connected to a corresponding input terminal of the down counter 60. The down counter 60 is written from the MPU 51 and is 92
The down counter 60 is provided to convert the base number data into the corresponding time length, and this down counter 60 outputs/
-) A down-count of the data sent from the clock generator 55 is started by the clock signal of the clock generator 57, and when the count value reaches 0, the count is completed and a count completion signal is generated at the output terminal.

S−Rフリップフロップ61のリセット入力端子8はダ
ウンカウンタ60の出力端子に接続され、S−1アリツ
ブフロツプ61のセット入力端子Sはクロック発生器5
7に接続される。S−Rフリッデフロッf61はクロ、
り発生器57のクロック信号によシダランカウント開始
と同時にセットされ、ダウンカウント完了時にダウンカ
ウンタ60のカウント完了信号によってリセットされる
。従ってs−nフリップフロ、f61の出力端子Qはダ
ウンカウントが行なわれている間高レベルとなる。ト]
フリップフロ、ゾロ1の出力端子Qは電力増巾回路62
を介して電磁制御弁37に接続されている。従って電磁
制御弁32のソレノイド43はダウンカウンタが行なわ
れている関付勢される。
The reset input terminal 8 of the S-R flip-flop 61 is connected to the output terminal of the down counter 60, and the set input terminal S of the S-1 register flip-flop 61 is connected to the clock generator 5.
Connected to 7. S-R flip-flop f61 is black,
It is set simultaneously with the start of the cedar run count by the clock signal of the down counter 60, and is reset by the count completion signal of the down counter 60 when the down count is completed. Therefore, the output terminal Q of the sn flip-flop f61 is at a high level while the down count is being performed. to]
The output terminal Q of FlipFlo and Zoro 1 is the power amplification circuit 62.
It is connected to the electromagnetic control valve 37 via. Therefore, the solenoid 43 of the electromagnetic control valve 32 is energized while the down counter is being performed.

電磁制御弁37のソレノイド43が消勢されているとき
は第9図に示すように弁体41が大気1−)40′を開
口すると共に負圧/ −) 39を閉鎖するので負圧ダ
イアフラム装置30の負圧室33内は大気圧となる。こ
のときダイアフラム31は圧縮ばね35のばね力にょシ
下端位置にあるので流路制御弁22が第1分岐路14を
全閉すると共に第2分岐路15を全開する。一方、電磁
制御弁37のソレノイド43が付勢されると弁体41が
大気/ −) 40を閉鎖すると共に負圧ポート39を
開口するので負圧ダイアフラム装置3oの負圧室33内
には負圧アキ、ムレータ29内の負圧が加わる。このと
きダイアフラム31は圧縮ばね35に抗して上方に移動
するために流路制御弁22が反時計回シに回動せしめら
れ、それによって流路制御弁22が第1分岐路14を全
開すると共に第2分岐路15を全閉する。前述したよう
に電磁制御弁37のソレノイド43はダウンカウントが
行なわれている間、即ち8−Rフリ、プフロッデ61の
出力端子Qに表われる電圧が高レベルのとき付勢される
。従りて電磁制御弁37の弁体41が負8Eyj!−ト
39を開口しかつ大気l−ト40を閉鎖する時間割合は
ソレノイド43に印加されるパルスのデユーティ−サイ
クルに比例する。。
When the solenoid 43 of the electromagnetic control valve 37 is deenergized, the valve body 41 opens the atmosphere 1-) 40' and closes the negative pressure /-) 39, as shown in FIG. 9, so that the negative pressure diaphragm device The inside of the negative pressure chamber 33 of No. 30 is at atmospheric pressure. At this time, the diaphragm 31 is at the lower end position due to the spring force of the compression spring 35, so the flow path control valve 22 fully closes the first branch passage 14 and fully opens the second branch passage 15. On the other hand, when the solenoid 43 of the electromagnetic control valve 37 is energized, the valve body 41 closes the atmosphere/-) 40 and opens the negative pressure port 39, so there is no negative pressure inside the negative pressure chamber 33 of the negative pressure diaphragm device 3o. The pressure is released, and negative pressure inside the mullet 29 is applied. At this time, the diaphragm 31 moves upward against the compression spring 35, causing the flow path control valve 22 to rotate counterclockwise, thereby causing the flow path control valve 22 to fully open the first branch path 14. At the same time, the second branch path 15 is completely closed. As described above, the solenoid 43 of the electromagnetic control valve 37 is energized while the down count is being performed, that is, when the voltage appearing at the output terminal Q of the Pflode 61 is at a high level. Therefore, the valve body 41 of the electromagnetic control valve 37 is negative 8Eyj! The rate of time for opening port 39 and closing port 40 is proportional to the duty cycle of the pulses applied to solenoid 43. .

弁体41が負圧# −) 39を開口しかつ大気l−ト
40を閉鎖する時間が長くなればなるほど負圧ダイアフ
ラム装置30の負圧室33内の負圧が大きくなシ、第1
分岐路14に対する流路制御弁22の開口面積が大きく
なる。従って第1°分岐路14に対する流路制御弁22
の開口面積はソレノイド43に印加されるパルスのデユ
ーティ−サイクルが大きくなるほど大きくなることがわ
かる。
The longer the time period for which the valve body 41 opens the negative pressure port 40 and closes the atmospheric port 40, the greater the negative pressure in the negative pressure chamber 33 of the negative pressure diaphragm device 30 becomes.
The opening area of the flow path control valve 22 with respect to the branch path 14 becomes larger. Therefore, the flow path control valve 22 for the first degree branch path 14
It can be seen that the opening area becomes larger as the duty cycle of the pulse applied to the solenoid 43 becomes larger.

第12図は第1分岐路14に対する流路制御弁22の開
口面積と、機関回転数N並びに吸気管負圧Pとの好まし
い関係を示している。第12図において縦軸は機関回転
数N(r、p−m)を示し、横軸は吸気管負圧P (−
ms+)Ig)を示している。また、ハツチングを付し
九曲線8.の上部領域は第1分岐路14の全開領域を示
し、八ツチングを付し九曲°線S1の下方領域は第1分
岐路14の全閉領域を示し、代表的に2本のみ示した曲
線s雪 eBsB第1分岐路14に対する流路制御弁の
等開口面積曲線を示している。なお、第12図において
第1分岐路14に対するIftM制御弁の開口面積はS
FIG. 12 shows a preferable relationship between the opening area of the flow path control valve 22 with respect to the first branch path 14, the engine speed N, and the intake pipe negative pressure P. In Fig. 12, the vertical axis shows the engine speed N (r, pm), and the horizontal axis shows the intake pipe negative pressure P (-
ms+)Ig). Also, with hatching, nine curves 8. The upper region of 14 indicates the fully open region of the first branch road 14, and the region below the nine-curved line S1 with octagons indicates the fully closed region of the first branch road 14, with only two representative curves shown. s Snow eBsB The equal opening area curve of the flow path control valve for the first branch path 14 is shown. In addition, in FIG. 12, the opening area of the IfM control valve for the first branch path 14 is S.
.

から8Hr8Bを経てS・に向かうに従って徐々に大き
くなる。第12図に示す機関回転数N並びVこ吸気管負
圧Pと、第1分岐路14に対する流路制御弁の開口面積
Sとの好ましい関係は関数或いはデータテーブルの形で
予めROM53内に記憶されている。
It gradually increases from 8Hr8B to S. The preferred relationship between the engine speed N and V, the intake pipe negative pressure P, and the opening area S of the flow path control valve with respect to the first branch path 14 shown in FIG. 12 is stored in advance in the ROM 53 in the form of a function or data table. has been done.

第10図は本発明による流路制御装置の作動を観、明す
るためのフローチャートを示している。第10図におい
てステラf70は流路制御が時間割込みで行なわれてい
ることを示している。まず始めにステップ71において
回転数センサ48の出力信号をMPU51内に入力して
機関回転数を計算し、次いでステ、プ72において負圧
センサ46の出力信号をMPU51内に入力する。次い
でステップ73では計算され九機関回転数N並びに負圧
Pに基いてROM53内に記憶された1E13図の関係
から11分岐路14に対する流路制御弁の目標開口面積
SSを計算する・次いでステラ7’741CおいてIテ
ンシ璽メータ47の出力信号をMPU51内に入力して
第1分岐路14に対する現在の流路制御弁の開口面積S
を計算する。次いでステ、グア5において目標開口面積
SSが現在の開口面積Sよシも大きいか否かが判別され
る。ステップ75において目標開口面積SSが現在の開
口面積Sよシを大きいと判別されたときはステ、f76
において電磁制御弁37のソレノイド43に印加すべき
/臂ルスのパルス巾PLに一定値ムが加算され、この加
算結果をPLとしてステ、グア7に進む。一方、ステ、
シフ5において目標開口面積SSが現在の開口面積Sよ
シも大きくないと判別、されたときはステ、プ78に進
み、ステップ78において目S開口面積SSが現在の開
口面積Sよりも小さいか否かが判別される。ステップ7
8において目標開口面積SSが現在の開口面積Sよυも
小さいと判別されたときはステップ79においてパルス
巾PLから一定値Aを減算し、この減算結果をPLとし
てステップ77に進む。一方、ステップ78において目
標開口面積SSが現在の開口面積8よりも小さくないと
判別されたときはステップ77に進む。ステップ77で
は斯くして得られた/4ルス巾PLを表わす2進数の駆
動データを出力ポート55に書込み、この出力?−ト5
5に書込まれた駆動データに基いて電磁制御弁37のソ
レノイド43の付勢制御が行なわれる。
FIG. 10 shows a flow chart for viewing and explaining the operation of the flow path control device according to the present invention. In FIG. 10, Stella f70 indicates that flow path control is performed by time interruption. First, in step 71, the output signal of the rotation speed sensor 48 is input into the MPU 51 to calculate the engine rotation speed, and then in step 72, the output signal of the negative pressure sensor 46 is input into the MPU 51. Next, in step 73, the target opening area SS of the flow path control valve for the 11 branch passage 14 is calculated from the relationship shown in Figure 1E13 stored in the ROM 53 based on the calculated 9 engine rotational speed N and the negative pressure P. In '741C, the output signal of the I-tensile meter 47 is input into the MPU 51 to determine the current opening area S of the flow path control valve for the first branch path 14.
Calculate. Next, in the step and guar 5, it is determined whether the target opening area SS is larger than the current opening area S. If it is determined in step 75 that the target opening area SS is larger than the current opening area S, step f76
At step 7, a constant value MU is added to the pulse width PL of the pulse to be applied to the solenoid 43 of the electromagnetic control valve 37, and this addition result is set as PL and the process proceeds to Step 7. On the other hand, Ste.
If it is determined in shift 5 that the target aperture area SS is not larger than the current aperture area S, the process proceeds to step 78, and in step 78, the eye S aperture area SS is determined to be smaller than the current aperture area S. It is determined whether or not. Step 7
When it is determined in step 8 that the target aperture area SS is smaller than the current aperture area S by υ, a constant value A is subtracted from the pulse width PL in step 79, and the subtraction result is used as PL, and the process proceeds to step 77. On the other hand, if it is determined in step 78 that the target opening area SS is not smaller than the current opening area 8, the process proceeds to step 77. In step 77, the binary drive data representing the /4 lus width PL thus obtained is written to the output port 55, and this output ? -G5
The energization control of the solenoid 43 of the electromagnetic control valve 37 is performed based on the drive data written in the control valve 5.

第11図は電磁制御弁37のソレノイド43に印加され
るパルスを示しておシ、このパルスが発生している間ソ
レノイド43が付勢される。前述し次ように第1分岐路
14に対する流路制御弁の現在の開口面積Sが目標開口
面積SSよシも小さなときには第12図に示すように開
口面積が目標開口面積SSをで達するまでノダルス巾が
順次一定巾づつ増大せしめられる。従ってソレノイド4
3に印加されるteルスのデユーティ−サイクルが次第
に増大するために負圧ダイアフラム装置30の負圧室3
4内の負圧は次第に大きくなシ、斯くして流路制御弁2
2が回動して目標開口面積SSとなる。なお、第13図
かられかるように機関低負荷低速運転時、機関高負荷低
速運転時並びに機関低負荷高速運転時にはS−Rフリッ
デフロッ7’61の出力電圧が継続的に低レベルとなる
ためにソレノイド43が消勢されつらけ、斯くして流路
制御弁22が第2分岐路15を全開し続けると共に第1
分岐路14を閉鎖し続ける。一方、機関高速高負荷運転
時にはS−Rフリップフル2ゾロ1の出力電圧が継続的
に高レベルとなる九めにソレノイド43が付勢されつづ
け、斯くして流路制御弁22が第1分岐路14を全開し
続けると共に第2分岐路15を全閉し続ける。
FIG. 11 shows a pulse applied to solenoid 43 of electromagnetic control valve 37, and while this pulse is occurring, solenoid 43 is energized. As described above, when the current opening area S of the flow path control valve for the first branch passage 14 is smaller than the target opening area SS, the nodules are adjusted until the opening area reaches the target opening area SS, as shown in FIG. The width is sequentially increased by a constant width. Therefore solenoid 4
The duty cycle of the telus applied to the negative pressure chamber 3 of the negative pressure diaphragm device 30 increases gradually.
The negative pressure inside the flow path control valve 2 gradually increases.
2 rotates to reach the target opening area SS. As can be seen from Fig. 13, the output voltage of the S-R flip-flop 7'61 remains at a low level continuously during low-speed engine operation with low load, low-speed operation with high engine load, and high-speed operation with low engine load. The solenoid 43 is deenergized and turned on, and the flow path control valve 22 continues to fully open the second branch path 15 and the first branch path 15.
Branch road 14 will remain closed. On the other hand, during engine high-speed, high-load operation, the output voltage of the S-R flip full 2 zoro 1 continues to be at a high level, and the solenoid 43 continues to be energized, thus causing the flow path control valve 22 to switch to the first branch. The passage 14 is kept fully open, and the second branch passage 15 is kept fully closed.

上述したように吸入空気量の少ない機関低負荷低速運転
時、機関高負荷低速運転時並びに機関低負荷高速運転時
には流路制御弁22が第1分岐路14を全閉すると共に
第2分岐路15を全開する。
As described above, when the engine is operating at low load and low speed with a small amount of intake air, when the engine is operating at high load and low speed, and when the engine is operating at low load and high speed, the flow path control valve 22 fully closes the first branch passage 14 and closes the second branch passage 15. fully open.

このと鳶入口通路部A内に送シ込まれた混合気の一部が
主分岐路13内に流入し、残シの混合気は入口通路部A
から渦巻部B内に流入して渦巻部B内に旋回流を発生す
る。一方、主分岐路13内に流入した混合気祉第2分岐
路15を介して出口開口19から渦巻開始部り内に流出
し、出口開口19から流出する混合気によって渦巻部B
内に発生した旋回流が増勢される。このようにして増勢
された旋回流は旋回しつつ燃焼室4内に流入し、斯くし
て燃焼室4内には強力な旋回流が発生せしめられる。一
方、吸入空気量が多い機関高速高負荷運転時には流路制
御弁22が第1分岐路14を全開する°と共に第2分岐
路15を全閉する。従ってこのとき入口通路郁A内に送
シ込まれた混合気の一部がt−pすぐに延びる流れ抵抗
の小さな主分岐路13並びに第1分岐路14を介して渦
巻部B内に送シ込まれ、残りの混合気が入口通路部Aか
ら渦巻部B内に流入する。第1分岐路14の出口開口1
7から流出する混合気は入口通路部ムから渦巻部上壁面
18に沿って流れる混合気流に正面から衝突してこの混
合気流を減速させ、斯くして旋回流が弱められる。この
ように機関高速高負荷運転時には流れ抵抗の小さな主分
岐路13並びに第1分岐路14を介して大量の混合気が
渦巻部B内に送シ込まれ、更に入口通路部ムから渦巻部
B内に流入し要理金気による旋回流が弱められるので高
い充填効率を確保することができる。また、入口通路部
Aに傾斜側壁ip9mを設けることによって入口通路部
Aに送シ込まれた混合気の一部は下向きの力を与えられ
、その結果この混合気は旋回することなく入口通路部A
C)下壁面に沿って渦巻部B内に流入するために流入抵
抗は小さくなり、斯くして高速高負荷運転時における充
填効率を更に高めることができる。
At this time, part of the air-fuel mixture sent into the inlet passage A flows into the main branch passage 13, and the remaining air-fuel mixture flows into the inlet passage A.
Flows into the spiral part B from the inside of the spiral part B, and generates a swirling flow inside the spiral part B. On the other hand, the air-fuel mixture that has flowed into the main branch passage 13 flows out from the outlet opening 19 into the swirl starting part through the second branch passage 15, and is caused by the air-fuel mixture flowing out from the outlet opening 19 into the swirl part B.
The swirling flow generated within is intensified. The swirling flow thus increased in force flows into the combustion chamber 4 while swirling, and thus a strong swirling flow is generated within the combustion chamber 4. On the other hand, during engine high-speed, high-load operation with a large amount of intake air, the flow path control valve 22 fully opens the first branch passage 14 and fully closes the second branch passage 15. Therefore, at this time, a part of the air-fuel mixture injected into the inlet passage A is sent into the volute B through the main branch passage 13 and the first branch passage 14 with low flow resistance, which extend directly from t-p. The remaining air-fuel mixture flows from the inlet passage section A into the swirl section B. Outlet opening 1 of first branch path 14
The air-fuel mixture flowing out from the inlet passage 7 collides head-on with the air-mixture flow flowing along the upper wall surface 18 of the swirl portion from the inlet passage portion M, decelerating this air-mixture flow, thus weakening the swirling flow. In this manner, during high-speed, high-load operation of the engine, a large amount of air-fuel mixture is sent into the volute part B through the main branch passage 13 and the first branch passage 14, which have small flow resistance, and is further pumped into the volute part B from the inlet passage part M. Since the swirling flow caused by the catholic metal gas flowing into the tank is weakened, high filling efficiency can be ensured. In addition, by providing the inclined side wall ip9m in the inlet passage A, a part of the air-fuel mixture sent into the inlet passage A is given a downward force, and as a result, this air-fuel mixture flows through the inlet passage without swirling. A
C) The inflow resistance becomes small because the inflow flows into the spiral part B along the lower wall surface, thus making it possible to further improve the filling efficiency during high-speed, high-load operation.

一方、第12図において曲線81 と曲l1lSoの間
の領域では曲線S1から8.IS、を経て曲線S、に向
かうに従って、即ち吸入空気量が増大するに従って第1
分岐路14に対する流路制御弁22の開口面積が徐々に
大きくなる。吸入空気量が少ないときには安定した燃焼
を確保するために強力な乱れを燃焼室4内に発生せしめ
ることが必要であるが吸入空気量が増大すると自然発生
の乱れが強力となるためにむしろ旋回流のような強制的
な乱れを抑制することが必要とされ、更に吸入空気量が
増大するにつれて出力低下をひき起こす充填効率の低下
を阻止することが必要となる。従って吸入空気量が増大
するにつれて第1分岐路14の開口面積を徐々に大きく
すると共に第2分−岐路15の開口面積を徐々に小さく
することによって旋回流の発生を抑制しつつ充填効率の
低下が阻止され、斯(して吸入空気量に応じた最適の旋
回流と高い充填効率を確保することがてきる。
On the other hand, in the area between curve 81 and curve l1lSo in FIG. 12, curves S1 to 8. As the intake air amount increases, as the intake air amount increases, the first
The opening area of the flow path control valve 22 with respect to the branch path 14 gradually increases. When the amount of intake air is small, it is necessary to generate strong turbulence within the combustion chamber 4 in order to ensure stable combustion, but as the amount of intake air increases, the naturally occurring turbulence becomes stronger, and the swirling flow is more likely to occur. It is necessary to suppress forced turbulence such as this, and it is also necessary to prevent a decrease in charging efficiency that causes a decrease in output as the amount of intake air increases. Therefore, as the amount of intake air increases, the opening area of the first branch passage 14 is gradually increased and the opening area of the second branch passage 15 is gradually decreased, thereby suppressing the generation of swirling flow and reducing the filling efficiency. In this way, it is possible to ensure an optimal swirl flow according to the amount of intake air and high filling efficiency.

以上述べたように本発明によれは機関低速低負荷運転時
、機関低負荷高速運転時並びに機関高負荷低速運転時に
は強力な旋回流を燃焼室内に発生せしめることができる
ので安定した燃焼を確保できると共に特に機関高負荷低
速運転時にノッキングの発生を抑制することができる。
As described above, according to the present invention, a strong swirling flow can be generated in the combustion chamber when the engine is operated at low speed and low load, when the engine is operated at high speed with low load, and when the engine is operated at high load and low speed, so that stable combustion can be ensured. At the same time, it is possible to suppress the occurrence of knocking, especially when the engine is operated at high load and low speed.

iた機関高速高負荷運転時には旋回流の発生を抑制しつ
つ高い充填効率を確保することができるので高出力を得
ることができる。更に、機関中負荷中速運転時には吸入
空気量の増大に応じて弱められる最適の旋回流と高い充
填効率を得ることができる。
When the engine is operated at high speed and under high load, high charging efficiency can be ensured while suppressing the occurrence of swirling flow, so high output can be obtained. Furthermore, when the engine is operated at medium load and medium speed, it is possible to obtain an optimal swirling flow that is weakened as the amount of intake air increases and high charging efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係ゐ内燃機関の平面図、第2図は館1
図の■−■線に沿ってみた断面図、第3図はヘリカル型
吸気/−)の形状を示す斜視図、第4図は第3図の平面
図、第5図は第4図のヘリカル!!!!吸気−−トの平
面断面図、第6図は第4図の■−■線に沿ってみた断面
図、第7図は第4図の■−■線に沿りてみた断面図、第
8図は第4図の■−■線に沿りてみた断面図、第9図は
流路制御装置の全体図、第10図は流路制御装置の作動
を説明するためのフローチャート、第11図は電磁制御
弁のンレノイドに印加されるパルスを示す線図、第12
図はスライド弁の開口面積を示す図である。 5・・・吸気弁、6・・・吸気/−)、13・・・主分
岐路、14・・・第1分岐路、15・・・WJ2分岐路
、22・・・流路制御弁、30・・・負圧ダイアフラム
装置、37・・・電磁制御弁、50・・・電子制御ユニ
y)。 特許出願人 ト1夕自動車工業株式会社 特許出願代理人 弁理士 青 木   朗 弁理士 西 舘 和 之 弁理士 吉 1)正 行 弁理士 山 口 昭 之 第1回 第3回
Fig. 1 is a plan view of an internal combustion engine according to the present invention, and Fig. 2 is a plan view of an internal combustion engine according to the present invention.
Figure 3 is a perspective view showing the shape of the helical intake /-), Figure 4 is the plan view of Figure 3, and Figure 5 is the helical type of Figure 4. ! ! ! ! 6 is a cross-sectional view taken along the line ■-■ in FIG. 4, FIG. 7 is a cross-sectional view taken along the line ■-■ in FIG. 4, and FIG. The figure is a sectional view taken along the line ■-■ in Figure 4, Figure 9 is an overall view of the flow path control device, Figure 10 is a flowchart for explaining the operation of the flow path control device, and Figure 11 is a diagram showing the pulse applied to the solenoid of the solenoid control valve, the 12th
The figure shows the opening area of the slide valve. 5... Intake valve, 6... Intake/-), 13... Main branch path, 14... First branch path, 15... WJ2 branch path, 22... Flow path control valve, 30... Negative pressure diaphragm device, 37... Solenoid control valve, 50... Electronic control unit y). Patent applicant To1 Yu Jidosha Kogyo Co., Ltd. Patent application representative Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Yoshi 1) Tadashi Patent attorney Akira Yamaguchi 1st 3rd session

Claims (1)

【特許請求の範囲】[Claims] 吸気弁脚りに形成された渦巻部と、該渦巻部に接線状に
接続されかつほぼまっすぐに延びる入口通路部とによシ
構成された吸気−一部において、上記入口通路部から分
岐された主分岐路を更に第1分岐路と第2分岐路に分岐
して該第1分岐路を上記渦巻部の渦巻終端部に連結する
と共に該第2分岐路を渦巻開始部に連結し、上記第1分
岐路と第2分岐路の分岐部に該第1分岐路並びに第2分
岐−内に流入する空気量を制御する流路制御弁を設けた
吸気デートの流路制御装置。
Intake configured by a spiral formed in the intake valve leg and an inlet passage connected tangentially to the spiral and extending substantially straight - in part branched off from the inlet passage The main branching path is further branched into a first branching path and a second branching path, the first branching path is connected to the spiral end of the spiral portion, and the second branching path is connected to the spiral starting portion, A flow path control device for an intake date, in which a flow path control valve for controlling the amount of air flowing into the first branch path and the second branch path is provided at a branch portion of a first branch path and a second branch path.
JP56118517A 1981-07-30 1981-07-30 Flow-passage controller for intake port Granted JPS5828527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118517A JPS5828527A (en) 1981-07-30 1981-07-30 Flow-passage controller for intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118517A JPS5828527A (en) 1981-07-30 1981-07-30 Flow-passage controller for intake port

Publications (2)

Publication Number Publication Date
JPS5828527A true JPS5828527A (en) 1983-02-19
JPH021966B2 JPH021966B2 (en) 1990-01-16

Family

ID=14738579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118517A Granted JPS5828527A (en) 1981-07-30 1981-07-30 Flow-passage controller for intake port

Country Status (1)

Country Link
JP (1) JPS5828527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325171B2 (en) * 1982-11-16 1988-05-24 Matsuda Kk
US5435283A (en) * 1994-01-07 1995-07-25 Cummins Engine Company, Inc. Swirl control system for varying in-cylinder swirl
JP2008038654A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Intake device for internal combustion engine
JP2008215155A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Cylinder head of multiple-cylinder internal combustion engine and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325171B2 (en) * 1982-11-16 1988-05-24 Matsuda Kk
US5435283A (en) * 1994-01-07 1995-07-25 Cummins Engine Company, Inc. Swirl control system for varying in-cylinder swirl
JP2008038654A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Intake device for internal combustion engine
JP2008215155A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Cylinder head of multiple-cylinder internal combustion engine and its manufacturing method

Also Published As

Publication number Publication date
JPH021966B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
CN100538045C (en) The fuel control unit of internal-combustion engine and method thereof
JPH04171259A (en) Exhaust gas reflux quantity controller
JPH086585B2 (en) 2-cycle internal combustion engine
JPS6035539B2 (en) Flow path control device for helical intake port
JPS5828525A (en) Flow-passage controller for helical-type intake port
JPS6026185Y2 (en) Internal combustion engine intake system
JPS5828527A (en) Flow-passage controller for intake port
JPH0478816B2 (en)
JP3182787B2 (en) Fuel supply control device for internal combustion engine
KR900000146B1 (en) Fuel control device for internal combustion engine
EP0438252A1 (en) An internal combustion engine
JPS6242100Y2 (en)
JPS6341539Y2 (en)
JPS6029815B2 (en) Flow path control device for helical intake port
JP2887979B2 (en) In-cylinder internal combustion engine
JPS58204929A (en) Helical intake port
JPS58204928A (en) Helical intake port
JPS58170824A (en) Suction air control device for direct injection type diesel engine
JPS647227Y2 (en)
JPS61164037A (en) Fuel supply device of internal-combustion engine
JPH0343447B2 (en)
JPH0433378Y2 (en)
JPS6035538B2 (en) Flow path control device for helical intake port
JP2577563B2 (en) Engine with mechanical supercharger
JPH0433377Y2 (en)