JPH034732B2 - - Google Patents

Info

Publication number
JPH034732B2
JPH034732B2 JP56116452A JP11645281A JPH034732B2 JP H034732 B2 JPH034732 B2 JP H034732B2 JP 56116452 A JP56116452 A JP 56116452A JP 11645281 A JP11645281 A JP 11645281A JP H034732 B2 JPH034732 B2 JP H034732B2
Authority
JP
Japan
Prior art keywords
valve
intake
negative pressure
amount
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56116452A
Other languages
Japanese (ja)
Other versions
JPS5828518A (en
Inventor
Toshio Yamada
Kenji Kato
Soichi Matsushita
Tokuta Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56116452A priority Critical patent/JPS5828518A/en
Publication of JPS5828518A publication Critical patent/JPS5828518A/en
Publication of JPH034732B2 publication Critical patent/JPH034732B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/082Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートの流路制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow path control device for a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題があ
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内にアクチ
ユエータによつて作動される常時閉鎖型開閉弁を
設けて機関吸入空気量が所定量よりも大きくなつ
たときにアクチユエータを作動させて開閉弁を開
弁するようにしたヘリカル型吸気ポート流路制御
装置が本出願人により既に提案されている(特願
昭56−51149号、特公昭60−35535号公報参照)。
このヘリカル型吸気ポートでは機関吸入空気量の
多い機関高速高負荷運転時にヘリカル型吸気ポー
ト入口通路部内に送り込まれた吸入空気の一部が
分岐路を介してヘリカル型吸気ポート渦巻部内に
送り込まれるために吸入空気流に対する流れ抵抗
が低下し、斯くして高い充填効率を得ることがで
きる。しかしながらこの流路制御装置では吸入空
気量が減少したときに開閉弁が急激に閉弁せしめ
られるために急激なトルク変動を生じ、斯くして
車両運転性が悪化するという問題がある。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. There is a problem in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an actuator is installed in the branch path. The main helical intake port flow path control device is a helical intake port flow path control device that is equipped with a normally-closed on-off valve that is operated by the engine, and operates an actuator to open the on-off valve when the amount of engine intake air becomes larger than a predetermined amount. This has already been proposed by the applicant (see Japanese Patent Application No. 56-51149 and Japanese Patent Publication No. 35535-1983).
In this helical type intake port, when the engine is operated at high speed and under high load with a large amount of engine intake air, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through the branch passage. The flow resistance to the intake air flow is reduced and thus a high filling efficiency can be obtained. However, this flow path control device has a problem in that when the amount of intake air decreases, the on-off valve is suddenly closed, resulting in sudden torque fluctuations, which deteriorates vehicle drivability.

本発明は吸入空気量が減少したときに開閉弁を
徐々に閉弁せしめることによりトルクの変化を緩
やかにして良好な車両運転性を確保するようにし
たヘリカル型吸気ポートの流路制御装置を提供す
ることにある。
The present invention provides a flow path control device for a helical intake port that gradually closes an on-off valve when the amount of intake air decreases, thereby slowing changes in torque and ensuring good vehicle drivability. It's about doing.

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに彎曲した入口通路部Aと、吸気弁5の
弁軸周りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図並びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁面9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図に示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。なお、渦巻部B
の上壁面13は渦巻終端部Cにおいて下向きの急
傾斜壁Dに接続される。
3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall surface 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B. In addition, spiral part B
The upper wall surface 13 is connected to the downwardly inclined wall D at the spiral end C.

一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて側壁面12の上
端部に形成される。更に、シリンダヘツド3内に
は分岐路14を貫通して延びる開閉弁挿入孔17
が穿設され、この開閉弁挿入孔17内には夫々通
路開閉弁の作用をなすロータリ弁18が挿入され
る。このロータリ弁18は分岐路14内に配置さ
れかつ第9図に示すように薄板状をなす弁体19
と、弁体19と一体形成された弁軸20とを具備
し、この弁軸20は開閉弁挿入孔17内に嵌着さ
れた案内スリーブ21により回転可能に支承され
る。弁軸20は案内スリーブ21の頂面から上方
に突出し、この突出端部にアーム22が固着され
る。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. Furthermore, an on-off valve insertion hole 17 is provided in the cylinder head 3 and extends through the branch passage 14.
are drilled, and rotary valves 18 functioning as passage opening/closing valves are inserted into the opening/closing valve insertion holes 17, respectively. This rotary valve 18 is disposed within the branch passage 14 and has a thin plate-like valve body 19 as shown in FIG.
and a valve shaft 20 integrally formed with the valve body 19, and the valve shaft 20 is rotatably supported by a guide sleeve 21 fitted into the opening/closing valve insertion hole 17. The valve stem 20 projects upward from the top surface of the guide sleeve 21, and an arm 22 is fixed to the projecting end.

第10図を参照すると、吸気ポート6は吸気マ
ニホルド23のマニホルド枝管24を介して気化
器25に接続される。一方、各気筒のロータリ弁
18のアーム22の先端部は連結ロツド29によ
つて互に連結され、この連結ロツド29は負圧ダ
イアフラム装置30のダイアフラム31に固着さ
れた制御ロツド32に連結される。負圧ダイアフ
ラム装置30はダイアフラム31によつて大気か
ら隔離された負圧室33を有し、この負圧室33
内にダイアフラム押圧用圧縮ばね34が挿入され
る。負圧室33は導管35を介して大気連通制御
弁36の弁室37に連結される。弁室37は一方
では弁室37から吸気マニホルド23内に向けて
のみ流通可能な逆止弁38を介して吸気マニホル
ド23に連結され、他方では大気連通ポート39
並びにエアフイルタ40を介して大気に連通す
る。更に、大気連通制御弁36は電磁弁41を具
備し、この電磁弁41は大気連通ポート39の開
閉制御をする弁体42と、弁体42に連結された
可動プランジヤ43と、可動プランジヤ吸引用の
ソレノイド44から構成される。電磁弁41のソ
レノイド44は電子制御ユニツト50の出力端子
に接続される。
Referring to FIG. 10, the intake port 6 is connected to a carburetor 25 via a manifold branch 24 of an intake manifold 23. As shown in FIG. On the other hand, the ends of the arms 22 of the rotary valves 18 of each cylinder are connected to each other by a connecting rod 29, and this connecting rod 29 is connected to a control rod 32 fixed to a diaphragm 31 of a negative pressure diaphragm device 30. . The negative pressure diaphragm device 30 has a negative pressure chamber 33 isolated from the atmosphere by a diaphragm 31.
A compression spring 34 for pressing the diaphragm is inserted therein. The negative pressure chamber 33 is connected to a valve chamber 37 of an atmospheric communication control valve 36 via a conduit 35 . The valve chamber 37 is connected to the intake manifold 23 on the one hand via a check valve 38 that allows flow only from the valve chamber 37 into the intake manifold 23, and on the other hand is connected to an atmospheric communication port 39.
It also communicates with the atmosphere via an air filter 40. Further, the atmosphere communication control valve 36 includes a solenoid valve 41, and this solenoid valve 41 includes a valve body 42 for controlling the opening and closing of the atmosphere communication port 39, a movable plunger 43 connected to the valve body 42, and a movable plunger for suction. It is composed of a solenoid 44. Solenoid 44 of electromagnetic valve 41 is connected to an output terminal of electronic control unit 50.

電子制御ユニツト50はデイジタルコンピユー
タからなり、各種の演算処理を行なうマイクロプ
ロセツサ(MPU)51、ランダムアクセスメモ
リ(RAM)52、制御プログラム、演算定数等
が予め格納されているリードオンリメモリ
(ROM)53、入力ポート54並びに出力ポー
ト55が双方向性バス56を介して互に接続され
ている。更に、電子制御ユニツト50内には各種
クロツク信号を発生するクロツク発生器57が設
けられる。入力ポート54にはAD変換器58を
介して負圧センサ59が接続され、更に入力ポー
ト54には回転数センサ60が接続される。負圧
センサ59は吸気マニホルド23内の負圧に比例
した出力電圧を発生し、この電圧がAD変換器5
8において対応する2進数に変換されてこの2進
数が入力ポート54並びにバス56を介して
MPU51に入力される。一方、回転数センサ6
0はクランクシヤフトが所定クランク角度回転す
る毎にパルスを発生し、このパルスが入力ポート
54並びにバス56を介してMPU51に入力さ
れる。
The electronic control unit 50 consists of a digital computer, including a microprocessor (MPU) 51 that performs various calculation processes, a random access memory (RAM) 52, and a read-only memory (ROM) in which control programs, calculation constants, etc. are stored in advance. 53, an input port 54, and an output port 55 are connected to each other via a bidirectional bus 56. Furthermore, a clock generator 57 is provided within the electronic control unit 50 for generating various clock signals. A negative pressure sensor 59 is connected to the input port 54 via an AD converter 58, and a rotation speed sensor 60 is further connected to the input port 54. The negative pressure sensor 59 generates an output voltage proportional to the negative pressure in the intake manifold 23, and this voltage is output to the AD converter 5.
8, the binary number is converted into a corresponding binary number, and this binary number is sent via input port 54 and bus 56.
It is input to MPU51. On the other hand, the rotation speed sensor 6
0 generates a pulse every time the crankshaft rotates by a predetermined crank angle, and this pulse is input to the MPU 51 via the input port 54 and bus 56.

出力ポート55は電磁弁41を作動するための
データを出力するために設けられており、この出
力ポート55には2進数のデータがMPU51か
らバス56を介して書き込まれる。出力ポート5
5の各出力端子はダウンカウンタ61の対応する
各入力端子に接続されている。ダウンカウンタ6
1はMPU51から書き込まれた2進数のデータ
をそれに対応する時間の長さに変換するために設
けられており、このダウンカウンタ61は出力ポ
ート55から送り込まれたデータのダウンカウン
トをクロツク発生器57のクロツク信号によつて
開始し、カウント値が0になるとカウントを完了
して出力端子にカウント完了信号を発生する。ダ
ウンカウンタ61の出力端子はアンドゲート62
の一方の入力端子aに接続され、アンドゲート6
2の他方の入力端子bは出力ポート55に接続さ
れる。一方、S−Rフリツプフロツプ63のリセ
ツト入力端子Rはアンドゲート62の出力端子に
接続され、S−Rフリツプフロツプ63のセツト
入力端子Sはクロツク発生器57に接続される。
S−Rフリツプフロツプ63はクロツク発生器5
7のクロツク信号によりダウンカウンタ61のダ
ウンカウント開始と同時にセツトされ、アンドゲ
ート62の入力端子aが高レベルであるとすると
ダウンカウント完了時にダウンカウント完了信号
によつてリセツトされる。従つてこの場合、S−
Rフリツプフロツプ63の出力端子Qはダウンカ
ウントが行なわれている間高レベルとなる。一
方、アンドゲート62の入力端子bが低レベルの
場合にはS−Rフリツプフロツプ63はセツトさ
れ続けるのでS−Rフリツプフロツプ63の出力
端子Qは高レベルになり続ける。S−Rフリツプ
フロツプ63の出力端子Qはアンドゲート64の
一方の入力端子aに接続され、アンドゲート64
の他方の入力端子bは出力ポート55に接続され
る。更に、アンドゲート64の出力端子は電力増
巾回路65を介して電磁弁41のソレノイド44
に接続される。従つてアンドゲート64の入力端
子bが低レベルのときには電磁弁41のソレノイ
ド44は消勢され、アンドゲート62の入力端子
b並びにアンドゲート64の入力端子bが共に高
レベルであれば電磁弁41のソレノイド44はダ
ウンカウントが行なわれている間付勢される。一
方、アンドゲート62の入力端子bが低レベルで
あつてアンドゲート64の入力端子bが高レベル
の場合には電磁弁41のソレノイド44が付勢さ
れ続ける。
The output port 55 is provided to output data for operating the electromagnetic valve 41, and binary data is written to the output port 55 from the MPU 51 via the bus 56. Output port 5
Each output terminal of the down counter 61 is connected to a corresponding input terminal of the down counter 61. down counter 6
1 is provided to convert the binary data written from the MPU 51 into the corresponding time length, and this down counter 61 counts down the data sent from the output port 55 to the clock generator 57. When the count value reaches 0, the count is completed and a count completion signal is generated at the output terminal. The output terminal of the down counter 61 is an AND gate 62
is connected to one input terminal a of the AND gate 6
The other input terminal b of 2 is connected to the output port 55. On the other hand, the reset input terminal R of the S-R flip-flop 63 is connected to the output terminal of the AND gate 62, and the set input terminal S of the S-R flip-flop 63 is connected to the clock generator 57.
The S-R flip-flop 63 is connected to the clock generator 5.
7 is set at the same time as the down counter 61 starts counting down, and if the input terminal a of the AND gate 62 is at a high level, it is reset by the down counting completion signal when the down counting is completed. Therefore, in this case, S-
The output terminal Q of the R flip-flop 63 is at a high level while down-counting is being performed. On the other hand, when the input terminal b of the AND gate 62 is at a low level, the S-R flip-flop 63 continues to be set, so the output terminal Q of the S-R flip-flop 63 continues to be at a high level. The output terminal Q of the S-R flip-flop 63 is connected to one input terminal a of the AND gate 64.
The other input terminal b of is connected to the output port 55. Furthermore, the output terminal of the AND gate 64 is connected to the solenoid 44 of the solenoid valve 41 via a power amplification circuit 65.
connected to. Therefore, when the input terminal b of the AND gate 64 is at a low level, the solenoid 44 of the solenoid valve 41 is deenergized, and when the input terminal b of the AND gate 62 and the input terminal b of the AND gate 64 are both at a high level, the solenoid 44 of the solenoid valve 41 is deenergized. The solenoid 44 is energized while the down count is being performed. On the other hand, when the input terminal b of the AND gate 62 is at a low level and the input terminal b of the AND gate 64 is at a high level, the solenoid 44 of the electromagnetic valve 41 continues to be energized.

電磁弁41のソレノイド44が付勢されると弁
体42は大気連通ポート39を開口する。その結
果、負圧室33内は大気圧となるのでダイアフラ
ム31は圧縮ばね34のばね力により下方に移動
し、斯くしてロータリ弁18が回動せしめられて
分岐路14を全開する。一方、電磁弁41のソレ
ノイド44が消勢されると弁体42が大気連通ポ
ート39を閉鎖する。このとき逆止弁38は吸気
マニホルド23内の負圧が負圧ダイアフラム装置
30の負圧室33内の負圧よりも大きくなると開
弁し、吸気マニホルド25内の負圧が負圧室33
内の負圧よりも小さくなると閉弁するので弁体4
2が閉弁している限り負圧室33内の負圧は吸気
マニホルド23内に発生した最大負圧に維持され
る。負圧室33内に負圧が加わるとダイアフラム
31は圧縮ばね34に抗して上昇し、その結果ロ
ータリ弁18が回動せしめられて分岐路14が閉
鎖される。また、両アンドゲート62,64の入
力端子bが共に高レベルである場合には前述した
ように電磁弁41のソレノイド44はダウンカウ
ントが行なわれている間、即ちS−Rフリツプフ
ロツプ63の出力端子Qに表われる電圧が高レベ
ルのときに付勢される。従つて電磁弁41の弁体
42が大気連通ポート39を開口する時間割合は
ソレノイド44に印加されるパルスのデユーテイ
比に比例する。弁体42が大気連通ポート39を
開口する時間が長くなればなるほど負圧ダイアフ
ラム装置30の負圧室33内の負圧が小さくな
り、ロータリ弁18の開口面積が大きくなる。従
つてロータリ弁18の開口面積はソレノイド44
に印加されるパルスのデユーテイ比が大きくなる
ほど大きくなることがわかる。
When the solenoid 44 of the electromagnetic valve 41 is energized, the valve body 42 opens the atmosphere communication port 39. As a result, the inside of the negative pressure chamber 33 becomes atmospheric pressure, so the diaphragm 31 is moved downward by the spring force of the compression spring 34, and the rotary valve 18 is thus rotated to fully open the branch passage 14. On the other hand, when the solenoid 44 of the electromagnetic valve 41 is deenergized, the valve body 42 closes the atmosphere communication port 39. At this time, the check valve 38 opens when the negative pressure in the intake manifold 23 becomes larger than the negative pressure in the negative pressure chamber 33 of the negative pressure diaphragm device 30, and the negative pressure in the intake manifold 25 increases to the negative pressure chamber 33.
The valve closes when the pressure becomes smaller than the negative pressure inside the valve body 4.
As long as the valve 2 is closed, the negative pressure in the negative pressure chamber 33 is maintained at the maximum negative pressure generated in the intake manifold 23. When negative pressure is applied within the negative pressure chamber 33, the diaphragm 31 rises against the compression spring 34, and as a result, the rotary valve 18 is rotated and the branch passage 14 is closed. Further, when the input terminals b of both AND gates 62 and 64 are both at a high level, the solenoid 44 of the solenoid valve 41 is activated while the down count is being performed, that is, the output terminal of the S-R flip-flop 63, as described above. It is energized when the voltage appearing at Q is at a high level. Therefore, the time ratio during which the valve body 42 of the solenoid valve 41 opens the atmosphere communication port 39 is proportional to the duty ratio of the pulse applied to the solenoid 44. The longer the time that the valve body 42 opens the atmospheric communication port 39, the lower the negative pressure in the negative pressure chamber 33 of the negative pressure diaphragm device 30, and the larger the opening area of the rotary valve 18 becomes. Therefore, the opening area of the rotary valve 18 is equal to that of the solenoid 44.
It can be seen that the larger the duty ratio of the pulse applied to the pulse is, the larger the duty ratio becomes.

第12図は電磁弁41を作動すべき機関回転数
N(r.p.m)と吸気マニホルド内の負圧P(−mm
Hg)との関係を示している。なお、第12図の
実線Wよりも上方のハツチングで示される領域
R0において電磁弁41のソレノイド44が付勢
される。第12図の実線Wはほぼ吸入空気量が一
定のところを示しており、従つて吸入空気量が所
定量以上になるとソレノイド44が付勢されるこ
とがわかる。第12図において実線Wで示される
機関回転数N(r.p.m)と負圧P(−mmHg)との関
係は関数或いはデータテーブルの形で予めROM
53内に記憶されている。
Figure 12 shows the engine speed N (rpm) at which the solenoid valve 41 should be activated and the negative pressure P (-mm) in the intake manifold.
Hg). Note that the area indicated by hatching above the solid line W in FIG.
At R 0 , the solenoid 44 of the solenoid valve 41 is energized. The solid line W in FIG. 12 indicates a point where the amount of intake air is approximately constant, and therefore it can be seen that the solenoid 44 is energized when the amount of intake air exceeds a predetermined amount. The relationship between the engine speed N (rpm) and the negative pressure P (-mmHg), shown by the solid line W in Fig. 12, is stored in advance in the ROM in the form of a function or data table.
53.

次に第11図を参照して本発明による流路制御
装置の作動について説明する。第11図を参照す
ると、まず始めにステツプ70において回転数セン
サ60の出力パルス間隔からMPU51内におい
て機関回転数N(r.p.m)が計算され、次いでステ
ツプ71において吸気マニホルド内の負圧P(−mm
Hg)を表わす負圧センサ59の出力信号がMPU
51内に入力される。次いでステツプ72において
機関回転数Nと負圧Pとの交点Rが第12図の曲
線Wよりも大きいか否か、即ち領域R0内にある
か否かが判別される。ステツプ72において機関回
転数Nと負圧Pとの交点Rが曲線Wよりも大きい
と判別されたときはステツプ73に進んで閉弁中フ
ラグが立てられ、次いでステツプ74においてソレ
ノイドを付勢すべき駆動信号が出力ポート55に
書込まれる。このときアンドゲート62の入力端
子bが低レベルになると共にアンドゲート64の
入力端子bが高レベルになるためにソレノイド4
4が付勢され、斯くして前述したようにロータリ
弁18が分岐路14を全開する。一方、ステツプ
72において機関回転数Nと負圧Pとの交点が第1
2図の曲線Wよりも大きくないと判別されたとき
はステツプ75に進んで閉弁中フラグが立つている
か否かが判別される。ステツプ75において閉弁中
フラグが立つていないと判別されたときはステツ
プ76に進んでソレノイドを消勢すべき駆動データ
を出力ポート55に書込む。このときアンドゲー
ト64の入力端子bが低レベルとなるためにソレ
ノイド44は消勢され、斯くしてロータリ弁18
が分岐路14を全閉する。
Next, the operation of the flow path control device according to the present invention will be explained with reference to FIG. Referring to FIG. 11, first, in step 70, the engine rotation speed N (rpm) is calculated in the MPU 51 from the output pulse interval of the rotation speed sensor 60, and then in step 71, the negative pressure P (-mm) in the intake manifold is calculated.
The output signal of the negative pressure sensor 59 indicating Hg) is
51. Next, in step 72, it is determined whether the intersection point R between the engine speed N and the negative pressure P is larger than the curve W in FIG. 12, that is, whether it is within the region R0 . When it is determined in step 72 that the intersection point R between the engine speed N and the negative pressure P is larger than the curve W, the process proceeds to step 73 where a valve closing flag is set, and then in step 74 the solenoid should be energized. A drive signal is written to output port 55. At this time, the input terminal b of the AND gate 62 becomes low level and the input terminal b of the AND gate 64 becomes high level, so that the solenoid 4
4 is energized, and thus the rotary valve 18 fully opens the branch passage 14 as described above. On the other hand, step
At 72, the intersection of engine speed N and negative pressure P is the first
If it is determined that it is not larger than the curve W in FIG. 2, the process proceeds to step 75, where it is determined whether or not the valve closing flag is set. If it is determined in step 75 that the valve-closing flag is not set, the process proceeds to step 76, where drive data for deenergizing the solenoid is written to the output port 55. At this time, the input terminal b of the AND gate 64 becomes low level, so the solenoid 44 is deenergized, and thus the rotary valve 18
completely closes the branch path 14.

一方、ステツプ75において閉弁中フラグが立つ
ていると判別された場合、即ち前回の処理サイク
ルでは機関回転数Nと負圧Pとの交点Rが第12
図において領域R0内にあり、今回の処理サイク
ルでは交点Rが第12図の実線Wよりも小さくな
つた場合にはステツプ77に進む。ステツプ77では
ソレノイド44に印加されるべきパルス巾Kから
一定値Aが減算され、この減算結果をパルス巾K
とする。次いでステツプ78においてパルス巾Kが
一定値Bよりも小さいか否かが判別され、パルス
巾Kが一定値Bよりも小さくない場合にはステツ
プ79に進んでソレノイドの駆動データが出力ポー
ト55に書込まれる。このとき両アンドゲート6
2,64の入力端子bは共に高レベルとなり、パ
ルス巾Kに相当する時間だけダウンカウンタ61
のダウンカウンタ作用が行なわれる。ステツプ77
を通過する毎にパルス巾Kは一定値Aづつ減算さ
れるのでソレノイド44に印加されるパルス巾K
は第13図に示すように徐々に狭くなる。従つて
前述したように負圧室33内の負圧が徐々に大き
くなるためにロータリ弁18が分岐路14を徐々
に閉弁する。一方、ステツプ78においてパルス巾
Kが一定値Bよりも小さいと判別されたときはス
テツプ80に進んでパルス巾Kに初期値K0が入れ
られる。次いでステツプ81において閉弁中フラグ
が降了された後ステツプ76に進んでソレノイドを
消勢すべき駆動データが出力ポート55に書込ま
れる。
On the other hand, if it is determined in step 75 that the valve closing flag is set, that is, in the previous processing cycle, the intersection R between the engine speed N and the negative pressure P was the 12th point.
In the figure, if the intersection point R is within the region R0 and the intersection point R is smaller than the solid line W in FIG. 12 in the current processing cycle, the process advances to step 77. In step 77, a constant value A is subtracted from the pulse width K to be applied to the solenoid 44, and the result of this subtraction is used as the pulse width K.
shall be. Next, in step 78, it is determined whether the pulse width K is smaller than the constant value B, and if the pulse width K is not smaller than the constant value B, the process proceeds to step 79, where the solenoid drive data is written to the output port 55. be included. At this time, both AND gate 6
Both input terminals b of 2 and 64 become high level, and the down counter 61 is activated for a time corresponding to the pulse width K.
A down counter action is performed. step 77
The pulse width K is subtracted by a constant value A every time the pulse width K is passed through the solenoid 44.
becomes gradually narrower as shown in FIG. Therefore, as described above, since the negative pressure in the negative pressure chamber 33 gradually increases, the rotary valve 18 gradually closes the branch passage 14. On the other hand, if it is determined in step 78 that the pulse width K is smaller than the constant value B, the process proceeds to step 80, where the pulse width K is set to the initial value K0 . After the valve closing flag is lowered in step 81, the process proceeds to step 76, where drive data for deenergizing the solenoid is written to the output port 55.

上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁18が分岐路14を遮
断している。このとき入口通路部A内に送り込ま
れた混合気は渦巻部Bの上壁面13に沿つて旋回
しつつ渦巻部B内を下降し、次いて旋回しつつ燃
焼室4内に流入するので燃焼室4内には強力な旋
回流が発生せしめられる。一方、吸入空気量が多
い機関高速高負荷運転時にはロータリ弁18が開
弁するので入口通路部A内に送り込まれた混合気
の一部が流れ抵抗の小さな分岐路14を介して渦
巻部B内に送り込まれる。渦巻部Bの上壁面13
に沿つて進む混合気流は渦巻終端部Cの急傾斜壁
Dによつて下向きに流路が偏向せしめられるため
に渦巻終端部C、即ち分岐路14の出口開口16
には大きな負圧が発生する。従つて入口通路部A
と渦巻終端部Cとの圧力差が大きいのでロータリ
弁18が開弁すると大量の混合気が分岐路14を
介して渦巻部B内に送り込まれる。このように機
関高速高負荷運転時にはロータリ弁18が開弁す
ることによつて全体の流路面積が増大するばかり
でなく大量の吸入空気が流れ抵抗の小さな分岐路
14を介して渦巻部B内に送り込まれるので高い
充填効率を確保することができる。また、入口通
路部Aに傾斜面9aを設けることによつて入口通
路部Aに送り込まれた混合気の一部は下向きの力
を与えられ、その結果この混合気は旋回すること
なく入口通路部Aの下壁面に沿つて渦巻部B内に
流入するために流入抵抗は小さくなり、斯くして
高速高負荷運転時における充填効率を更に高める
ことができる。また、吸入空気量が減少したとき
にロータリ弁が徐々に閉弁せしめられるので急激
なトルクの変化を阻止することができる。
As mentioned above, the rotary valve 18 shuts off the branch passage 14 when the engine is operating at low speed and low load with a small amount of intake air. At this time, the air-fuel mixture sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. 4, a strong swirling flow is generated. On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 18 opens, so that part of the air-fuel mixture sent into the inlet passage A flows into the volute part B via the branch passage 14 with low flow resistance. sent to. Upper wall surface 13 of spiral part B
Since the flow path is deflected downward by the steeply inclined wall D of the volute end C, the air mixture flow traveling along the vortex end C, that is, the outlet opening 16 of the branch passage 14
A large negative pressure is generated. Therefore, the entrance passage section A
Since the pressure difference between the vortex end portion C and the vortex end portion C is large, when the rotary valve 18 opens, a large amount of air-fuel mixture is sent into the vortex portion B via the branch passage 14. As described above, when the rotary valve 18 opens during engine high-speed and high-load operation, not only does the overall flow path area increase, but also a large amount of intake air flows into the volute B through the branch path 14 with low resistance. High filling efficiency can be ensured. In addition, by providing the inclined surface 9a in the inlet passage A, a portion of the air-fuel mixture fed into the inlet passage A is given a downward force, and as a result, this air-fuel mixture flows through the inlet passage without swirling. Since the fluid flows into the spiral portion B along the lower wall surface of A, the inflow resistance becomes small, thus making it possible to further improve the filling efficiency during high-speed, high-load operation. Further, since the rotary valve is gradually closed when the amount of intake air decreases, sudden changes in torque can be prevented.

以上述べたように本発明によれば吸入空気量が
減少せしめられたとき開閉弁が徐々に閉弁せしめ
られるので急激なトルクの変化を阻止することが
でき、斯くして良好な運転性を確保することがで
きる。一方、吸入空気量が急激に増大せしめられ
たときには開閉弁は即座に開弁するので良好な加
速を得ることができる。なお、本発明では吸入空
気量を吸気マニホルド負圧と機関回転数から求め
ているがエアフローメータを用いて吸入空気量を
計測することができる。
As described above, according to the present invention, when the amount of intake air is reduced, the on-off valve is gradually closed, making it possible to prevent sudden changes in torque, thus ensuring good drivability. can do. On the other hand, when the amount of intake air is suddenly increased, the on-off valve opens immediately, making it possible to obtain good acceleration. In the present invention, the amount of intake air is determined from the intake manifold negative pressure and the engine speed, but the amount of intake air can be measured using an air flow meter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2
図は第1図の−線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状を示す斜視図、
第4図は第3図の平面図、第5図は第3図の分岐
路に沿つて切断した側面断面図、第6図は第4図
の−線に沿つてみた断面図、第7図は第4図
の−線に沿つてみた断面図、第8図は第4図
の−線に沿つてみた断面図、第9図はロータ
リ弁の斜視図、第10図は流路制御装置の全体
図、第11図は流路制御装置の作動を説明するた
めのフローチヤート、第12図はロータリ弁の開
弁領域を示す図、第13図はソレノイドに印加さ
れるパルスを示す線図である。 5……吸気弁、6……ヘリカル型吸気ポート、
14……分岐路、18……ロータリー、30……
負圧ダイアフラム装置、41……電磁弁。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, Fig. 2 is a plan view of an internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1.
The figure is a perspective view showing the shape of a helical intake port.
Fig. 4 is a plan view of Fig. 3, Fig. 5 is a side sectional view taken along the branch road in Fig. 3, Fig. 6 is a sectional view taken along the - line in Fig. 4, and Fig. 7. is a sectional view taken along the - line in Fig. 4, Fig. 8 is a sectional view taken along the - line in Fig. 4, Fig. 9 is a perspective view of the rotary valve, and Fig. 10 is a sectional view of the flow path control device. An overall view, FIG. 11 is a flowchart for explaining the operation of the flow path control device, FIG. 12 is a diagram showing the valve opening area of the rotary valve, and FIG. 13 is a diagram showing the pulses applied to the solenoid. be. 5... Intake valve, 6... Helical intake port,
14... Branch road, 18... Rotary, 30...
Negative pressure diaphragm device, 41... solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁周りに形成された渦巻部と、該渦巻部
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、上記入口通路部から分岐されて上記
渦巻部の渦巻終端部に連通する分岐路をシリンダ
ヘツド内に形成すると共に該分岐路内に開閉弁を
設け、該開閉弁を吸入空気量に応動するアクチユ
エータに連結して吸入空気量が上記所定量以下に
低下したときに該開閉弁を徐々に全閉位置まで閉
弁せしめると共に吸入空気量が上記所定量を越え
たときに該開閉弁を即座に全開位置まで開弁せし
めるようにしたヘリカル型吸気ポートの流路制御
装置。
1. In a helical intake port constituted by a spiral portion formed around the intake valve and an inlet passage portion that is connected tangentially to the spiral portion and extends almost straight, the intake port is branched from the inlet passage portion and the above-mentioned A branch passage communicating with the spiral terminal end of the spiral part is formed in the cylinder head, and an on-off valve is provided in the branch passage, and the on-off valve is connected to an actuator that responds to the amount of intake air so that the amount of intake air reaches the above-mentioned level. A helical type valve that gradually closes the on-off valve to a fully closed position when the intake air amount falls below a certain amount, and immediately opens the on-off valve to a fully open position when the intake air amount exceeds the predetermined amount. Intake port flow path control device.
JP56116452A 1981-07-27 1981-07-27 Passage control device of helical suction port Granted JPS5828518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116452A JPS5828518A (en) 1981-07-27 1981-07-27 Passage control device of helical suction port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116452A JPS5828518A (en) 1981-07-27 1981-07-27 Passage control device of helical suction port

Publications (2)

Publication Number Publication Date
JPS5828518A JPS5828518A (en) 1983-02-19
JPH034732B2 true JPH034732B2 (en) 1991-01-23

Family

ID=14687459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116452A Granted JPS5828518A (en) 1981-07-27 1981-07-27 Passage control device of helical suction port

Country Status (1)

Country Link
JP (1) JPS5828518A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116128U (en) * 1984-12-29 1986-07-22

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408B2 (en) * 1972-11-13 1978-03-28
JPS5525536A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Intake apparatus of multicylinder internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127113U (en) * 1976-03-25 1977-09-27
JPS538408U (en) * 1976-07-07 1978-01-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408B2 (en) * 1972-11-13 1978-03-28
JPS5525536A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Intake apparatus of multicylinder internal combustion engine

Also Published As

Publication number Publication date
JPS5828518A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
EP0062346B1 (en) Device for controlling a flow in a helical type intake port
JPH048610B2 (en)
JPS6035539B2 (en) Flow path control device for helical intake port
JPS5828525A (en) Flow-passage controller for helical-type intake port
US5179917A (en) Intake air control device for an internal combustion engine
JPH034732B2 (en)
JPS6029815B2 (en) Flow path control device for helical intake port
JPH021966B2 (en)
JPS6242100Y2 (en)
JPS5828523A (en) Flow-passage controller for intake port
JPS6035538B2 (en) Flow path control device for helical intake port
JPS6113737Y2 (en)
JPS647227Y2 (en)
JPS5828558A (en) Intake device for internal combustion engine
JPS6341539Y2 (en)
JPS609378Y2 (en) Flow path control device for helical intake port
JPH0238776B2 (en)
JPS5848713A (en) Flow passage controller of helical type inlet port
JPS6338336Y2 (en)
JPS6323545Y2 (en)
JPS6350527B2 (en)
JPS5828526A (en) Flow-passage controller for helical-type intake port
JPH0261611B2 (en)
JPS5823222A (en) Passage control device of helical type suction port
JPS5828519A (en) Passage control device of helical suction port