JPS5828525A - Flow-passage controller for helical-type intake port - Google Patents

Flow-passage controller for helical-type intake port

Info

Publication number
JPS5828525A
JPS5828525A JP56118515A JP11851581A JPS5828525A JP S5828525 A JPS5828525 A JP S5828525A JP 56118515 A JP56118515 A JP 56118515A JP 11851581 A JP11851581 A JP 11851581A JP S5828525 A JPS5828525 A JP S5828525A
Authority
JP
Japan
Prior art keywords
intake
valve
passage
inlet passage
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56118515A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakanishi
清 中西
Takeshi Okumura
猛 奥村
Tokuta Inoue
井上 悳太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56118515A priority Critical patent/JPS5828525A/en
Publication of JPS5828525A publication Critical patent/JPS5828525A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/082Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To secure high charging efficiency and permit a suitable swirling flow to be generated in the combustion chamber of an engine by specifying the position of the opening on the inlet passage part side of the branched passage which connects the inlet passage part to the swirl-terminating part of the captioned port. CONSTITUTION:A helical-type intake port 6 consists of the swirl part B formed around an intake valve 5 and the inlet passage part A which is connected in tangential form to the swirl part B and extends nearly straight, and formed in a cylinder head 3. The branched passage 14 which connects the inlet passage part A to the swirl-terminating part C is formed in the cylinder head 3, and the inlet opening of the branched passage 14 is arranged in the vicinity of the upper wall surface of the inlet passage part A. In the branched passage 14, an ON/OFF-valve (slide valve) 17 which moves corresponding to the amount of the air taken-in installed. Further, the inlet opening of the inlet passage part A is connected to the curved intake pipe 24 which extends downward from a surge tank 25 and is directed upward again.

Description

【発明の詳細な説明】 本発明はヘリカル型吸気−一部の流路制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a helical intake-part flow path control device.

ヘリカル型吸気?−トは通常吸気弁間りに形成された渦
巻部と、この渦巻部に接線状に接続されかつほぼまりす
ぐに延びる入口通路部とにより構成される。このような
ヘリカル型吸気−一部を用いて吸入空気量の少ない機関
低速低負荷運転時に機関燃焼室内に強力な旋回流を発生
せしめようとすると吸気ポート形状が流れ抵抗の大きな
形状になりてしまりので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題がある。
Helical intake? The vent is usually constituted by a volute formed between the intake valves and an inlet passage tangentially connected to the volute and extending substantially directly into the volute. If an attempt is made to use this type of helical intake to generate a strong swirling flow within the combustion chamber of the engine during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the intake port will have a large flow resistance. Therefore, there is a problem that charging efficiency decreases when the engine is operated at high speed and under high load with a large amount of intake air.

このような問題を解決するためにヘリカル型吸気ポート
入口通路部から分岐されてヘリカル型吸気テート渦巻部
の渦巻終端部に連通する分岐路をシリンダへ、部内に形
成し、分岐路内にアクチュエータによって作動される常
時閉鎖型開閉弁を設けて機関吸入空気量が所定量よりも
大きくなったときにアクチ、二一タを作動させて開閉弁
を開弁するようにし・たヘリカル型吸気ポート流路制御
装置が本出願人により既に提案されている。このヘリカ
ル型吸気ポートでは機関吸入空気量の多い機関高速高負
荷運転時にヘリカル型吸気ポート入口通路部内に送り込
まれた吸入空気の一部が分岐路を介してヘリカル!!!
!吸気/−)渦巻部内に送り込まれるために吸入空気流
に対する流れ抵抗が低下し、斯くして高い充填効率を得
ることができる。しかしながらこの流路制御装置は基本
作動原理を示しているにすぎず、従って高い充填効率を
確保しつつ機関燃焼室内に最適な旋回流を発生せしめる
には機関吸気系の構造に関連して分岐路を最適に配置し
なければならない。
In order to solve this problem, a branch path that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake tate spiral section is formed inside the cylinder, and an actuator is inserted into the branch path. A helical intake port flow path that is equipped with a normally closed on-off valve that is activated, and when the amount of engine intake air exceeds a predetermined amount, the actuator is actuated to open the on-off valve. A control device has already been proposed by the applicant. With this helical intake port, during engine high-speed, high-load operation with a large amount of engine intake air, a portion of the intake air sent into the helical intake port entrance passage is routed through the branch path into the helical! ! !
! The flow resistance to the intake air flow is reduced due to the intake air being fed into the volute (-), and thus a high filling efficiency can be obtained. However, this flow path control device only shows the basic operating principle, and therefore, in order to generate an optimal swirl flow in the engine combustion chamber while ensuring high charging efficiency, it is necessary to must be placed optimally.

本発明は高い充填効率を確保しつつ機関燃焼室内に最適
な旋回流を発生せしめることのできる流路制御装置を提
供することにある。
An object of the present invention is to provide a flow path control device that can generate an optimal swirl flow within an engine combustion chamber while ensuring high charging efficiency.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダプロ、
り、2はシリンダブロック1内で往復動するピストン、
3はシリンダグ口、り1上に固定され次シリンダへ、ド
、4はピストン2とシリンダへ、ド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
たヘリカル型吸気ポート、7は排気弁、8はシリンダへ
、ド3内に形成された排気テートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置される。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder pro;
2 is a piston that reciprocates within the cylinder block 1;
3 is the cylinder dog mouth, which is fixed on 1 and goes to the next cylinder, 4 is the piston 2 and cylinder, the combustion chamber formed between 3, 5 is the intake valve, and 6 is formed inside the cylinder head 3. 7 shows the helical intake port, 7 shows the exhaust valve, 8 shows the cylinder, and the exhaust port formed in the door 3, respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図並びに第4図に第2図のヘリカル型吸気/−)6
の形状を図解的に示す。このヘリカル型吸気ポート6は
第4図に示されるように流路軸線aがわずかに彎曲した
入口通路部Aと、吸気弁5の弁軸周りに形成された渦巻
部Bとによシ構成され、入口通路部Aは渦巻部Bに接線
状に接続される。第3図、第4図並びに第7図に示され
るように入口通路部Aの渦巻軸線すに近い側の側壁面9
の上方側壁面9&は下方を向いた傾斜面に形成され、こ
の傾斜面9aの巾は渦巻部Bに近づくに従って広くなり
、入口通路部人と渦巻部Bとの接続部においては第7図
に示されるように側壁面9の全体が下方に向いた傾斜面
9aに形成される。側壁面9の上半分は吸気弁ガイド1
0(第2図)周りの吸気ポート上壁面上に、形成された
円筒状突起110周壁面に滑らかに接続され、−実測壁
面9の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻部
Bの側壁面12に接続される。なお、渦巻部Bの上壁面
13は渦巻終端部Cにおいて下向きの急傾斜壁DK接続
される。
Figure 3 and Figure 4 show the helical type intake shown in Figure 2/-)6
The shape of is shown diagrammatically. As shown in FIG. 4, this helical intake port 6 is composed of an inlet passage section A in which the flow path axis a is slightly curved, and a spiral section B formed around the valve axis of the intake valve 5. , the inlet passage section A is tangentially connected to the spiral section B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis
The upper side wall surface 9& is formed as a downwardly facing inclined surface, and the width of this inclined surface 9a becomes wider as it approaches the spiral part B, and at the connection part between the inlet passage part and the spiral part B, as shown in FIG. As shown, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is the intake valve guide 1
The cylindrical protrusion 110 formed on the upper wall surface of the intake port around 0 (Fig. 2) is smoothly connected to the surrounding wall surface, and the lower half of the measured wall surface 9 is connected to the spiral end portion C of the spiral portion B at the spiral portion B. is connected to the side wall surface 12 of. Incidentally, the upper wall surface 13 of the spiral portion B is connected to the downward steeply inclined wall DK at the spiral end portion C.

一方、第1図から第5図に示されるようにシリンダヘッ
ド3内には入口通路部人から分岐された矩形断面を有す
る分岐路14が形成され、この分岐路14は渦巻終端部
Cに接続される。分岐路14の入口開口15は入口通路
部Aの入口開口近傍において入口通路部上壁面近傍の側
壁面9上に形成され、分岐路14の出口開口16は渦巻
終端部Cにおいて側壁面12の上端部に形成される。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a rectangular cross section is formed in the cylinder head 3, branching from the inlet passage part, and this branch passage 14 is connected to the spiral terminal part C. be done. The inlet opening 15 of the branch passage 14 is formed on the side wall surface 9 near the upper wall surface of the inlet passage part in the vicinity of the entrance opening of the inlet passage part A, and the outlet opening 16 of the branch passage 14 is formed on the upper end of the side wall surface 12 at the spiral terminal part C. formed in the part.

この分岐路14内には分岐路14の流通面積を制御する
スライド弁17が摺動可能に挿入される。
A slide valve 17 for controlling the flow area of the branch passage 14 is slidably inserted into the branch passage 14 .

スライド弁17の上端部には弁口、ド18が一体形成さ
れ、この弁口、ド18の上端部はシリンダへ、ド3内に
嵌着された案内スリーブ19を貫通して上方に突出する
。一方、シリンダヘッド3には図示しない軸受を介して
アームロッド20が回動可能に取付けられ、このアーム
ロッド20上には各気筒のスライド弁17に対して夫々
設けられたアーム21が固着される。これらの各アーム
21の先端部は夫々対応する弁ロッド18の頭部にビI
、トピン22を介して枢着される。情た、アームロッド
20には別のアーム23が固着され、このアーム23の
先端部は負圧ダイアフラム装置30のダイアフラム31
に固着された制御ロッド32に連結される。第2図に示
されるように吸気ポート60入口開口には吸気管24が
接続され、この吸気管24は各気筒に共通のサージタン
ク25並びに図示しないエアフローメータを介して大気
に連通ずる。各吸気管24のシリンダヘッド接合部には
夫々燃料噴射弁26が取付けられ、これらの燃料噴射弁
26から各吸気/−)6内に燃料が噴射される。第2図
に示されるように吸気管24線吸気?−トロの入口通路
部Aの入口開口i−ら下方に延び、次いで再び上方に向
きを変えてサージタンク25に接続される下方に垂れた
彎曲形状を有する。最近の自動車では車高を低く、従っ
てエンジンフードを低くする傾向にあり、従ってサージ
タンク25の取付は位置を下げなければならないがその
ような場合でも吸気慣性を利用して低速トルクを向上す
るために吸気管24はある程度の長さが必要であり、斯
くして吸気管24は第2図に示すように彎曲構造になっ
てしまう。
A valve port and door 18 are integrally formed at the upper end of the slide valve 17, and the upper end of this valve port and door 18 protrudes upward into the cylinder through a guide sleeve 19 fitted in the door 3. . On the other hand, an arm rod 20 is rotatably attached to the cylinder head 3 via a bearing (not shown), and an arm 21 provided for each slide valve 17 of each cylinder is fixed onto the arm rod 20. . The tip of each of these arms 21 is attached to the head of the corresponding valve rod 18.
, are pivotally connected via the toppin 22. Incidentally, another arm 23 is fixed to the arm rod 20, and the tip of this arm 23 is connected to the diaphragm 31 of the negative pressure diaphragm device 30.
The control rod 32 is connected to a control rod 32 fixed to the control rod 32 . As shown in FIG. 2, an intake pipe 24 is connected to the inlet opening of the intake port 60, and this intake pipe 24 communicates with the atmosphere via a surge tank 25 common to each cylinder and an air flow meter (not shown). A fuel injection valve 26 is attached to the cylinder head joint of each intake pipe 24, and fuel is injected into each intake air 6 from these fuel injection valves 26. Intake pipe 24 line intake as shown in Figure 2? - It has a curved shape that extends downward from the inlet opening i of the inlet passage section A of the Toro, then turns upward again to be connected to the surge tank 25 and hangs downward. Modern cars tend to have lower vehicle heights and therefore lower engine hoods, so the surge tank 25 has to be lowered in position, but even in such cases, intake inertia can be used to improve low-speed torque. In this case, the intake pipe 24 needs to have a certain length, and thus the intake pipe 24 has a curved structure as shown in FIG.

一方、再び第10図を参照すると、負圧ダイアフラム装
置30はダイアフラム31により隔離された負圧室34
と大気圧室33を具備し、負圧室34内にはダイアフラ
ム押圧用圧縮ばね35が挿入される。この負圧室34は
負圧導管36並びに電磁制御弁37を介して負圧アキ、
ムレータ29に接続される。電磁制御弁37は弁室38
と、負圧アキュムレータ29に連通する負圧ポート39
と、大気に連通ずる大気/ −) 40と、負圧−−ト
39並びに大気/−)40の開閉制御をする弁体41と
、弁体41に連結された可動グランジャ42と、可動グ
ランジャ吸引用のソレノイド43とを具備し、このソレ
ノイド43は電子制御ユニ、ト50の出力端子に接続さ
れる。一方、負圧アキュムレータ29は負圧アキュムレ
ータ29がら吸気管24に向けてのみ流通可能な逆止弁
45を介して吸気管24内に接続される。逆止弁45は
吸気管24内の負圧が負圧アキュムレータ29内の負圧
よシも大きくなると開弁し、吸気管24内の負圧が負圧
アキ、ムレータ29内の負圧よpも小さくなると閉弁す
るので負圧アキュムレータ29内の負圧は吸気管24内
に発生した最大負圧に維持される。一方、吸気管24に
は吸気管24の負圧を検出するための負圧センサ46が
取付けられ、との負圧センサ46は電子制御ユニット5
0の入力端子に接続される。また、アームロッド20に
はスライド弁17の開口面積を検出するための4テンシ
、メータ47が取付けられる。このデテンシ、メータ4
7はアームロッド20に連結されてアームロッド20と
共に回転する摺動子47mと、固定抵抗47bとによシ
構成され、摺動子47mは固定抵抗47b上を接触しつ
つ摺動する。従って摺動子47mにはスライド弁17の
開口面積に比例した電圧が発生する。この摺動子47m
は電子制御ユニ、)50の入力端子に接続される。一方
、機関クランクシャフトの回転数を検出するために回転
数センサ48が電子制御ユニ、ト50の入力端子に接続
される。
On the other hand, referring again to FIG. 10, the negative pressure diaphragm device 30 includes a negative pressure chamber 34 isolated by a diaphragm 31.
and an atmospheric pressure chamber 33, and a compression spring 35 for pressing the diaphragm is inserted into the negative pressure chamber 34. This negative pressure chamber 34 is supplied with negative pressure via a negative pressure conduit 36 and an electromagnetic control valve 37.
It is connected to the mulator 29. The electromagnetic control valve 37 has a valve chamber 38
and a negative pressure port 39 communicating with the negative pressure accumulator 29.
, a valve body 41 that controls the opening and closing of the negative pressure 39 and the atmosphere /-) 40 communicating with the atmosphere, a movable granger 42 connected to the valve body 41, and a movable granger suction This solenoid 43 is connected to an output terminal of an electronic control unit 50. On the other hand, the negative pressure accumulator 29 is connected to the intake pipe 24 via a check valve 45 that allows flow from the negative pressure accumulator 29 only toward the intake pipe 24 . The check valve 45 opens when the negative pressure in the intake pipe 24 becomes larger than the negative pressure in the negative pressure accumulator 29. Since the valve closes when the negative pressure accumulator 29 becomes smaller, the negative pressure in the negative pressure accumulator 29 is maintained at the maximum negative pressure generated in the intake pipe 24. On the other hand, a negative pressure sensor 46 for detecting negative pressure in the intake pipe 24 is attached to the intake pipe 24, and the negative pressure sensor 46 is connected to the electronic control unit 5.
Connected to the 0 input terminal. Further, a 4-tension meter 47 for detecting the opening area of the slide valve 17 is attached to the arm rod 20. This deten, meter 4
7 is composed of a slider 47m connected to the arm rod 20 and rotating together with the arm rod 20, and a fixed resistor 47b, and the slider 47m slides on the fixed resistor 47b while contacting it. Therefore, a voltage proportional to the opening area of the slide valve 17 is generated in the slider 47m. This slider 47m
is connected to the input terminal of the electronic control unit )50. On the other hand, a rotation speed sensor 48 is connected to an input terminal of an electronic control unit 50 to detect the rotation speed of the engine crankshaft.

電子制御ユニット50はディジタルコンビ、−タからな
シ、各種の演算処理を行なうマイクロプロセッサ(MP
U)51、ランダムアクセスメモリ(RAM)52、制
御プログラム並びに演算定数郷・が予め格納されている
リードオンリメモリ(ROM)53、入力ポート54並
びに出力ポートsgが双方向性パス56を介して互に接
続されている。更に、電子制御ユニット50内には各種
のクロ、り信号を発生するクロ、り発生器57が設けら
れる。
The electronic control unit 50 is a digital combination, a microprocessor (MP) that performs various arithmetic processing, and
U) 51, a random access memory (RAM) 52, a read-only memory (ROM) 53 in which control programs and calculation constants are stored in advance, an input port 54, and an output port sg are interconnected via a bidirectional path 56. It is connected to the. Further, within the electronic control unit 50, there is provided a black and white generator 57 that generates various black and white signals.

第10図に示されるように入力ポート54には夫夫対応
するAD変換器58.59を介して負圧センサ46並び
に?テンショメータ47が接続され、頁に入力/−)5
4には回転数センサ48が接続される。負圧センサ46
は吸気管24内の負圧に比例した出力電圧を発生し、こ
の電圧がAD変換器58において対応する2進数に変換
されてこの2進数が入力ポート54並びにパス56を介
してMPU 51に読み込まれる。一方、ポテンショメ
ータ47はスライド弁17の開口面積に比例した出力電
圧を発生し、この電圧がAD変換器59において対応す
る2進数に変換されてこの2進数が入力ポート54並び
にパス56を介してMPU51に読み込まれる。また、
回転数センサ48はクランクシャフトが所定クランク角
度回転する毎にノ臂ルスを発生し、このノ臂ルスが入力
ポート54並びにパス56を介してMPU51に読み込
まれる。
As shown in FIG. 10, the input port 54 is connected to the negative pressure sensor 46 and ? Tension meter 47 is connected and input on page /-)5
4 is connected to a rotation speed sensor 48. Negative pressure sensor 46
generates an output voltage proportional to the negative pressure in the intake pipe 24, this voltage is converted into a corresponding binary number in the AD converter 58, and this binary number is read into the MPU 51 via the input port 54 and path 56. It will be done. On the other hand, the potentiometer 47 generates an output voltage proportional to the opening area of the slide valve 17, and this voltage is converted into a corresponding binary number by an AD converter 59, and this binary number is sent to the MPU 51 via an input port 54 and a path 56. is loaded into. Also,
The rotation speed sensor 48 generates a rotational pulse every time the crankshaft rotates by a predetermined crank angle, and this rotational pulse is read into the MPU 51 via an input port 54 and a path 56.

出力ポート55は電磁制御弁37を作動するためのデー
タを出力するために設けられており、この出力ポート5
5には2進数のデータがMPU 51からパス56を介
して書き込まれる。出力/−)55の各出力端子はダウ
ンカウンタ60の対応する各入力端子に接続されている
。ダウンカウンタ60はMPU 51から書き込まれた
2進数のデータをそれに対応する時間の長さに変換する
九めに設けられており、このダウンカウンタ60は出力
f−ト55から送り込まれたデータのダウンカウントを
クロック発生器57のクロック信号によって開始し、カ
ウント値が0になるとカウントを完了して出力端子に・
カウント完了信号を発生する。S−Bフリ、プフロ、プ
ロ1のリセット入力端子8はダウンカウンタ60の出力
端子に接続され、S−Rフリ、プフロップ61のセット
入力端子Sはクロ、り発生器57に接続される。5−R
7す。
The output port 55 is provided to output data for operating the electromagnetic control valve 37.
5, binary data is written from the MPU 51 via a path 56. Each output terminal of the output/-) 55 is connected to a corresponding input terminal of the down counter 60. The down counter 60 is provided at the ninth position to convert the binary data written from the MPU 51 into the corresponding time length. Counting is started by the clock signal of the clock generator 57, and when the count value reaches 0, the counting is completed and the signal is output to the output terminal.
Generates a count completion signal. The reset input terminal 8 of the S-B flipflop 1 is connected to the output terminal of the down counter 60, and the set input terminal S of the S-R flipflop 61 is connected to the clock generator 57. 5-R
7s.

グフロ、プロ1はクロ、り発生器57のクロiり信号に
よりダウンカウント開始と同時にセットされ、ダウンカ
ウント完了時にダウンカウンタ6゜のカウント完了信号
によってリセットされる。従って5−R7す、fフロ、
グ61の出力端子Qはダウンカウントが行なわれている
間高レベルとなる。5−R7リップフロップ61の出力
端子、Qは電力増巾回路62を介して電磁制御弁37に
接続されている。従って電磁制御弁32のソレノイド4
3はダウンカウントが行なわれている間付勢される。
The counter 1 is set at the same time as the down count starts by the clock signal from the clock generator 57, and is reset by the count completion signal from the down counter 6° when the down count is completed. Therefore, 5-R7, f flow,
The output terminal Q of the pin 61 is at a high level while the down count is being performed. The output terminal Q of the 5-R7 flip-flop 61 is connected to the electromagnetic control valve 37 via a power amplification circuit 62. Therefore, the solenoid 4 of the electromagnetic control valve 32
3 is activated while the down count is being performed.

電磁制御弁37のソレノイド43が消勢されているとき
は第10図に示すように弁体41が大気/−)40を開
口すると共に負圧−一部39を閉鎖するので負圧ダイア
フラム装置30の負圧室34内は大気圧となる。このと
きダイアフラム31は圧縮ばね35のばね力によシ左端
位置にあるのでスライド弁17が分岐路14を閉鎖して
いる。一方、電磁制御弁37のソレノイド43が付勢さ
れると弁体41が大気/−)40を閉鎖すると共に負圧
ポート39を開口するので負圧ダイアフラム装置30の
負圧室34内には負圧アキ、ムレータ29内の負圧が加
わる。このときダイアフラム31は圧縮ばね35に抗し
て右方に移動するためにスライド弁17は上昇せしめら
れ、それによってスライド弁17が分岐路14を全開す
る。
When the solenoid 43 of the electromagnetic control valve 37 is deenergized, as shown in FIG. The inside of the negative pressure chamber 34 becomes atmospheric pressure. At this time, the diaphragm 31 is at the left end position due to the spring force of the compression spring 35, so the slide valve 17 closes the branch passage 14. On the other hand, when the solenoid 43 of the electromagnetic control valve 37 is energized, the valve body 41 closes the atmosphere/-) 40 and opens the negative pressure port 39, so there is no negative pressure inside the negative pressure chamber 34 of the negative pressure diaphragm device 30. The pressure is released, and negative pressure inside the mullet 29 is applied. At this time, the diaphragm 31 moves to the right against the compression spring 35, causing the slide valve 17 to rise, thereby fully opening the branch passage 14.

前述したように電磁制御弁37のソレノイド43はダウ
ンカウントが行なわれている間、即ち5−R7リップフ
ロップ61の出力端子Qに表われる電圧が高レベルのと
き付勢される。従って電磁制御弁37の弁体41が負圧
ポート39を開口しかつ大気&−)40を閉鎖する時間
割合はソレノイド43に印加されるA/ルスのデユーテ
ィ−サイクルに比例する。弁体41が負圧/−)39を
開口しかつ大気−一)40を閉鎖する時間が長くなれば
なるほど負圧ダイアフラム装置30の負圧室34内の負
圧が大きくなり、スライド弁17の開口面積が大きくな
る。従りてスライド弁17の開口面積はソレノイド43
に印加されるノクルスのデユーティ−サイクルが大きく
なるほど大きくなることがわかる。
As mentioned above, the solenoid 43 of the electromagnetic control valve 37 is energized while the down count is being performed, that is, when the voltage appearing at the output terminal Q of the 5-R7 flip-flop 61 is at a high level. Therefore, the proportion of time during which the valve body 41 of the electromagnetic control valve 37 opens the negative pressure port 39 and closes the atmospheric pressure port 40 is proportional to the duty cycle of A/lus applied to the solenoid 43. The longer the time period for which the valve body 41 opens the negative pressure/-) 39 and closes the atmosphere (-) 40, the greater the negative pressure in the negative pressure chamber 34 of the negative pressure diaphragm device 30 becomes, and the slide valve 17 increases. The opening area becomes larger. Therefore, the opening area of the slide valve 17 is equal to that of the solenoid 43.
It can be seen that the Noculus duty cycle applied to becomes larger as the duty cycle becomes larger.

第13図はスライド弁17の開す面積と、機関回転数N
並びに吸気管負圧Pとの好ましい関係を示している。第
13図において縦軸は機関回転数N (r、p、m )
を示し、横軸は吸気管負圧P(−■Hg)を示している
。また、ハツチングを付した曲線S、の上部領域はスラ
イド弁全開領域を示し、ハツチングを付した曲線S1の
下方領域はスライド弁全閉領域を示し、代表的に2本の
み示した曲線8m+SIはスライド弁の等開口面積曲線
を示して−る。なお、第13図においてスライド弁の開
口面積はS!から8!+Smを経てSoに向かうに従っ
て徐々に大きくなる。第13図に示す機関回転数N並び
に吸気管負圧Pと、スライド弁の開口面積Sとの好まし
い関係は関数或いはデータテーブルの形で予めROM 
53内に記憶されている。
Figure 13 shows the opening area of the slide valve 17 and the engine speed N.
It also shows a preferable relationship with the intake pipe negative pressure P. In Fig. 13, the vertical axis is the engine speed N (r, p, m)
, and the horizontal axis indicates the intake pipe negative pressure P (-■Hg). In addition, the upper region of the hatched curve S1 indicates the slide valve fully open region, the lower region of the hatched curve S1 indicates the slide valve fully closed region, and the curve 8m+SI, of which only two representative curves are shown, indicates the slide valve fully open region. The iso-opening area curve of the valve is shown. In addition, in FIG. 13, the opening area of the slide valve is S! From 8! It gradually increases as it goes from +Sm to So. The preferred relationship between the engine speed N, the intake pipe negative pressure P, and the opening area S of the slide valve shown in FIG.
53.

第11図は本発明による流路制御装置の作動を説明する
ための7p−チャートを示している。第11図において
ステ、プ70は流路制御が時間割込みで行なわれている
ことを示している。まず始めにステ、プ71において回
転数センサ48の出力信号をMPU 51内に入力して
機関回転数を計算し、次いでステ、プ72において負圧
センサ46の出力信号をMPU 51内に入力する。次
いでステ、プ73では計算された機関回転数N並びに負
圧Pに基いてROM 53内に記憶された第13図の関
係からスライド弁17の目標開口面積SSを計算する。
FIG. 11 shows a 7p-chart for explaining the operation of the flow path control device according to the present invention. In FIG. 11, step 70 indicates that flow path control is performed by time interruption. First, in step 71, the output signal of the rotation speed sensor 48 is input into the MPU 51 to calculate the engine rotation speed, and then, in step 72, the output signal of the negative pressure sensor 46 is input into the MPU 51. . Next, in step 73, the target opening area SS of the slide valve 17 is calculated based on the calculated engine speed N and negative pressure P from the relationship shown in FIG. 13 stored in the ROM 53.

次いでステ、グア4においてポテンショメータ47の出
力信号をMPU 51内に入力して現在のスライド弁1
7の開口面積Sを計算する。次いでステ、f75におい
て目標開口面積SSが現在の開口面積Sよりも大きいか
否かが判別される。
Next, at step 4, the output signal of potentiometer 47 is input into MPU 51, and the current slide valve 1 is input.
Calculate the opening area S of No.7. Next, in step f75, it is determined whether the target opening area SS is larger than the current opening area S.

ステップ75において目標開口面積BSが現在の開口面
積Sよりも大きいと判別されたときはステ、プ76にお
いて電磁制御弁37のソレノイド43に印加すべきノ々
ルスのノ々ルス巾PLに一定値人が加算され、この加算
結果をPLとしてステップ77に進む。一方、ステ、プ
75において目標開口面積SSが現在の開口面積Sよシ
も大きくないと判別され次ときはステ、プ78に進み、
ステ、プ781Cおいて目標開口面積ssが現在の開口
面積Sよりも小さいか否かが判別される。ステ。
When it is determined in step 75 that the target opening area BS is larger than the current opening area S, in step 76, the nose width PL of the nose to be applied to the solenoid 43 of the electromagnetic control valve 37 is set to a constant value. The number of people is added, and the process proceeds to step 77 with the addition result set as PL. On the other hand, if it is determined in step 75 that the target opening area SS is not larger than the current opening area S, the process proceeds to step 78.
In step 781C, it is determined whether the target opening area ss is smaller than the current opening area S. Ste.

プ78において目標開口面積ssが現在の開口面積Sよ
りも小さいと判別されたときはステ、7#79において
ノ々ルス巾PLから一定値Aを減算し、この減算結果を
PLとしてステ、fl7に進む。
If step 78 determines that the target aperture area ss is smaller than the current aperture area S, step 7 #79 subtracts a constant value A from the nose width PL, and sets this subtraction result as PL. Proceed to.

一方、ステ、シフ8において目標開口面積ssが現在の
開口面積Sよりも小さくないと判別され九ときはステ、
fl7に進む。ステップ77では斯くして得られfl 
/?ルス巾PLを表わす2進数の駆動データを出力/−
)55に書込み、この出力デート55に書込まれた駆動
データに基いて電磁制御弁37のソレノイド43の付勢
制御が行なわれる。
On the other hand, when it is determined that the target aperture area ss is not smaller than the current aperture area S in step 8, step 8
Proceed to fl7. In step 77, fl
/? Outputs binary drive data representing the lasing width PL/-
) 55, and based on the drive data written in the output date 55, the energization control of the solenoid 43 of the electromagnetic control valve 37 is performed.

第12図は電磁制御弁37のソレノイド43に印加され
る/4ルスを示しており、このI?ルスが発生している
間ソレノイド43が付勢される。前述したようにスライ
ド弁17の現在の開口面積Sが目標開口面積SSよりも
小さなときには第12図に示すように開口面積が目標開
口面積SSK達するまでパルス巾が順次一定巾づつ増大
せしめられる。従りてソレノイド43に印加されるノヤ
ルスのデユーティ−サイクルが次第に増大するために負
圧ダイアフラム装置30の負圧室34内の負圧は次第に
大きくなり、斯くしてスライド弁17が上昇して目標開
口面積SSとなる。なお、第13図かられかるように機
関低負荷低速運転時、機関高負荷低速運転時並びに機関
低負荷高速運転時には5−R7す、7″′フロ、プロ1
の出力電圧が継続的に低レベルとなるためにソレノイド
43が消勢されつづけ、斯くしてスライド弁17が分岐
路14を閉鎖し続ける。一方、機関高速高負荷運転時に
は5−R7す、ゾフロ、f61の出力電圧が継続的に高
レベルとなるためにソレノイド43が付勢されつづけ、
斯くしてスライド弁17が分岐路14を全開し続ける。
FIG. 12 shows the /4 pulse applied to the solenoid 43 of the electromagnetic control valve 37, and this I? The solenoid 43 is energized while the pulse is occurring. As described above, when the current opening area S of the slide valve 17 is smaller than the target opening area SS, the pulse width is sequentially increased by a constant width until the opening area reaches the target opening area SSK, as shown in FIG. Therefore, since the duty cycle of Noyals applied to the solenoid 43 gradually increases, the negative pressure in the negative pressure chamber 34 of the negative pressure diaphragm device 30 gradually increases, and the slide valve 17 rises to reach the target. The opening area becomes SS. As shown in Figure 13, when the engine is running at low load and low speed, when the engine is running at high load and at low speed, and when the engine is running at low load and high speed, the
The solenoid 43 continues to be deenergized because the output voltage continues to be at a low level, so that the slide valve 17 continues to close the branch passage 14. On the other hand, during engine high-speed, high-load operation, the output voltage of 5-R7, Zoflo, and f61 remains at a high level, so the solenoid 43 continues to be energized.
In this way, the slide valve 17 continues to fully open the branch passage 14.

上′述したように吸入空気量の少ない機関低負荷低速運
転時、機関高負荷低速運転時並びに機関低負荷高速運転
時にはスライド弁17が分岐路14を遮断している。こ
のとき入口通路部A内に送シ込まれた空気は渦巻部Bの
上壁面13に沿りて旋回しつつ渦巻部B内を下降し、次
いで旋回しつつ燃焼室4内に流入するので燃焼室4内に
は強力な旋回流が発生せしめられる。一方、吸入空気量
が多い機関高速高負荷運転時にはスライド弁17が開弁
するので入口通路部A内に送り込まれた空気の一部が入
口開口15を介して分岐路14内に流入し、次いでこの
空気は分岐路14を通って渦巻部B内に流入する。第2
図に示すように吸気管24が彎曲していると吸気管24
から吸気?−トロ内に送り込まれる空気は矢印Wで示す
ように遠心力によりて吸気ポート6の上壁面側に押し寄
せられ、その結果吸気が一トロ内の圧力はその上壁面側
がその下側面側に比べて高くなる。本発明ではこのよう
に圧力が高い吸気ポート上壁面近傍に分岐路140入口
開口15が配置されているので分岐路140入口開口1
5と出口開口16との圧力差が大きくなり、斯くしてス
ライド弁17が開弁すると大量の空気が分岐路14を介
して渦巻部B内に送シ込まれる。このように機関高速高
負荷運転時にはスライド弁17が開弁することによって
全体の流路面積が増大するばかりでなく大量の吸入空気
が流れ抵抗の小さな分岐路14を介して渦巻部B内に送
シ込まれるので高い充填効率を確保することができる。
As mentioned above, the slide valve 17 shuts off the branch passage 14 when the engine is operating at low load and low speed with a small amount of intake air, when the engine is operating at high load and low speed, and when the engine is operating at low load and high speed. At this time, the air sent into the inlet passage A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling, resulting in combustion. A strong swirling flow is generated within the chamber 4. On the other hand, during engine high-speed, high-load operation with a large amount of intake air, the slide valve 17 opens, so a part of the air sent into the inlet passage A flows into the branch passage 14 through the inlet opening 15, and then This air flows into the volute B through the branch passage 14. Second
If the intake pipe 24 is curved as shown in the figure, the intake pipe 24
Inhalation from? - The air sent into the trolley is pushed toward the upper wall of the intake port 6 by centrifugal force as shown by arrow W, and as a result, the pressure inside the intake port is lower on the upper wall than on the lower side. It gets expensive. In the present invention, since the branch passage 140 inlet opening 15 is disposed near the upper wall surface of the intake port where the pressure is high, the branch passage 140 inlet opening 1
5 and the outlet opening 16 becomes large, and when the slide valve 17 opens, a large amount of air is sent into the volute B through the branch passage 14. In this manner, when the engine is operated at high speed and under high load, the slide valve 17 opens, which not only increases the overall flow path area, but also sends a large amount of intake air into the volute B through the branch path 14 with low flow resistance. Since it is filled in, high filling efficiency can be ensured.

また、入口通路部Aに傾斜側壁部9龜を設けることによ
って入口通路部Aに送り込まれた空気の一部は下向きの
力を与えられ、その結果この空気は旋回することなく入
口通路部Aの下壁面に沿って渦巻部B内に流入するため
に流入抵抗は小さくなり、斯くして高速高負荷運転時に
おける充填効率を更に高めることができる。
Further, by providing the inclined side wall portion 9 in the inlet passage A, a portion of the air sent into the inlet passage A is given a downward force, and as a result, this air flows through the inlet passage A without swirling. Since the fluid flows into the spiral portion B along the lower wall surface, the inflow resistance becomes small, thus making it possible to further improve the filling efficiency during high-speed, high-load operation.

一方、第13図において曲1i 8 t と曲線800
間の領域では曲線S1からSl+8mを経て曲線80に
向かうに従りて、即ち吸入空気量が増大するに従ってス
ライド弁17の開口面積が徐々に大きくなる。吸入空気
量が少ないときには安定した燃焼を確保するために強力
な乱れを燃焼室4内に発生せしめることが必要であるが
吸入空気量が増大すると自然発生の乱れが強力となるた
めにむ−しろ旋回流のような強制的な乱れを抑制するこ
とが必要とされ、更に吸入空気量が増大するにつれて出
力低下をひき起こす充填効率の低下を阻止することが必
要となる。従って吸入空気量が増大するにつれてスライ
ド弁17の開口面積を徐々に大きくすることによって旋
回流の発生を抑制しつつ充填効率の低下が阻止され、斯
くして吸入空気量に応じた最適の旋回流と高い充填効率
を確保することができる。
On the other hand, in FIG. 13, the song 1i 8 t and the curve 800
In the region in between, the opening area of the slide valve 17 gradually increases from curve S1 through Sl+8m toward curve 80, that is, as the intake air amount increases. When the amount of intake air is small, it is necessary to generate strong turbulence in the combustion chamber 4 in order to ensure stable combustion, but as the amount of intake air increases, the naturally occurring turbulence becomes stronger, so it is more It is necessary to suppress forced turbulence such as swirling flow, and it is also necessary to prevent a decrease in charging efficiency that causes a decrease in output as the amount of intake air increases. Therefore, by gradually increasing the opening area of the slide valve 17 as the amount of intake air increases, the generation of swirling flow can be suppressed and a decrease in filling efficiency can be prevented, thereby achieving the optimal swirling flow according to the amount of intake air. and high filling efficiency can be ensured.

以上述べたように本発明によれば機関低速低負荷運転時
、機関低負荷高速運転時並びに機関高負荷低速運転時に
は強力な旋回流を燃焼室内に発生せしめることができる
ので安定した燃焼を確保できると共K特に機関高負荷低
速運転時にノッキングの発生を抑制することができる。
As described above, according to the present invention, a strong swirling flow can be generated in the combustion chamber when the engine is operated at low speed and low load, when the engine is operated at high speed with low load, and when the engine is operated at high load and low speed, so that stable combustion can be ensured. With this, the occurrence of knocking can be suppressed, especially when the engine is operated at high load and low speed.

また機関高速高負荷運転時には旋回流の発生を抑制しつ
つ高い充填効率を確保することができるので高出力を得
ることができる。更に、機関中負荷中速運転時には吸入
空気量の増大に応じて弱められる最適の旋回流と高い充
填効率を得ることができる。
Further, when the engine is operated at high speed and under high load, it is possible to ensure high charging efficiency while suppressing the generation of swirling flow, so that high output can be obtained. Furthermore, when the engine is operated at medium load and medium speed, it is possible to obtain an optimal swirling flow that is weakened as the amount of intake air increases and high charging efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の平面図、第2図は第1
図の■−■線に沿ってみた断面図、第3図はヘリカル型
吸気テートの形状を示す斜視図、第4図は第3図の平面
図、第5図は第3図の分岐路に沿って切断した側面断面
図、第6図は第4図のM−M線に沿ってみた断面図、第
7図は第4図の■−■線に沿ってみた断面図、第8図は
第4図の■−■線に沿ってみた断面図、第9図は第5図
の■−に線に沿りてみた断面図、第10図は流路制御装
置の全体図、第11図は流路制御装置の作動を説明する
ための70−チャート、第12図は電磁制御弁のソレノ
イドに印加されるノ臂ルスを示す線図、第13図はスラ
イド弁の開口面積を示す図である。 5・・・吸気弁、6・・・ヘリカル型吸気テート、14
・・・分岐路、17・・・スライド弁、18・・・弁軸
、24・・・・吸気管、25・・・サージタンク、26
・・・燃料噴射弁、30・・・負圧ダイアフラム装置、
37・・・電磁制御弁、50・・・電子制御ユニy)。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士 吉田正行 弁理士  山 口 昭 之 第1回 第40 第50 第60     第7回 第120 第13回 P(−mmHg)
FIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
Figure 3 is a perspective view showing the shape of the helical intake valve, Figure 4 is a plan view of Figure 3, Figure 5 shows the branch path in Figure 3. 6 is a sectional view taken along the line MM in FIG. 4, FIG. 7 is a sectional view taken along the line ■-■ in FIG. 4, and FIG. Fig. 4 is a sectional view taken along line ■-■, Fig. 9 is a sectional view taken along line -■ in Fig. 5, Fig. 10 is an overall view of the flow path control device, Fig. 11 is a 70-chart for explaining the operation of the flow path control device, Fig. 12 is a line diagram showing the nodal force applied to the solenoid of the electromagnetic control valve, and Fig. 13 is a diagram showing the opening area of the slide valve. be. 5... Intake valve, 6... Helical intake valve, 14
... Branch passage, 17 ... Slide valve, 18 ... Valve shaft, 24 ... Intake pipe, 25 ... Surge tank, 26
... fuel injection valve, 30 ... negative pressure diaphragm device,
37... Solenoid control valve, 50... Electronic control unit y). Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Masayuki Yoshida Patent Attorney Akira Yamaguchi 1st 40th 50th 60th 7th 120th 13th P (-mmHg)

Claims (1)

【特許請求の範囲】[Claims] 吸気弁側りに形成された渦巻部と、該渦巻部に接線状に
接続されかつほぼまっすぐに延びる入口通路部とにより
構成されたヘリカル型吸気/−)において、上記入口通
路部から分岐されて上記渦巻部の渦巻終端部に連通する
分岐路をシリンダへ、部内に形成すると共に該分岐路の
入口開口を該入口通路部上壁面近傍に配置し、該分岐路
内に吸入空気量に応動する開閉弁を設け、更に上記入口
通路部の入口開口を下方に延びる吸気管に接続したヘリ
カル型吸気−一部の流路制御装置。
In a helical intake formed by a spiral part formed on the side of the intake valve and an inlet passage part connected tangentially to the spiral part and extending almost straight, the intake passage is branched from the inlet passage part. A branch passage communicating with the spiral terminal end of the spiral part is formed inside the cylinder, and an inlet opening of the branch passage is disposed near the upper wall surface of the inlet passage, and the branch passage is configured to respond to the amount of intake air. A helical type intake-part flow path control device which is provided with an on-off valve and further connects the inlet opening of the inlet passage portion to an intake pipe extending downward.
JP56118515A 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port Pending JPS5828525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118515A JPS5828525A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118515A JPS5828525A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Publications (1)

Publication Number Publication Date
JPS5828525A true JPS5828525A (en) 1983-02-19

Family

ID=14738531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118515A Pending JPS5828525A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Country Status (1)

Country Link
JP (1) JPS5828525A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478182A (en) * 1982-05-11 1984-10-23 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
US4481916A (en) * 1982-05-11 1984-11-13 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
US4481915A (en) * 1982-05-11 1984-11-13 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
DE3417552A1 (en) * 1983-04-05 1984-11-15 Fuji Jukogyo K.K., Tokio/Tokyo Intake arrangement for a motor vehicle engine
US4485773A (en) * 1982-09-08 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4485774A (en) * 1982-05-21 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4485775A (en) * 1982-05-24 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4502432A (en) * 1982-08-31 1985-03-05 Toyota Jidosha Kabushiki Kaisha Helically shaped intake port of an internal-combustion engine
US4503819A (en) * 1982-05-25 1985-03-12 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4516544A (en) * 1982-05-25 1985-05-14 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4519355A (en) * 1984-04-24 1985-05-28 Toyota Jidosha Kabushiki Kaisha Method of control of internal combustion engine variable swirl air-fuel intake system with direct and helical intake passages
US4527519A (en) * 1982-06-17 1985-07-09 Toyota Jidosha Kabushiki Kaisha Method and system for controlling intake flow between direct and helical intake passages of intake port of internal combustion engine
JPH0648181B2 (en) * 1983-06-27 1994-06-22 コクリ− コ−ポレイシヨン Method of measuring morphological characteristics and electromagnetic characteristics of target object
JPH0648180B2 (en) * 1983-06-27 1994-06-22 コクリ− コ−ポレイシヨン Parts classification system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481916A (en) * 1982-05-11 1984-11-13 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
US4481915A (en) * 1982-05-11 1984-11-13 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
US4478182A (en) * 1982-05-11 1984-10-23 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal combustion engine
US4485774A (en) * 1982-05-21 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4485775A (en) * 1982-05-24 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4516544A (en) * 1982-05-25 1985-05-14 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4503819A (en) * 1982-05-25 1985-03-12 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
US4527519A (en) * 1982-06-17 1985-07-09 Toyota Jidosha Kabushiki Kaisha Method and system for controlling intake flow between direct and helical intake passages of intake port of internal combustion engine
US4502432A (en) * 1982-08-31 1985-03-05 Toyota Jidosha Kabushiki Kaisha Helically shaped intake port of an internal-combustion engine
US4485773A (en) * 1982-09-08 1984-12-04 Toyota Jidosha Kabushiki Kaisha Helically-shaped intake port of an internal-combustion engine
DE3417552A1 (en) * 1983-04-05 1984-11-15 Fuji Jukogyo K.K., Tokio/Tokyo Intake arrangement for a motor vehicle engine
JPH0648181B2 (en) * 1983-06-27 1994-06-22 コクリ− コ−ポレイシヨン Method of measuring morphological characteristics and electromagnetic characteristics of target object
JPH0648180B2 (en) * 1983-06-27 1994-06-22 コクリ− コ−ポレイシヨン Parts classification system
US4519355A (en) * 1984-04-24 1985-05-28 Toyota Jidosha Kabushiki Kaisha Method of control of internal combustion engine variable swirl air-fuel intake system with direct and helical intake passages

Similar Documents

Publication Publication Date Title
JPS5828525A (en) Flow-passage controller for helical-type intake port
JP4126560B2 (en) Control device for internal combustion engine
JPS6035539B2 (en) Flow path control device for helical intake port
EP0071272B1 (en) A flow control device of a helically-shaped intake port for use in a diesel engine
JPS6026185Y2 (en) Internal combustion engine intake system
JPH021966B2 (en)
JPS6242100Y2 (en)
JPS6341539Y2 (en)
JPS6029815B2 (en) Flow path control device for helical intake port
JPS5828558A (en) Intake device for internal combustion engine
JPS6035538B2 (en) Flow path control device for helical intake port
JPS6113737Y2 (en)
JPH034732B2 (en)
KR100384139B1 (en) EGR valve for diesel engine
JPS5848713A (en) Flow passage controller of helical type inlet port
JPS647227Y2 (en)
JPS6034752Y2 (en) Boost pressure control device for internal combustion engine with turbo gear
JPH0343447B2 (en)
JPS6155360A (en) Charging device for engine with supercharger
JPS5848714A (en) Flow passage controller of helical type inlet port
JPS5828526A (en) Flow-passage controller for helical-type intake port
JPS5823222A (en) Passage control device of helical type suction port
JPS58204929A (en) Helical intake port
JP4622888B2 (en) Exhaust control device for internal combustion engine
JPH0238776B2 (en)