JPH0261611B2 - - Google Patents

Info

Publication number
JPH0261611B2
JPH0261611B2 JP56118520A JP11852081A JPH0261611B2 JP H0261611 B2 JPH0261611 B2 JP H0261611B2 JP 56118520 A JP56118520 A JP 56118520A JP 11852081 A JP11852081 A JP 11852081A JP H0261611 B2 JPH0261611 B2 JP H0261611B2
Authority
JP
Japan
Prior art keywords
negative pressure
set value
valve
engine
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56118520A
Other languages
Japanese (ja)
Other versions
JPS5828530A (en
Inventor
Shinichi Kato
Katsuhiko Motosugi
Masatami Takimoto
Haruo Yamada
Kisaburo Mizuno
Mitsunori Teramura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56118520A priority Critical patent/JPS5828530A/en
Publication of JPS5828530A publication Critical patent/JPS5828530A/en
Publication of JPH0261611B2 publication Critical patent/JPH0261611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートの流路制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow path control device for a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題があ
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内にアクチ
ユエータによつて作動される常時閉鎖型開閉弁を
設けて機関吸入空気量が所定量よりも大きくなつ
たときにアクチユエータを作動させて開閉弁を開
弁するようにしたヘリカル型吸気ポート流路制御
装置が本出願人により既に提案されている(特願
昭56−51149号、特公昭60−35535号公報参照)。
このヘリカル型吸気ポートでは機関吸入空気量の
多い機関高速高負荷運転時にヘリカル型吸気ポー
ト入口通路部内に送り込まれた吸入空気の一部が
分岐路を介してヘリカル型吸気ポート渦巻部内に
送り込まれるために吸入空気流に対する流れ抵抗
が低下し、斯くして高い充填効率を得ることがで
きる。しかしながらこの流路制御装置では機関温
度に無関係に吸入空気量が所定量以上になつたと
きに開閉弁が開弁せしめられる。ところが機関温
度が低いときには充填効率よりもむしろ旋回流を
強めることにより燃料の霧化を促進させて燃焼効
率を向上させることが必要となるが上述の流路制
御装置ではこのようなことを考慮していない。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. There is a problem in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an actuator is installed in the branch path. The main helical intake port flow path control device is a helical intake port flow path control device that is equipped with a normally-closed on-off valve that is operated by the engine, and operates an actuator to open the on-off valve when the amount of engine intake air becomes larger than a predetermined amount. This has already been proposed by the applicant (see Japanese Patent Application No. 56-51149 and Japanese Patent Publication No. 35535-1983).
In this helical type intake port, when the engine is operated at high speed and under high load with a large amount of engine intake air, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through the branch passage. The flow resistance to the intake air flow is reduced and thus a high filling efficiency can be obtained. However, in this flow path control device, the on-off valve is opened when the amount of intake air exceeds a predetermined amount, regardless of the engine temperature. However, when the engine temperature is low, it is necessary to promote fuel atomization and improve combustion efficiency by increasing swirling flow rather than charging efficiency, but the above-mentioned flow path control device does not take this into consideration. Not yet.

本発明は分岐路内に設けられた開閉弁の開弁動
作を機関温度に応じて制御し、機関温度が低いと
きの燃焼効率を向上せしめるようにしたヘリカル
型吸気ポート流路制御装置を提供することにあ
る。
The present invention provides a helical intake port flow path control device that controls the opening operation of an on-off valve provided in a branch passage in accordance with the engine temperature and improves combustion efficiency when the engine temperature is low. There is a particular thing.

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに彎曲した入口通路部Aと、吸気弁5の
弁軸周りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図及びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁面9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図は示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。
3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall surface 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B.

一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて側壁面12の上
端部に形成される。更に、シリンダヘツド3内に
は分岐路14を貫通して延びる開閉弁挿入孔17
が穿設され、この開閉弁挿入孔17内には夫々開
閉弁を構成するロータリ弁18が挿入される。こ
のロータリ弁18は分岐路14内に配置されかつ
第9図に示すように薄板状をなす弁体19と、弁
体19と一体形成された弁軸20とを具備し、こ
の弁軸20は開閉弁挿入孔17内に嵌着された案
内スリーブ21により回転可能に支承される。弁
軸20は案内スリーブ21の頂面から上方に突出
し、この突出端部にアーム22が固着される。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. Furthermore, an on-off valve insertion hole 17 is provided in the cylinder head 3 and extends through the branch passage 14.
are drilled, and rotary valves 18 constituting the on-off valves are inserted into the on-off valve insertion holes 17, respectively. The rotary valve 18 is disposed within the branch passage 14 and includes a thin plate-shaped valve body 19 as shown in FIG. 9, and a valve stem 20 integrally formed with the valve body 19. It is rotatably supported by a guide sleeve 21 fitted into the on-off valve insertion hole 17. The valve stem 20 projects upward from the top surface of the guide sleeve 21, and an arm 22 is fixed to the projecting end.

第10図を参照すると、各気筒のロータリ弁1
8のアーム22は互に連結ロツド30により連結
され、この連結ロツド30は負圧ダイアフラム装
置31のダイアフラム32に固定された制御ロツ
ド33に連結される。この負圧ダイアフラム装置
31はダイアフラム32によつて大気から隔離さ
れた負圧室34を具備し、この負圧室34内には
ダイアフラム押圧用圧縮ばね35が挿入される。
負圧室34は一方では絞り36を介して大気に連
通し、他方では負圧制御弁37に接続される。負
圧制御弁37はダイアフラム38によつて大気か
ら隔離された負圧制御室39と、隔壁40により
分離された第1弁室41並びに第2弁室42を具
備し、負圧制御室39内にはダイアフラム押圧用
圧縮ばね43が挿入される。一方、第1弁室41
内には隔壁40上に形成された弁ポート44の開
閉制御をする弁体45が挿入され、この弁体45
は弁ロツド46を介してダイアフラム38に連結
される。第2弁室42は負圧室34に接続され、
第1負圧室41は負圧導管47を介して吸気マニ
ホルド48内に接続される。更に、負圧制御室3
9は一方では絞り49並びに負圧導管56,47
を介して吸気マニホルド48内に接続され、他方
では絞り51、大気導管52並びに感温遮断弁5
3を介して大気に連通する。この感温遮断弁53
は例えば機関冷却水温に応動して機関冷却水温が
予め定められた一定温度よりも低いときには大気
導管52を遮断し、機関冷却水温が上述の一定温
度よりも高いときは大気導管52を大気に連通せ
しめる。なお、この感温遮断弁53は機関本体の
壁温、或いは機関潤滑油温等に応動して作動せし
めることができる。
Referring to FIG. 10, the rotary valve 1 of each cylinder
The eight arms 22 are connected to each other by a connecting rod 30, which is connected to a control rod 33 fixed to a diaphragm 32 of a vacuum diaphragm device 31. This negative pressure diaphragm device 31 includes a negative pressure chamber 34 isolated from the atmosphere by a diaphragm 32, and a compression spring 35 for pressing the diaphragm is inserted into this negative pressure chamber 34.
The negative pressure chamber 34 communicates with the atmosphere via a throttle 36 on the one hand and is connected to a negative pressure control valve 37 on the other hand. The negative pressure control valve 37 includes a negative pressure control chamber 39 isolated from the atmosphere by a diaphragm 38, and a first valve chamber 41 and a second valve chamber 42 separated by a partition wall 40. A compression spring 43 for pressing the diaphragm is inserted. On the other hand, the first valve chamber 41
A valve body 45 that controls the opening and closing of a valve port 44 formed on the partition wall 40 is inserted into the interior.
is connected to diaphragm 38 via valve rod 46. The second valve chamber 42 is connected to the negative pressure chamber 34,
The first negative pressure chamber 41 is connected into the intake manifold 48 via a negative pressure conduit 47 . Furthermore, negative pressure control room 3
9 on the one hand, a throttle 49 and negative pressure conduits 56, 47;
is connected to the intake manifold 48 via a throttle 51, an atmospheric conduit 52 and a temperature-sensitive shut-off valve 5.
3 to the atmosphere. This temperature-sensitive shutoff valve 53
For example, in response to the engine cooling water temperature, when the engine cooling water temperature is lower than a predetermined constant temperature, the atmospheric conduit 52 is shut off, and when the engine cooling water temperature is higher than the above-mentioned constant temperature, the atmospheric conduit 52 is communicated with the atmosphere. urge The temperature-sensitive shutoff valve 53 can be activated in response to the wall temperature of the engine body, the engine lubricating oil temperature, or the like.

機関冷却水温が低いときには上述したように感
温遮断弁53が大気導管52を遮断している。従
つてこのときには吸気マニホルド48内に発生す
る負圧と等しい負圧が負圧制御弁37の負圧制御
室39内に発生する。負圧制御室39内の負圧が
圧縮ばね43のばね力により定まる第1設定値よ
りも大きくなるとダイアフラム38が圧縮ばね4
3に抗して上昇するために弁体45が弁ポート4
4を開口し、その結果負圧ダイアフラム装置31
の負圧室34内には負圧が発生する。負圧室34
内に負圧が発生するとダイアフラム32は圧縮ば
ね35に抗して上昇し、それによつてロータリ弁
18が分岐路14を閉鎖する。一方、負圧制御室
39内の負圧が上述の第1設定値よりも小さくな
るとダイアフラム38が圧縮ばね43のばね力に
より下降するので弁体45が弁ポート44を閉鎖
する。このとき負圧ダイアフラム装置31の負圧
室34内には絞り36を介して大気が導入される
ために負圧室34内は大気圧となる。その結果ダ
イアフラム32は圧縮ばね35のばね力により下
降してロータリ弁18が分岐路14を全開する。
When the engine cooling water temperature is low, the temperature-sensitive shutoff valve 53 shuts off the atmospheric conduit 52 as described above. Therefore, at this time, a negative pressure equal to the negative pressure generated in the intake manifold 48 is generated in the negative pressure control chamber 39 of the negative pressure control valve 37. When the negative pressure in the negative pressure control chamber 39 becomes larger than the first set value determined by the spring force of the compression spring 43, the diaphragm 38
3 so that the valve body 45 rises against the valve port 4.
4, so that the negative pressure diaphragm device 31
Negative pressure is generated within the negative pressure chamber 34 of. Negative pressure chamber 34
When a negative pressure is generated within, the diaphragm 32 rises against the compression spring 35, so that the rotary valve 18 closes the branch passage 14. On the other hand, when the negative pressure in the negative pressure control chamber 39 becomes smaller than the above-mentioned first set value, the diaphragm 38 is lowered by the spring force of the compression spring 43, so that the valve body 45 closes the valve port 44. At this time, the atmosphere is introduced into the negative pressure chamber 34 of the negative pressure diaphragm device 31 through the throttle 36, so that the inside of the negative pressure chamber 34 becomes atmospheric pressure. As a result, the diaphragm 32 is lowered by the spring force of the compression spring 35, and the rotary valve 18 fully opens the branch passage 14.

第11図の実線Aは第1設定値を示し、実線A
よりも上方のハツチング領域においてロータリ弁
18が分岐路14を全開する。第11図は縦軸を
トルクTで、横軸を機関回転数N(r・p・m)
で示したものであつて、実線Aは吸気マニホルド
48内の負圧、即ち吸気管負圧がほぼ一定のとこ
ろを示している。
The solid line A in FIG. 11 indicates the first setting value, and the solid line A
The rotary valve 18 fully opens the branch passage 14 in the hatched area above the . In Figure 11, the vertical axis is torque T, and the horizontal axis is engine speed N (r・p・m).
The solid line A indicates a point where the negative pressure within the intake manifold 48, that is, the negative pressure in the intake pipe is approximately constant.

一方、機関冷却水温が高くなると感温遮断弁5
3が大気導管52を大気に連通せしめるので負圧
制御弁37の負圧制御室39内には絞り51を介
して大気がブリードされる。その結果負圧制御室
39内に加わる吸気マニホルド48内の負圧はこ
のブリードエアにより減少せしめられ、斯くして
弁体45が弁ポート44を開口するときの吸気マ
ニホルド48内の負圧は前述の第1設定値よりも
大きな第2設定値となる。この第2設定値が第1
1図の実線Bで示され、この実線Bよりも上方の
ハツチング領域においてロータリ弁18が分岐路
14を全開する。このようにロータリ弁18が開
弁せしめられるときの吸気管負圧は機関温度が高
いときに比べて機関温度が低いときのほうが小さ
くなることがわかる。
On the other hand, when the engine cooling water temperature rises, the temperature-sensitive shutoff valve 5
3 allows the atmospheric conduit 52 to communicate with the atmosphere, so that atmospheric air is bled into the negative pressure control chamber 39 of the negative pressure control valve 37 via the restrictor 51. As a result, the negative pressure in the intake manifold 48 that is applied to the negative pressure control chamber 39 is reduced by this bleed air, and thus the negative pressure in the intake manifold 48 when the valve body 45 opens the valve port 44 is reduced to the level described above. The second setting value is larger than the first setting value. This second set value
The rotary valve 18 fully opens the branch passage 14 in the hatched area shown by the solid line B in FIG. 1 above the solid line B. It can be seen that the intake pipe negative pressure when the rotary valve 18 is opened is smaller when the engine temperature is low than when the engine temperature is high.

上述したように吸気管負圧が大きな機関低負荷
運転時にはロータリ弁18が分岐路14を遮断し
ている。このとき入口通路部A内に送り込まれた
混合気は渦巻部Bの上壁面13に沿つて旋回しつ
つ渦巻部B内を下降し、次いで旋回しつつ燃焼室
4内に流入するので燃焼室4内には強力な旋回流
が発生せしめられる。一方、吸気管負圧が小さな
機関高負荷運転時にはロータリ弁18が開弁する
ので入口通路部A内に送り込まれた混合気の一部
が流れ抵抗の小さな分岐路14を介して渦巻部B
内に送り込まれる。この混合気は入口通路部Aか
ら渦巻部B内に流入して渦巻部Bの上壁面13に
沿つて流れる混合気流に正面から衝突し、その結
果この渦巻部上壁面13に沿つて流れる混合気流
は減速せしめられて旋回流が弱められる。このよ
うに機関高速高負荷運転時にはロータリ弁18が
開弁することによつて全体の流路面積が増大する
ばかりでなく旋回流が弱められるので高い充填効
果を確保することができる。また、入口通路部A
に傾斜面9aを設けることによつて入口通路部A
に送り込まれた混合気の一部は下向きの力を与え
られ、その結果この混合気は旋回することなく入
口通路部Aの下壁面に沿つて渦巻部B内の流入す
るために流入抵抗は小さくなり、斯くして高速高
負荷運転時における充填効率を更に高めることが
できる。
As described above, the rotary valve 18 shuts off the branch passage 14 when the engine is operated at low load with a large negative pressure in the intake pipe. At this time, the air-fuel mixture sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. On the other hand, when the engine is operated under high load with a small negative pressure in the intake pipe, the rotary valve 18 opens, so that part of the air-fuel mixture sent into the inlet passage A flows through the branch passage 14 with small flow resistance to the spiral part B.
sent inside. This air-fuel mixture flows from the inlet passage A into the volute B and collides head-on with the air-fuel mixture flowing along the upper wall surface 13 of the vortex B, resulting in a mixture flow flowing along the upper wall surface 13 of the vortex B. is decelerated and the swirling flow is weakened. In this way, when the engine is operated at high speed and high load, the rotary valve 18 opens, which not only increases the overall flow path area but also weakens the swirling flow, thereby ensuring a high filling effect. In addition, the entrance passage section A
By providing the inclined surface 9a on the inlet passage section A
A part of the air-fuel mixture sent into the air-fuel mixture is given a downward force, and as a result, this air-fuel mixture flows into the spiral part B along the lower wall surface of the inlet passage part A without swirling, so that the inflow resistance is small. In this way, the filling efficiency during high-speed, high-load operation can be further improved.

本発明によれば、第11図の実線Aからわかる
ように機関温度が低いときには機関負荷がかなり
大きな領域までロータリ弁18は閉弁され続け、
それによつて強力な旋回流が燃焼室内に発生せし
められる。機関温度が低いときには燃料の霧化が
不十分なので燃焼が悪化するがこのように機関負
荷がかなり大きな領域まで強力な旋回流を燃焼室
内に発生せしめることによつて燃料の霧化は良好
となり、斯くして燃焼効率を向上することができ
る。更に、機関負荷がかなり大きな領域まで強力
な旋回流を燃焼室内に発生せしめることによつて
稀薄混合気を用いて十分に安定した燃焼を確保で
きる負荷領域が広がり、従つてチヨーク弁開度や
暖機増量を混合気が稀薄となるように設定できる
ので燃料消費率を向上することができる。
According to the present invention, as can be seen from the solid line A in FIG. 11, when the engine temperature is low, the rotary valve 18 continues to be closed until the engine load is considerably large.
A strong swirling flow is thereby generated within the combustion chamber. When the engine temperature is low, fuel atomization is insufficient and combustion deteriorates, but by generating a strong swirling flow in the combustion chamber even in areas where the engine load is quite large, fuel atomization becomes good. In this way, combustion efficiency can be improved. Furthermore, by generating a strong swirling flow in the combustion chamber even in regions where the engine load is considerably large, the load region in which sufficiently stable combustion can be ensured using a lean mixture is expanded, and the engine load range becomes wider and the engine load becomes more stable. Since the machine fuel increase can be set so that the air-fuel mixture becomes lean, the fuel consumption rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2
図は第1図の―線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状を示す斜視図、
第4図は第3図の平面図、第5図は第3図の分岐
路に沿つて切断した側断面図、第6図は第4図の
―線に沿つてみた断面図、第7図は第4図の
―線に沿つてみた断面図、第8図は第4図の
―線に沿つてみた断面図、第9図はロータリ
弁の斜視図、第10図は流路制御装置の全体図、
第11図はトルクと機関回転数の関係を示す図で
ある。 5…吸気弁、6…ヘリカル型吸気ポート、14
…分岐路、18…ロータリ弁、37…負圧制御
弁、53…感温遮断弁。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, Fig. 2 is a plan view of an internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1, and Figure 3.
The figure is a perspective view showing the shape of a helical intake port.
Fig. 4 is a plan view of Fig. 3, Fig. 5 is a side sectional view taken along the branch road in Fig. 3, Fig. 6 is a sectional view taken along the - line of Fig. 4, and Fig. 7. is a cross-sectional view taken along line - in Fig. 4, Fig. 8 is a cross-sectional view taken along line - in Fig. 4, Fig. 9 is a perspective view of the rotary valve, and Fig. 10 is a cross-sectional view of the flow path control device. Overall view,
FIG. 11 is a diagram showing the relationship between torque and engine speed. 5...Intake valve, 6...Helical intake port, 14
... Branch path, 18 ... Rotary valve, 37 ... Negative pressure control valve, 53 ... Temperature-sensitive cutoff valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁周りに形成された渦巻部と、該渦巻部
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、上記入口通路部から分岐されて上記
渦巻部の渦巻終端部に連通する分岐路をシリンダ
ヘツド内に形成すると共に該分岐路内に機関温度
並びに吸気管負圧に応動する常時閉鎖型開閉弁を
設けて該吸気管負圧が予め定められた設定値より
も小さくなつたときに上記開閉弁を開弁し、該設
定値を機関温度に応じて変化させて機関温度が予
め定められた所定温度よりも低いときには上記設
定値を第1設定値に設定し、機関温度が該所定温
度よりも高いときには上記設定値を該第1設定値
よりも大きな負圧の第2設定値に設定するように
したヘリカル型吸気ポートの流路制御装置。
1. In a helical intake port constituted by a spiral portion formed around the intake valve and an inlet passage portion connected tangentially to the spiral portion and extending almost straight, the above-mentioned helical intake port is branched from the inlet passage portion. A branch passage communicating with the spiral terminal end of the spiral portion is formed in the cylinder head, and a normally closed opening/closing valve that responds to engine temperature and intake pipe negative pressure is provided in the branch passage, so that the intake pipe negative pressure is predetermined. When the engine temperature becomes smaller than a predetermined set value, the opening/closing valve is opened, and the set value is changed according to the engine temperature, and when the engine temperature is lower than a predetermined temperature, the above set value is changed to the first set value. A flow path control device for a helical intake port, wherein the set value is set to a set value, and when the engine temperature is higher than the predetermined temperature, the set value is set to a second set value having a negative pressure larger than the first set value. .
JP56118520A 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port Granted JPS5828530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118520A JPS5828530A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118520A JPS5828530A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Publications (2)

Publication Number Publication Date
JPS5828530A JPS5828530A (en) 1983-02-19
JPH0261611B2 true JPH0261611B2 (en) 1990-12-20

Family

ID=14738647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118520A Granted JPS5828530A (en) 1981-07-30 1981-07-30 Flow-passage controller for helical-type intake port

Country Status (1)

Country Link
JP (1) JPS5828530A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100293542B1 (en) * 1997-08-29 2001-10-26 이계안 Method for reducing hc when cold start operation of lean burn engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408B2 (en) * 1972-11-13 1978-03-28
JPS5439720A (en) * 1977-09-03 1979-03-27 Yamaha Motor Co Ltd Multi-cylinder engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127113U (en) * 1976-03-25 1977-09-27
JPS538408U (en) * 1976-07-07 1978-01-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408B2 (en) * 1972-11-13 1978-03-28
JPS5439720A (en) * 1977-09-03 1979-03-27 Yamaha Motor Co Ltd Multi-cylinder engine

Also Published As

Publication number Publication date
JPS5828530A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
JPS6032009B2 (en) Helical intake port
JPS6014170B2 (en) Flow path control device for helical intake port
JPS6023468Y2 (en) Flow path control device for helical intake port
US4485775A (en) Helically-shaped intake port of an internal-combustion engine
JPH0261611B2 (en)
JPS609378Y2 (en) Flow path control device for helical intake port
JPS631445B2 (en)
US4516544A (en) Helically-shaped intake port of an internal-combustion engine
JPS6226589Y2 (en)
JPS6321777Y2 (en)
JPS6254965B2 (en)
US4502432A (en) Helically shaped intake port of an internal-combustion engine
JPS6131147Y2 (en)
JPS6021468Y2 (en) Flow path control device for helical intake port
JPS5830417A (en) Intake device of internal combustion engine
US4485773A (en) Helically-shaped intake port of an internal-combustion engine
JPS6338336Y2 (en)
JPS6323545Y2 (en)
JPS609376Y2 (en) Flow path control device for helical intake port
JPS5828526A (en) Flow-passage controller for helical-type intake port
JPH0343447B2 (en)
JPS6023467Y2 (en) Flow path control device for helical intake port
JPS6021469Y2 (en) Helical intake port
JPS6035536B2 (en) Flow path control device for helical intake port
JPS6021470Y2 (en) Helical intake port