JPS58281A - Production of steel pipe coated internally with thermoplastic synthetic resin - Google Patents

Production of steel pipe coated internally with thermoplastic synthetic resin

Info

Publication number
JPS58281A
JPS58281A JP9657381A JP9657381A JPS58281A JP S58281 A JPS58281 A JP S58281A JP 9657381 A JP9657381 A JP 9657381A JP 9657381 A JP9657381 A JP 9657381A JP S58281 A JPS58281 A JP S58281A
Authority
JP
Japan
Prior art keywords
cooling
steel pipe
pipe
synthetic resin
thermoplastic synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9657381A
Other languages
Japanese (ja)
Other versions
JPS61148B2 (en
Inventor
Masahiko Nagakuni
永国 雅彦
Manabu Kobayashi
学 小林
Yoshiyuki Morioka
森岡 芳之
Tadao Kimura
忠雄 木村
Yukichi Watanabe
渡辺 裕吉
Yoshiaki Fujiwara
藤原 芳明
Hideo Noguchi
野口 英夫
Koichi Yamamoto
紘一 山本
Hiroshi Ishiyama
洋 石山
Shigeru Inoue
茂 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKAN AEN MEKKI KK
JFE Engineering Corp
Original Assignee
KOKAN AEN MEKKI KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKAN AEN MEKKI KK, NKK Corp, Nippon Kokan Ltd filed Critical KOKAN AEN MEKKI KK
Priority to JP9657381A priority Critical patent/JPS58281A/en
Publication of JPS58281A publication Critical patent/JPS58281A/en
Publication of JPS61148B2 publication Critical patent/JPS61148B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adhesive power of a paint film having long-term corrosion resistance by coating a thermoplastic synthetic resin on the inside surface of a steel pipe heated to a prescribed temp. then cooling the resin paint film under control at specific cooling rates down to the temp. at which solidfication ends. CONSTITUTION:A thermoplastic synthetic resin such as PE is coated on the inside surface of a steel pipe heated to a prescribed temp. In cooling this steel pipe in the next treating stage, it is cooled under control to <=60 deg.C/min cooling rate of the pipe body down to the temp. at which the resin paint film ends solidification. More specifically, this cooling is the forced cooling with air differing from the simple air cooling, and the cooling rate is adequately controlled in a <=60 deg.C/min range by the combination use of a heat insulating furnace or the like. The cooling method employed in this case intends to cool the outside circumference of the pipe so as to cool the entire part of the pipe thereby cooling the paint film coated on the inside surface of the pipe through the pipe.

Description

【発明の詳細な説明】 本発明は例えば水道給水管等のように管内面にポリエチ
レン等の熱可塑性合成樹脂が被覆された内面被覆鋼管の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an inner-coated steel pipe, such as a water supply pipe, in which the inner surface of the pipe is coated with a thermoplastic synthetic resin such as polyethylene.

鋼管の内面に熱可塑性合成樹脂を被覆する方法の一つと
して従来より粉体熱融着法が一般的に知られている。こ
の融着法は管をコOO0乃至310℃程度に加熱し、そ
の熱容量により粉末の熱可塑性合成樹脂を溶融して、管
内面に樹脂塗膜を形成するものであるが、特に粉末樹脂
を気体と共に管内に吹込んで被覆する方式においては膜
厚の厚い塗膜(soo 74以上)を得ることができる
0ところでこのような厚−塗膜を形成する場合に問題と
なるのは、塗膜の管内面に対する密着力が良好であるか
否かといづことである。被覆された塗膜の密着力は通常
塗装置後の値である初期密着力及び塗装後に行われる塩
水浸漬等の促進試験によって得られる値の二次密着力の
二つから評価され、%に塗膜の長期的密着性能はこのう
ち二次密着力の値から判断される。
Powder thermal fusion has been generally known as one of the methods for coating the inner surface of a steel pipe with a thermoplastic synthetic resin. In this fusion method, the tube is heated to about 0 to 310 degrees Celsius, and the heat capacity of the tube is used to melt the powdered thermoplastic synthetic resin to form a resin coating on the inner surface of the tube. However, when forming such a thick coating, a problem arises when coating the inside of the pipe by blowing it into the pipe. What matters is whether the adhesion to the surface is good or not. The adhesion of the coated film is usually evaluated from the initial adhesion, which is the value after the coating is applied, and the secondary adhesion, which is the value obtained by accelerated tests such as salt water immersion after coating. The long-term adhesion performance of the film is judged from the value of the secondary adhesion force.

前記の粉体熱融着法により管内面に形成された樹脂塗膜
は、次の工程として常@Kまで冷却されることになるが
、従来におけるこの冷却処理としては、一般的に工程上
の時間的短縮ならびに設備上の利点から水冷による冷却
工程が採用されている。
The resin coating formed on the inner surface of the tube by the powder thermal fusion method described above is usually cooled to @K as the next step, but in the past, this cooling treatment generally A cooling process using water cooling has been adopted due to its time saving and equipment advantages.

しかし乍ら本発明者達は先に述べた塗膜の管内面に対す
る二次密着力が塗膜形成処理の次の工程として行われる
冷却の条件によって大きく影響を受けることKなり、特
に水冷処理の如き急激な冷却を行った場合には、この二
次密着力が著しく低下するという現象を見出した。勿論
このような内面樹脂塗膜の二次密着力低下ということは
、鋼管の長期的防蝕性能を保証するKあたって大きな問
題となるわけであり、当然のこと乍らこれに対する適切
な対策が必要とされる。
However, the inventors of the present invention have found that the secondary adhesion of the coating film to the inner surface of the tube is greatly affected by the cooling conditions that are performed as the next step of the coating film formation process, and in particular, the water cooling process. It has been discovered that when such rapid cooling is performed, this secondary adhesion is significantly reduced. Of course, this decrease in the secondary adhesion of the inner resin coating is a major problem in guaranteeing the long-term corrosion protection performance of steel pipes, and it goes without saying that appropriate measures must be taken to counter this problem. It is said that

本発明はこのような粉体熱融着法による鋼管の内面樹脂
塗膜の形成に当り、塗膜形成処理後忙行われる冷却条件
を適切な条件のもとに制御することにより、塗膜の長期
的防蝕性能をもった密着力を向上させることを目的とし
たものである。
The present invention, when forming a resin coating on the inner surface of a steel pipe by such a powder heat fusion method, improves the coating film by controlling the cooling conditions that are carried out after the coating film formation process under appropriate conditions. The purpose is to improve adhesion with long-term corrosion protection.

本発明の特徴は、所定温度に加熱した鋼管の内面に熱可
塑性合成樹脂を被覆し、次の処理工程としての該鋼管の
冷却にあたり、前記樹脂塗膜が凝固を完了する温度以下
になるまで管体の冷却速度を60℃/!nin以下にな
るよう制御空冷させる点換言すればこの空冷は単なる放
冷とは異った空気による強制空冷であって、しかも保温
炉との併用などによって冷却速度(℃/分)を10℃/
分以下の範囲で適切に制御さ姥る点にある。なおこの場
合冷。
A feature of the present invention is that the inner surface of a steel pipe heated to a predetermined temperature is coated with a thermoplastic synthetic resin, and when the steel pipe is cooled as the next treatment step, the pipe is heated until the temperature reaches a temperature below which the resin coating completes solidification. The cooling rate of the body is 60℃/! In other words, this air cooling is different from simple air cooling; it is forced air cooling using air, and when used in conjunction with a heat retention furnace, the cooling rate (°C/min) can be increased by 10°C/min.
The point is that it is properly controlled within a range of less than a minute. In this case, it is cold.

却方法としては、管全体を対象として外周゛の冷却をは
かや、管を介してその内面に付着している塗膜を冷却す
るものである。
The cooling method involves first cooling the outer periphery of the entire tube, and then cooling the paint film attached to the inner surface of the tube via the tube.

上記の如き本発明の特徴は以下に述べる実験結果に基い
て確認された。添付図面の第1図は樹脂素材としてポリ
エチレンを用いた場合の塗膜の二次密着力に及埋す水冷
開始温度の影響を示すグラフであり、凝固がIlo”乃
至90℃で起るポリエチレン塗膜を管内面に被覆したの
ち、同図の如く管温が710℃以上の時に水冷を開始し
た場合には、塗膜の二次密着力はほとんど零に近い6.
3 AV/7011mであったが、管温が10℃以下に
なるまで放冷した後水冷処理を行った場合の二次密着力
は、−次密着力とl’l’f同じy、JH/lo−程度
であった。なおこの時放冷は7℃/分、水冷の冷却速度
は/10″C/分であった。
The features of the present invention as described above were confirmed based on the experimental results described below. Figure 1 of the attached drawings is a graph showing the influence of the water cooling start temperature on the secondary adhesion of a coating film when polyethylene is used as the resin material. After coating the inner surface of the tube with the film, if water cooling is started when the tube temperature is 710°C or higher as shown in the figure, the secondary adhesion of the coating film will be almost zero6.
3 AV/7011m, but when the tube temperature was allowed to cool to below 10°C and then water-cooled, the secondary adhesion force was the same as the -order adhesion force, l'l'f y, JH/ It was about lo-. At this time, the cooling rate was 7° C./min, and the cooling rate of water cooling was 10″C/min.

第2図は同じく樹脂素材としてポリエチレンを用いた塗
膜の二次密着力に及ばず冷却速度の影響を示すグラフで
あり、ポリエチレン塗膜の形成後、菅温が/10’乃至
90℃である領域を60℃/分以上の速度で冷却した場
合、塗膜の二次密着力ははとんど零に近い状態であった
が、冷却速度を10℃/分以下に制御した場合の二次密
着力は初期密着力の値とほとんど変らなかった。ポリエ
チレン以外の他の合成樹脂による塗膜についても同様の
ことが云え、例えば第3図に示す如くナイロン塗膜の二
次密着力に及ばず冷却速度の影響を示すグラフをみても
、冷却速度を60℃/分以下に制御した場合における二
次密着力は、初期密着力の値をは鵞維持できることが判
った。
Figure 2 is a graph showing the effect of cooling rate on the secondary adhesion of a coating film using polyethylene as the resin material, and shows that after the formation of the polyethylene coating film, the tube temperature is /10' to 90°C. When the area was cooled at a rate of 60°C/min or more, the secondary adhesion of the coating film was almost zero, but when the cooling rate was controlled to 10°C/min or less, the secondary adhesion was almost zero. The adhesion force was almost the same as the initial adhesion force value. The same thing can be said about coatings made of synthetic resins other than polyethylene; for example, as shown in Figure 3, the secondary adhesion is not as good as that of nylon coatings, and the graph showing the effect of cooling rate shows that It was found that when the secondary adhesion force was controlled at 60° C./min or less, the value of the initial adhesion force could be maintained at a much higher level.

次に実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例1 8、G、P (配管用炭素鋼鋼管) !OAのs、s■
鋼管内面を酸洗、化成処理し、更にプライマー塗装を施
した後、管体を加熱し、管温2!0 ’CKてポリエチ
レン粉体をコーティング(た。
Example 1 8, G, P (carbon steel pipe for piping)! OA's, s■
After pickling the inner surface of the steel pipe, chemically treating it, and applying a primer coating, the pipe body was heated to a temperature of 2!0 CK and coated with polyethylene powder.

この鋼管を160℃で10分間後加熱した後、炉内温度
to”crc設定した炉に入れ、〃分間で10℃になる
ように徐冷した例(本発明1)と、前記と同じ条件の後
加熱(110℃で10分間)を行った鋼管を室温中で放
冷した場合の例(本発明2)と、前記と同じ条件の後加
熱(140℃で10分間)を行った鋼管を外1mKエア
ーを吹きかけて室温まで冷却した場合の例(本発明3)
、及び本発明によらない従来法によって後加熱後水冷々
却により直ちに室温まで冷却した場合の例(従来法)を
夫々実施し、夫々の例における/100ピール密着力(
−次・二次)を測定した。その結果を表IK示す。
This steel pipe was post-heated at 160°C for 10 minutes, then placed in a furnace with an internal temperature set to 10°C, and slowly cooled to 10°C in 1 minute. An example in which a steel pipe that has been post-heated (110°C for 10 minutes) is left to cool at room temperature (Invention 2), and a steel pipe that has been post-heated (140°C for 10 minutes) under the same conditions as above is removed. Example of cooling to room temperature by blowing 1 mK air (invention 3)
, and an example in which the conventional method not according to the present invention was used to immediately cool down to room temperature by water cooling after post-heating (conventional method), and the /100 peel adhesion force (
-secondary and second-order) were measured. The results are shown in Table IK.

表1  (ポリエチレン塗膜の1100ビ一ル密着力)
ポリエチレンの融点 128℃ ポリエチレンの凝固温度110〜90℃(n5cm 定
)初期密着カニ塗装置後の密着力 二次密着カニ3−塩水中に14日浸漬後の密着力 実施例2 S、G、P soムの1.1■鋼管内面を酸洗、化成処
理し、更にプライマー塗装を施した後、管体を加熱し、
管温コ10″CKて接着性ナイロン塗膜をコーティング
した。
Table 1 (1100 vinyl adhesion of polyethylene coating)
Melting point of polyethylene 128°C Solidification temperature of polyethylene 110-90°C (n5cm constant) Initial adhesion Adhesion after coating Secondary adhesion Crab 3 - Adhesion after 14 days immersion in salt water Example 2 S, G, P Som's 1.1■ After pickling and chemical conversion treatment of the inner surface of the steel pipe, and applying a primer coating, the pipe body is heated,
The tube was heated to 10'' and coated with an adhesive nylon coating.

この鋼管を200℃で3分間後加熱した後、室温中で放
冷した場合の例(本発明1)と、同じ条件の後加熱(−
00℃でX分間)を行った鋼管を外面にエアーを吹き小
けて室温まで冷却した場合の例(本発明2)及び本発明
によらない従来法によって後加熱後水冷々却により直ち
に室温まで冷却した場合の例(従来法)を夫々実施し、
夫々の例におけるtro ’ビール密着力(−次・二次
)を測定した。その結果を表2に示す。
An example in which this steel pipe was post-heated at 200°C for 3 minutes and then allowed to cool at room temperature (Invention 1), and an example in which the steel pipe was post-heated under the same conditions (-
An example of a steel pipe subjected to heating at 00°C for X minutes) and cooled to room temperature by blowing a small amount of air on the outer surface (invention 2), and a case where a steel pipe is cooled to room temperature by blowing a small amount of air on the outer surface and immediately cooled to room temperature by cooling with water after post-heating by a conventional method not based on the invention. Examples of cooling (conventional method) were carried out,
The tro' beer adhesion (-order and quadratic) in each example was measured. The results are shown in Table 2.

表S (ナイロン塗膜のtto0ピール密着力)ナイロ
ンの融点 177°C ナイロンの凝固温度166°〜140″C上記−ずれの
実施例において本本発明によるコントロール冷却を行う
ことによって、二次密着力が飛躍的に向上して−ゐこと
か判る。
Table S (tto0 peel adhesion of nylon coating film) Melting point of nylon 177°C Solidification temperature of nylon 166° to 140″C By performing controlled cooling according to the present invention in the above deviation example, the secondary adhesion was increased. I can see that it has improved dramatically.

以上に述べた様に、熱可塑性合成樹脂を鋼管内面にコー
ティングした後の冷却処理を、本発明が規定した条件の
もとに行うことによって、長期的な塗膜密着力を保証し
得る合成樹脂内面被覆鋼管の製造が可能になった。
As described above, by performing cooling treatment under the conditions specified by the present invention after coating the inner surface of a steel pipe with a thermoplastic synthetic resin, the synthetic resin can guarantee long-term coating adhesion. It became possible to manufacture internally coated steel pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図はポリエチレン塗膜の二次密着力に及はす水冷開
始温度の影響を示すグラフ、第2図はポリエチレン塗膜
の二次密着力に及ぼす冷却速度の影響を示すグラフ、第
3図はナイロン塗膜の二次密着力に及はす冷却速度の影
響を示すグラフである。 特許出願人  日本鋼管株式会社 同    鋼管亜鉛鍍金株式会社 発 明  者   永 国 看 彦 同  小林 学 同  森岡芳之 同  木材忠雄 同  渡辺裕吉 同  藤原芳明 同      野  口  英 大 同      山  本  紘  − 同      石  山     洋 第1頁の続き 0発 明 者 石山洋 佐倉型上座559の57 0発 明 者 井上茂 松戸型日暮832−70 0出 願 人 鋼管亜鉛鍍金株式会社 東京都中央区日本橋茅場町2丁 目6番地
Figure 7 is a graph showing the effect of water cooling start temperature on the secondary adhesion of polyethylene coatings, Figure 2 is a graph showing the effect of cooling rate on the secondary adhesion of polyethylene coatings, and Figure 3 is a graph showing the influence of cooling rate on the secondary adhesion of a nylon coating. Patent applicant Nippon Steel Tube Co., Ltd. Steel Pipe Galvanized Co., Ltd. Inventors Nagakuni Kanhiko Kobayashi Manabu Yoshiyuki Morioka Tadao Kiwami Yukichi Watanabe Yoshiaki Fujiwara Hide Noguchi Daido Hiro Yamamoto - Yoichi Ishiyama 1 Continued on page 0 Inventor Yo Ishiyama Sakura-type Kamiza 559-57 0 Inventor Shigeru Inoue Matsudo-type Higure 832-70 0 Applicant Steel Pipe Zinc Plating Co., Ltd. 2-6 Kayabacho, Nihonbashi, Chuo-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 一 所定温度に加熱した鋼管の内面に熱可塑性合成樹脂
を被覆し、次の処理工程としての該鋼管の冷却にあたり
、前記樹脂塗膜が凝固を完了する温度以下になるまで管
体の冷却速度を10℃/分以下になるように制御冷却さ
せることを特徴とする熱可塑性合成樹脂内面被覆鋼管の
製造法。
(i) The inner surface of a steel pipe heated to a prescribed temperature is coated with a thermoplastic synthetic resin, and when cooling the steel pipe as the next treatment step, the cooling rate of the pipe body is controlled until the temperature drops below the temperature at which the resin coating completes solidification. A method for producing a thermoplastic synthetic resin inner-coated steel pipe, characterized by controlling cooling to a temperature of 10° C./min or less.
JP9657381A 1981-06-24 1981-06-24 Production of steel pipe coated internally with thermoplastic synthetic resin Granted JPS58281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9657381A JPS58281A (en) 1981-06-24 1981-06-24 Production of steel pipe coated internally with thermoplastic synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9657381A JPS58281A (en) 1981-06-24 1981-06-24 Production of steel pipe coated internally with thermoplastic synthetic resin

Publications (2)

Publication Number Publication Date
JPS58281A true JPS58281A (en) 1983-01-05
JPS61148B2 JPS61148B2 (en) 1986-01-06

Family

ID=14168730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9657381A Granted JPS58281A (en) 1981-06-24 1981-06-24 Production of steel pipe coated internally with thermoplastic synthetic resin

Country Status (1)

Country Link
JP (1) JPS58281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623392A1 (en) * 1993-05-07 1994-11-09 Nordson Corporation Method and apparatus for striping inside seams of cans with a thermoplastic material
JP2010253433A (en) * 2009-04-28 2010-11-11 Kurimoto Ltd Method of coating front and back surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623392A1 (en) * 1993-05-07 1994-11-09 Nordson Corporation Method and apparatus for striping inside seams of cans with a thermoplastic material
JP2010253433A (en) * 2009-04-28 2010-11-11 Kurimoto Ltd Method of coating front and back surfaces

Also Published As

Publication number Publication date
JPS61148B2 (en) 1986-01-06

Similar Documents

Publication Publication Date Title
JPS59222275A (en) Coating method of metallic surface
JPS58281A (en) Production of steel pipe coated internally with thermoplastic synthetic resin
US20050170116A1 (en) Continuous chromate-free fluidized-bed pipe coating
USRE31354E (en) Process for coating metal tubes and use of the coated tubes
JP5233493B2 (en) Manufacturing method of inner surface coated steel pipe
JP6692233B2 (en) Induction heating method for polyolefin coated steel pipe
JP4801599B2 (en) Manufacturing method of anticorrosion water pipe
JPH0211424B2 (en)
JP4360856B2 (en) Method for the chromate-free coating of tubular bodies by fluid immersion and the tubular bodies thus coated
JP2988302B2 (en) Polyolefin-coated steel pipe and method for producing the same
JPH07156268A (en) Plastic covering method of steel pipe
JP4321262B2 (en) Production method of primer-coated resin-coated steel pipe with excellent corrosion resistance
USH1888H (en) Process for applying high application-temperature coating to heat-sensitive aluminum alloys
US2182227A (en) Process of protective lining and coating of pipes
JPH0280227A (en) Coat forming method for coated metal tube material
JPS621468A (en) Method and apparatus for painting deformed bar
JPS58280A (en) Production of steel pipe coated internally with thermoplastic synthetic resin
JPS61111178A (en) Painting method by fluidization and immersion
JPS57105268A (en) Preparation of thermoplastic resin coated steel pipe
JP2782655B2 (en) Chemical treatment method
SU1710567A1 (en) Method of protecting pipelines against corrosion
JPS58137476A (en) Method for applying powdery resin body
JPS629392B2 (en)
JPS6157374B2 (en)
JPS5921671B2 (en) Corrosion-resistant hot-dip galvanizing treatment method