JPS5825806B2 - Concrete piles and columns using high-strength spiral reinforcement - Google Patents

Concrete piles and columns using high-strength spiral reinforcement

Info

Publication number
JPS5825806B2
JPS5825806B2 JP9877677A JP9877677A JPS5825806B2 JP S5825806 B2 JPS5825806 B2 JP S5825806B2 JP 9877677 A JP9877677 A JP 9877677A JP 9877677 A JP9877677 A JP 9877677A JP S5825806 B2 JPS5825806 B2 JP S5825806B2
Authority
JP
Japan
Prior art keywords
strength
concrete
spiral
pile
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9877677A
Other languages
Japanese (ja)
Other versions
JPS5433312A (en
Inventor
克久 水馬
哲光 偉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP9877677A priority Critical patent/JPS5825806B2/en
Publication of JPS5433312A publication Critical patent/JPS5433312A/en
Publication of JPS5825806B2 publication Critical patent/JPS5825806B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【発明の詳細な説明】 本発明は降伏点強度55kyf/m4以上の高強度スパ
イラル筋を縦筋群の周囲に配置した鉄筋籠を用いること
によって捩り耐力、剪断耐力および靭性を向上せしめた
コンクリート柱体を実現しようとするものである。
Detailed Description of the Invention The present invention provides a concrete column with improved torsional strength, shear strength, and toughness by using a reinforcing bar cage in which high-strength spiral reinforcement with a yield point strength of 55 kyf/m4 or more is arranged around a group of vertical reinforcements. It is an attempt to realize the body.

近年、プレキャストコンクリート杭が橋脚等として使用
される場合が多くなるに従って、地震時の水平力によっ
て発生する捩りモーメントに対して十分な耐力を有する
とともに、最近のいわゆる、無騒音、無振動工法と云わ
れる捩り貫入工法において要求される捩り耐力および剪
断耐力のあるプレストレストコンクリート柱体(以下「
PCパイル」という)の実現が要望されている。
In recent years, as precast concrete piles have been increasingly used as bridge piers, etc., they have sufficient resistance to torsional moments generated by horizontal forces during earthquakes, and they are also used in the latest so-called noise-free and vibration-free construction methods. Prestressed concrete columns (hereinafter referred to as “
There is a demand for the realization of "PC pile").

従来のPCパイルは、第1図に示すごとく、PCパイル
の周に沿うごとく、所要数の縦緊張筋1を列設配置し、
縦緊張筋群の外周に、スパイラル状に直径3.2mm〜
4.07間m程度のスパイラル筋2を配置した鉄筋籠を
用いて製造されている。
As shown in Fig. 1, the conventional PC pile has a required number of longitudinal tensile muscles 1 arranged in rows along the circumference of the PC pile.
Around the outer periphery of the longitudinal tension muscle group, a spiral shape with a diameter of 3.2 mm ~
It is manufactured using a reinforcing bar cage in which spiral reinforcements 2 of about 4.07 m are arranged.

すなわち、上記鉄筋籠を型枠内に配置し、上記型枠内に
コンクリートを流し遠心力締固め後、コンクリート養生
し、しかる後公知の方式により、縦緊張筋によってコン
クリートにプレストレス力を導入する。
That is, the above-mentioned reinforcing bar cage is placed in a formwork, concrete is poured into the above-mentioned formwork, compacted by centrifugal force, the concrete is cured, and then prestress force is introduced into the concrete by longitudinal tension bars using a known method. .

しかし、従来のスパイラル筋は縦緊張筋がばらばらにな
らないようにする鉄筋籠の組立用のものとして用いられ
ているので軟鋼線を伸線処理した降伏点30〜40 k
gf /mat程度のものが使用されてきた。
However, since conventional spiral reinforcement is used for assembling reinforcing bar cages to prevent longitudinal tension reinforcement from coming apart, the yield point of the drawn mild steel wire is 30-40K.
Gf/mat has been used.

すなわち、従来遠心力締固め方法によって製造されたP
Cパイルで、たとえば外径300 mmのものについて
云えば、肉厚は60mmで、第2図すに示すごとく、肉
厚の中心線4に沿って直径9.2間の縦緊張筋1が配置
され、当該縦緊張筋の外周に直径3,2關のスパイラル
筋2が配置されている。
That is, P manufactured by the conventional centrifugal compaction method
For example, for a C pile with an outer diameter of 300 mm, the wall thickness is 60 mm, and as shown in Fig. 2, longitudinal tension muscles 1 with a diameter of 9.2 mm are arranged along the center line 4 of the wall thickness. A spiral muscle 2 with a diameter of 3.2 mm is arranged around the outer circumference of the longitudinal tension muscle.

このような構成において、PCパイルに要求されている
前述したごとき耐力を保持させようとして、直径9n〜
13m帳度の太いスパイラル筋を使用することが考えら
れるが、そうすると、上述のような目的が達せられるか
どうかの前に次のような点で、先づ問題が生ずる。
In such a configuration, in order to maintain the above-mentioned proof strength required for the PC pile,
It is conceivable to use a thick spiral wire with a thickness of 13 m, but if this is done, the following problems arise before the above objective can be achieved.

すなわち、前述したごとく、スパイラル筋は肉厚の中心
線4に配置される縦緊張筋の外周に配置されるので、そ
れだけ鉄筋の純覆り3が薄くなって鉄筋の腐食の危険が
多くなるばかりでなく、実際製造上の問題として大径に
なればなる程、スパイラル筋の加工が容易でなくなる。
That is, as mentioned above, since the spiral reinforcement is placed on the outer periphery of the longitudinal tension reinforcement placed on the center line 4 of the wall thickness, the pure covering 3 of the reinforcement becomes thinner and the risk of corrosion of the reinforcement increases. Rather, as an actual manufacturing problem, the larger the diameter, the more difficult it becomes to process the spiral thread.

腐食の危険を除くため覆り厚さを従来どおりとすると、
それだけパイルの外形を犬とせねばならず重量が犬とな
る。
If the covering thickness is kept as usual to eliminate the risk of corrosion,
The outer shape of the pile has to be shaped like a dog, and the weight has to be shaped like a dog.

本発明はこのような困難を解決するためになされたもの
で、降伏点強度55.kgf/m4以上の高強度の細い
スパイラル筋を用いることによって前述した要請に答え
うるコンクリートパイルを実現しようとするものである
The present invention was made to solve these difficulties, and has a yield point strength of 55. The aim is to realize a concrete pile that can meet the above requirements by using thin spiral reinforcement with high strength of kgf/m4 or more.

本発明に用いるスパイラル筋としては降伏点強度55k
gf/m4以上のものを用いる。
The spiral muscle used in the present invention has a yield point strength of 55k.
Use a material with a gf/m4 or higher.

スパイラル筋の降伏点強度を55 kg f /ma以
上としたのは、後述する実験例から明らかなごとく、コ
ンクリート柱体の圧縮限界ひずみを1.5係程度以上と
するためで、それによりコンクリートの圧縮じん性を顕
著に改善できるとともに、柱体の捩り耐力および剪断耐
力を従来のものと比し格段と向上できることが見出され
たためである。
The reason why the yield point strength of the spiral reinforcement was set to 55 kg f /ma or more was to set the compressive limit strain of the concrete column to about 1.5 factor or more, as is clear from the experimental examples described later. This is because it has been found that the compressive toughness can be significantly improved, and the torsional strength and shear strength of the column can be significantly improved compared to conventional ones.

降伏点強度55 kg f 7m4以上の鉄筋をうる方
法としては熱処理による方法、引抜等の塑性加工による
方法、化学組成を変化させる方法等が公知であり、本発
明はそのような公知の方法を利用する。
Methods of obtaining reinforcing bars with a yield point strength of 55 kg f 7 m4 or more are known, such as heat treatment, plastic working such as drawing, and changing chemical composition, and the present invention utilizes such known methods. do.

このような高強度スパイラル筋を、第1図について前述
したと同様の方法によって縦緊張筋群の外周にスパイラ
ル状に配置して鉄筋籠を編成し、当該鉄筋籠を型枠内に
入れ、コンクリートの遠心力締固め後養生し、しかる後
縦緊張筋によってコンクリートにプレストレス力を導入
する。
Such high-strength spiral reinforcements are arranged in a spiral around the outer periphery of the longitudinal tension reinforcement group using the same method as described above with reference to Fig. 1 to form a rebar cage, and the rebar cage is placed in a formwork and concrete After centrifugal compaction and curing, prestress force is introduced into the concrete using longitudinal tension bars.

本発明者は本発明について種々の実験を行った。The inventor conducted various experiments regarding the present invention.

そのうちの一部を示すと次のとおりである。Some of them are as follows.

実験例 1 1)供試体 (1)鉄筋籠 (a) 直径9.2關と11.0關の縦緊張筋各4本
を交互に配置した外周に、直径6.0mmの高強度線材
(ψτv= 130 kP f /wM )をピッチ1
001mでスパイラル状に巻回した(本発明方式) (b) 直径9.2關および11.0mmの縦緊張筋
各4本を交互に配置した外周に、直径 3、2 mmCD線材(JV/= 37 ky f /
mA )をピッチ100mmでスパイラル状に巻回した
(従来方式) %式% 上記鉄筋籠(a) 、 (b)を用い、それぞれ外径3
00mm、肉厚60mmのパイルを製造し、それぞれに
プレテンション方式により100kgf/cyyfのプ
レストレス力を導入し、コンクリートの強度を600k
gf/cILとした。
Experimental example 1 1) Specimen (1) Rebar cage (a) High-strength wire rods (ψτv = 130 kP f /wM) at pitch 1
001 m (method of the present invention) (b) A CD wire with a diameter of 3 and 2 mm (JV/= 37 kyf/
mA) spirally wound at a pitch of 100 mm (conventional method) % Formula % Using the above reinforcing bar cages (a) and (b), each with an outer diameter of 3
00mm, wall thickness 60mm, and a prestress force of 100kgf/cyyf is introduced into each pile using the pretension method, increasing the strength of the concrete to 600k.
gf/cIL.

2)上記それぞれの供試体(a) 、 (b)について
捩り試験を行った。
2) A torsion test was conducted on each of the above specimens (a) and (b).

3)試験結果は第1表に示すとおりであった。3) The test results were as shown in Table 1.

上記実験結果から明らかなごとく、本発明にかかるPC
パイル(a)は同一形状、寸法の従来のものに比べてひ
くわれ捩りモーメントが0.4 t −m高く、シかも
重要なことは、従来のPCパイル(b)はひゾわれ捩り
モーメント3.4 t −mに達すると捩り耐力が急激
に2.8t−mに下って破壊に至るが、本発明にか\る
PCパイル(a)はひくわれ捩りモーメン)3.8t−
mに達しても耐力は衰えず、終局最大耐力4.Ot−m
迄至ってようやく破壊したことである。
As is clear from the above experimental results, the PC according to the present invention
The pile (a) has a crushing torsional moment that is 0.4 t-m higher than a conventional one with the same shape and dimensions, and it is important to note that the conventional PC pile (b) has a crushing torsional moment of 3 t-m. When reaching .4 t-m, the torsional strength suddenly decreases to 2.8 t-m, leading to destruction, but the PC pile (a) according to the present invention is pulled and the torsional moment) is 3.8 t-m.
Even if it reaches m, the proof strength does not decline, and the ultimate maximum proof stress is 4. Ot-m
It was only then that it was destroyed.

これを第3図についてみると、従来のPCパイル(b)
はひゾわれ捩すモーメントA点に達すると粘りがなく、
耐力が急激に低下して破壊Bに至るのに対し、本発明に
か\るPCパイル(a)はひゾわれ捩りモーメントC点
に達しても粘りが強く終局最大耐力点り迄には相当の余
力を残し、設計上必要な抵抗耐力を十分有することであ
る。
Looking at this in Figure 3, the conventional PC pile (b)
When the moment of bending and twisting reaches point A, it loses its tenacity.
In contrast to the sudden decrease in yield strength leading to failure B, the PC pile (a) according to the present invention has strong tenacity even when the torsional moment C point is reached, and the final maximum strength is not reached. It is important to have sufficient resistance strength as required by the design.

上記実施例におイテはJT「= 130 kg f /
rnaの直径6.Omrnのスパイラル筋を用いた場合
の例について述べたが、製造しようとするPCパイルの
外径、肉厚、使用する縦緊張筋の寸法等に応じ、降伏点
応力55kpf/m4以上のたとえば直径8關程度以下
の細径のスパイラル筋をピッチを変化させる等して用い
れば、上記実施例におけるとはゾ同様の効果かえられる
ことも判明している。
In the above example, JT = 130 kg f /
Diameter of rna6. Although we have described an example using Omrn's spiral reinforcement, depending on the outer diameter and wall thickness of the PC pile to be manufactured, the dimensions of the longitudinal tension reinforcement to be used, etc., it is necessary to It has also been found that the same effect as in the above embodiment can be obtained by using spiral stripes with a diameter smaller than that of a gun by changing the pitch.

実験例 2 1)供試体 (1)PC<い 外径4001rL7IL、肉厚75關、長さ2000關
で、各供試体に80kgf/歴、120kgf/−およ
び160に9f /artの三種類のうちの いづれか
のプレストレス力を導入したものを用いた。
Experimental example 2 1) Specimen (1) PC < outer diameter 4001rL7IL, wall thickness 75mm, length 2000mm, each specimen has 80kgf/hi, 120kgf/- and 160 has 9f/art. A model with prestressing force introduced was used.

(2)剪断補強筋 PC<い隘1および階2については従来 のスパイラル筋を配筋し、その他のPCくいには降伏点
強度130に9f /rn4の高強度スパイラル筋を配
筋間隔を変化させ、すなわち補強筋量を変化させ配筋し
た。
(2) Conventional spiral reinforcement was placed for shear reinforcing bars PC<1 and floor 2, and high-strength spiral reinforcement with a yield point strength of 130 and 9f/rn4 was used for the other PC piles, and the spacing was changed. In other words, the amount of reinforcing bars was changed and the reinforcement was arranged.

2) 上述したPCくいについて1000tアムスラ試
験機を用い、2点集中載荷法により剪断破壊試験を行っ
た。
2) A shear failure test was conducted on the above-mentioned PC pile using a 1000t Amsura testing machine using a two-point concentrated loading method.

3)試験結果は第4図および第5図に示すとおりであっ
た。
3) The test results were as shown in FIGS. 4 and 5.

たとえば第4図における1 60 kgf /7ILi
のプレストレス力を導入したF種くいで、剪断スパン、
外径比a / Dが1.5の場合について見ると従来の
スパイラル筋を配筋した供試体克1およびNCL2は設
計曲げ破壊モーメント31.5t−mに達する前に剪断
破壊したが、本発明にか\る高強度スパイラル筋で補強
したもの叱3〜克8(鉄筋比0.53%以上)では破壊
パターンは曲げ破壊に変った。
For example, 160 kgf /7ILi in Figure 4
Shear span, with F type pile introducing prestress force
When looking at the case where the outer diameter ratio a/D is 1.5, specimens 1 and NCL2, which had conventional spiral reinforcements, suffered shear failure before reaching the design bending failure moment of 31.5 t-m, but the present invention The fracture pattern changed to bending fracture in cases 3 to 8 (reinforcing bar ratio of 0.53% or more), which were reinforced with high-strength spiral reinforcement.

又、それらの最大耐力は設計値以上であって、従来のス
パイラル筋を配筋したNalおよび座2に比べて、その
耐力は約3割古人であることが第5図から明らかである
Moreover, their maximum yield strength is greater than the design value, and it is clear from FIG. 5 that their yield strength is about 30% lower than that of NAL and seat 2, which are constructed using conventional spiral reinforcement.

第5図は荷重と剪断スパンにおける曲げ剪断変形角との
関係を示すものであって縦軸は荷重P(ton)、横軸
は曲げ、剪断変形角b(10フンアン)を示す。
FIG. 5 shows the relationship between the load and the bending shear deformation angle in the shear span, where the vertical axis shows the load P (ton) and the horizontal axis shows the bending and shear deformation angle b (10 ft).

なお、第4図における供試体N[11およびNl12に
は従来の補強筋が用いられているが、本発明の高強度ス
パイラル筋は用いていないので「剪断補強筋なし」と表
現しである。
Although conventional reinforcing bars are used in specimens N[11 and Nl12 in FIG. 4, the high-strength spiral bars of the present invention are not used, so they are expressed as "no shear reinforcing bars."

本発明にか\るPCパイルは従来のPCパイルに比し、
せん断破壊耐力を著しく高くすることができるばかりで
なく、さらにコンクリートが高強度スパイラル筋で強く
抱束されることによってパイルの靭性を著しく向上させ
ることができることを示している。
The PC pile according to the present invention is compared to the conventional PC pile,
This shows that not only can the shear fracture strength be significantly increased, but also that the toughness of the pile can be significantly improved by strongly binding the concrete with high-strength spiral reinforcement.

実験例 3 1)降伏点強度130 kgf/maおよび35kgf
/maの角スパイラル筋で補強した断面20X20儂、
長さ60CrrLの角柱供試体に中心軸圧力を載荷した
処、降伏点強度35kgf/1rLdの角スパイラル筋
を使用した供試体は充分なコンクリートの圧縮ひずみが
得られる前に降伏したが、降伏点強度130kgf/m
Aの角スパイラル筋を使用した供試体では上記供試体の
2倍以上である2多以上のコンクリートの圧縮限界ひず
みが得られた。
Experimental example 3 1) Yield point strength 130 kgf/ma and 35 kgf
/ma square spiral reinforcement reinforced cross section 20x20,
When central axial pressure was applied to a rectangular column specimen with a length of 60 CrrL, the specimen using square spiral reinforcement with a yield point strength of 35 kgf/1 rLd yielded before a sufficient compressive strain of the concrete was obtained, but the yield point strength was 130kgf/m
In the specimen using the square spiral reinforcement of A, the compressive limit strain of concrete was obtained which was more than twice that of the above-mentioned specimen.

又、さらにくわしく検討するため直径15crn1高さ
30cIILのコンクリート円柱体の周囲に降伏点強度
、線径及びピッチを種々変えたスパイラル筋を巻きつけ
て横方向の拘束を施した供試体について圧縮試験を行っ
た処、スパイラル筋の降伏点強度が55kgf /mA
以上のものでは通常のピッチで容易に1.5%程度のコ
ンクリートの圧縮ひずみが得られ、靭性の向上が著しい
ことが判った。
In addition, in order to investigate in more detail, a compression test was conducted on a specimen in which spiral reinforcement with various yield point strengths, wire diameters, and pitches were wrapped around a concrete cylinder with a diameter of 15 crn and a height of 30 cIIL, and the specimen was restrained in the lateral direction. The yield point strength of the spiral muscle was 55 kgf/mA.
It was found that with the above concrete, a compressive strain of about 1.5% could be easily obtained at a normal pitch, and the toughness was significantly improved.

一方、コンクリートの縦方向のひずみと柱体を拘束する
スパイラル筋に発生する応力のESP 関係は Jマ〒=ε で表わされる。
On the other hand, the ESP relationship between the longitudinal strain of the concrete and the stress generated in the spiral reinforcement that restrains the column is expressed as Jma = ε.

こ\にに〒は柱方向拘束筋に発生する応 力、εはコンクリートのひずみ、mはポアソン数で5、
ESPはヤング率で20000kgf/maである。
Here, 〒 is the stress generated in the restraining reinforcement in the column direction, ε is the strain in the concrete, m is Poisson's number 5,
ESP has a Young's modulus of 20,000 kgf/ma.

本発明にか\る高強度スパイラル筋によれば、コンクリ
ートに容易に1.5多柱度以上の圧縮限界ひずみを与え
られることが見出された。
It has been found that the high-strength spiral reinforcement according to the present invention can easily impart a compressive limit strain of 1.5 degrees or more to concrete.

従って充分な拘束を得るためのスパイラル筋の降伏点強
度は上記式から で、計算式からもはq 60 kgf /ma以上であ
ることが証明でき、実際には1.5%前後以上の圧縮限
界Df−+を得るには上記実験例が証明するように、本
発明の高強度スパイラル筋の降伏点強度の下限を55k
gf/ma以上とすることが必要である。
Therefore, the yield point strength of the spiral muscle to obtain sufficient restraint is from the above formula, and it can be proven from the calculation formula that it is more than q 60 kgf /ma, and in reality, the compression limit is around 1.5% or more. In order to obtain Df-+, as the above experimental example proves, the lower limit of the yield point strength of the high-strength spiral muscle of the present invention must be 55k.
It is necessary to make it more than gf/ma.

なお、実験例3はコンクリートの靭性についての実験で
あるので、プレストレスを導入しない供試体について行
ったが、プレストレスを導入した場合も同様の結果が得
られている。
Since Experimental Example 3 was an experiment on the toughness of concrete, it was conducted on a specimen without introducing prestress, but similar results were obtained when prestress was introduced.

実験例1および2はPCコンクIJ−ト柱体についての
実験、実験例3はプレストレスを導入しないコンクリー
ト柱体についての実験で、本発明はいづれのコンクリー
ト柱体についても適用可能である。
Experimental Examples 1 and 2 are experiments on PC concrete IJ-to columns, Experimental Example 3 is an experiment on concrete columns in which no prestress is introduced, and the present invention is applicable to either concrete column.

本発明によるコンクリ−ト柱体の捩り耐力は従来のもの
に比して向上しており、しかも、ひゾわれ捩りモーメン
トに達しても粘りが強く終局最大捩りモーメントに至る
迄に相当の余力を残しているので、地震時の水平力によ
って発生する捩りモーメントに対する十分な耐力を有す
るとともに捩り貫入工法等で要請されている捩り耐力及
び剪断耐力を十分兼ね備えている。
The torsional strength of the concrete column according to the present invention is improved compared to the conventional one, and it is highly tenacious even when the torsional moment is reached, and has a considerable amount of extra strength until the final maximum torsional moment is reached. Because of this, it has sufficient resistance to the torsional moment generated by horizontal force during an earthquake, and also has sufficient torsional resistance and shear resistance required for torsional penetration construction methods.

又、本発明において用いるスパイラル筋は細径であるの
で、鉄筋の純覆りが薄くなることによる腐食等の恐れは
なく耐久性を有する他、加工が容易である等、コンクリ
ート柱体に現在要請されている諸性能を殆んど備えてい
る。
In addition, since the spiral reinforcing bars used in the present invention have a small diameter, there is no fear of corrosion due to thinning of the pure covering of the reinforcing bars, and in addition to being durable, they are easy to process, and meet the current requirements for concrete columns. It has most of the features listed above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPCパイル用鉄筋籠を示す斜視図、第2図aは
PCパイルの正面図、第2図すは第2図aのに−に線断
面図、第3図は本発明の実験結果を示す線図であって、
a線は本発明にかかるPC杭の、b線は従来のPC杭の
捩り耐力を示す線図、第4図は本発明の他の実験結果を
示す表図、第5図は荷重と剪断スパンにおける曲げ剪断
変形角との関係を示す線図である。 1・・・・・・縦筋群、2・・・・・・スパイラル筋。
Fig. 1 is a perspective view showing a reinforcing bar cage for PC piles, Fig. 2a is a front view of the PC pile, Fig. 2 is a sectional view taken along the line - in Fig. 2a, and Fig. 3 is an experiment of the present invention. A diagram showing the results,
Line a shows the torsional strength of the PC pile according to the present invention, line b shows the torsional strength of the conventional PC pile, Figure 4 is a table showing other experimental results of the present invention, and Figure 5 shows the load and shear span. It is a diagram showing the relationship between bending and shear deformation angles in FIG. 1...Longitudinal muscle group, 2...Spiral muscle group.

Claims (1)

【特許請求の範囲】[Claims] 1 降伏点強度55kgf/sit以上の高強度スパイ
ラル筋を縦筋群の周囲に配置した鉄筋籠を用いることに
よって捩り耐力、剪断耐力および靭性を向上せしめたコ
ンクリート柱体。
1. A concrete column that has improved torsional strength, shear strength, and toughness by using a reinforcing bar cage in which high-strength spiral reinforcement with a yield point strength of 55 kgf/sit or more is arranged around a group of vertical reinforcements.
JP9877677A 1977-08-19 1977-08-19 Concrete piles and columns using high-strength spiral reinforcement Expired JPS5825806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9877677A JPS5825806B2 (en) 1977-08-19 1977-08-19 Concrete piles and columns using high-strength spiral reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9877677A JPS5825806B2 (en) 1977-08-19 1977-08-19 Concrete piles and columns using high-strength spiral reinforcement

Publications (2)

Publication Number Publication Date
JPS5433312A JPS5433312A (en) 1979-03-12
JPS5825806B2 true JPS5825806B2 (en) 1983-05-30

Family

ID=14228767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9877677A Expired JPS5825806B2 (en) 1977-08-19 1977-08-19 Concrete piles and columns using high-strength spiral reinforcement

Country Status (1)

Country Link
JP (1) JPS5825806B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140151A (en) * 1980-03-31 1981-11-02 Fuji Fibre Glass Co Ltd Glass fiber binder
JPS5831153A (en) * 1981-08-07 1983-02-23 積水化学工業株式会社 Molding material
JPH0567629U (en) * 1992-03-26 1993-09-07 関西アサノポール株式会社 Ultra high bending toughness centrifugal forming prestressed concrete pile

Also Published As

Publication number Publication date
JPS5433312A (en) 1979-03-12

Similar Documents

Publication Publication Date Title
US10378208B2 (en) Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
Nematzadeh et al. Experimental study on modulus of elasticity of steel tube-confined concrete stub columns with active and passive confinement
Huang et al. Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement
Tahir et al. Axial compressive behavior of square concrete columns confined with CFRP strip ties using wet lay-up technique
US20080184667A1 (en) Concrete Reinforcement Apparatus and Method
CN106639347B (en) Two dimension prestressing semicircle steel plate is online without damaged reinforced concrete cylinder method
JPS5825806B2 (en) Concrete piles and columns using high-strength spiral reinforcement
JPS61216924A (en) Superhigh-strength concrete pile
JP2981151B2 (en) Reinforced concrete pile
JPH0545627Y2 (en)
JPS62215717A (en) Touch pc pile of high bending and super high bending strength
JPS6045567B2 (en) Method for manufacturing ultra-high strength PC pile with improved shear strength
JPS60212514A (en) Concrete pile
JPS6319392Y2 (en)
JPH09174537A (en) Manufacture of centrifugal prestressed concrete pile
CN220503887U (en) Prestressed concrete torsion-resistant square pile
Ozbakkaloglu et al. Seismic performance of high-strength concrete columns cast in stay-in-place FRP formwork
Matsumoto et al. Flexural performance on RC and precast concrete columns with ultra high strength materials under varying axial load
JP6784355B2 (en) Shear reinforcement PC pile
JPH07103637B2 (en) Precast core pillar
WO2023200004A1 (en) Structural base material, structural member, structure, and construction method for structural member
JP2009097278A (en) Centrifugal reinforced concrete pile with high bending resistance
JP4519088B2 (en) Reinforced concrete member lap joint reinforcement method
CN109868940B (en) Post-tensioned bonded co-tensioned prestressed concrete composite beam and design and construction method thereof
JPS62215718A (en) Tough pc pile