JPH0545627Y2 - - Google Patents

Info

Publication number
JPH0545627Y2
JPH0545627Y2 JP1986082841U JP8284186U JPH0545627Y2 JP H0545627 Y2 JPH0545627 Y2 JP H0545627Y2 JP 1986082841 U JP1986082841 U JP 1986082841U JP 8284186 U JP8284186 U JP 8284186U JP H0545627 Y2 JPH0545627 Y2 JP H0545627Y2
Authority
JP
Japan
Prior art keywords
steel
columns
concrete
steel wire
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986082841U
Other languages
Japanese (ja)
Other versions
JPS62196236U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986082841U priority Critical patent/JPH0545627Y2/ja
Publication of JPS62196236U publication Critical patent/JPS62196236U/ja
Application granted granted Critical
Publication of JPH0545627Y2 publication Critical patent/JPH0545627Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Bridges Or Land Bridges (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は基礎杭、橋梁の支柱及び建築物の柱等
に使用する遠心力成形プレストレストコンクリー
ト柱体に関する。 〔従来の技術〕 基礎杭、橋梁の支柱等に用いられている柱体と
しては、鋼管内に膨張性コンクリートを投入して
遠心力成形した鋼管コンクリート柱体(SC柱)
や、PC鋼線を高強度コンクリート体中に埋設し
て遠心力成形した高強度プレストレストコンクリ
ート柱体(PHC柱)、PC鋼棒と異形棒鋼とをコ
ンクリート体中に埋設して遠心力成形したプレス
トレストコンクリート柱体(PRC柱)がある。 SC柱は、製造に当り鋼管の板厚を任意なもの
に選定でき、複合化されているため強度的には強
いものが作れるが、鋼管を注文してから納入まで
に1ケ月以上要し緊急生産に対応できない。又、
鋼管の許容応力度が低く(2400Kg/cm2)且つ腐食
代を考慮する必要があるためそれだけ高価で不経
済である。 PHC柱は、SC柱とほぼ似たN−M曲線を有
し、主としてPC鋼線と高強度コンクリートとか
らなるので、比較的安価であるが、使用に当つて
1本当りに対し、大きな曲げ耐力を期待すること
ができない。 又、PRC柱は、PC鋼棒と異形棒鋼とが併用さ
れているにもかかわらずPHC柱よりも強度及び
靱性は若干大きくなるがPC鋼棒が応力集中を受
けて破断するため異形棒鋼を入れた割には曲げ応
力が繰り返し加わる場合に対する靱性が今一つ充
分ではない。 〔考案が解決しようとする問題点〕 本考案は、従来のPHC柱やPRC柱よりも靱性
において格段に優れ且つ市販の鋼材を用い、SC
柱よりも安価に、即生産対応ができるSC柱に代
えて使用しうるプレストレストコンクリート柱体
を供せんとするものである。 〔問題点を解決するための手段〕 本考案は上記の目的を達するために、コンクリ
ート体の横断面積に対するPC鋼線の比が0.6〜0.9
%、同じく異形鋼棒の比が1.0〜6.0%である、軸
方向全長に配置したPC鋼線と異形鋼棒と、その
外周のほぼ全長にわたつてコンクリート体中にお
ける縦断面積比が0.6〜0.9%となるように密に巻
きつけた普通鉄線のらせん筋とからなる鉄筋かご
が、圧縮強度800Kg/cm2以上のコンクリート体中
に埋設され、コンクリート体に前記PC鋼線によ
りプレストレスが与えられている外径が300〜
1000mmである高靭性コンクリート柱体を構成した
ものである。 〔作用〕 本案はPC鋼棒をPC鋼線に変更しらせん筋を密
に巻くことにより、従来にない大きな靱性が得ら
れる作用があるものであり、PC鋼棒とPC鋼線の
特性について、PC鋼棒と、PC鋼線に短い長さで
等間隔に印をつけておき破断するまで引張つた
後、各区間毎の伸びを調べた処第3図に示すよう
な結果が得られた。 第3図に示すように破断個所に隣接する区間伸
びは、PC鋼棒は小さく、PC鋼線は大きい。これ
はPC鋼棒では破断個所の伸びだけが大きく突出
し、隣接部は小さい伸びに止まり、集中型であり
一方PC鋼線は隣接部の伸びも大きくなだらかな
形になつていて集中型ではない。PC鋼棒は局部
伸びを起し易く、破断近くまで塑性変形が起らな
いため応力集中を受け易く、コンクリートのクラ
ツク部における曲げ引張に関してPC鋼線より弱
い欠点をもつていると云える。 次に長さ8m、外径400mmの試験体、、を
作り、第4図による荷重スパンで、漸増変位正負
交番繰返し曲げ試験を行なつた。その結果を第5
図に示す。 試験体、、は第1表に示すものを使用し
た。
[Industrial Application Field] The present invention relates to a centrifugally formed prestressed concrete column used for foundation piles, bridge supports, building columns, etc. [Conventional technology] Columns used for foundation piles, bridge supports, etc. are steel pipe concrete columns (SC columns) made by pouring expandable concrete into steel pipes and forming them by centrifugal force.
, high-strength prestressed concrete columns (PHC columns) in which PC steel wires are buried in high-strength concrete and formed by centrifugal force, and prestressed concrete columns in which PC steel bars and deformed steel bars are buried in concrete and formed by centrifugal force. There is a concrete column (PRC column). When manufacturing SC columns, the thickness of the steel pipe can be selected as desired, and since it is made of composite material, it can be made strong, but it takes more than a month from ordering the steel pipe to delivery, making it an emergency. Not suitable for production. or,
Since the allowable stress of the steel pipe is low (2400 kg/cm 2 ) and corrosion allowance must be taken into account, it is expensive and uneconomical. PHC columns have an N-M curve almost similar to SC columns, and are made mainly of PC steel wire and high-strength concrete, so they are relatively inexpensive, but they require a lot of bending when used. You cannot expect durability. In addition, PRC columns have slightly greater strength and toughness than PHC columns even though they use both PC steel bars and deformed steel bars, but since the PC steel bars break due to stress concentration, it is difficult to use deformed steel bars. However, the toughness against repeated bending stress is not sufficient. [Problems that the invention aims to solve] This invention uses commercially available steel materials that are significantly superior in toughness to conventional PHC columns and PRC columns, and
The aim is to provide prestressed concrete columns that can be used in place of SC columns, which are cheaper than columns and can be produced immediately. [Means for Solving the Problems] In order to achieve the above-mentioned purpose, the present invention is designed so that the ratio of the PC steel wire to the cross-sectional area of the concrete body is 0.6 to 0.9.
%, the ratio of the deformed steel rod is 1.0 to 6.0%, and the vertical cross-sectional area ratio in the concrete body is 0.6 to 0.9 over almost the entire length of the outer circumference of the PC steel wire and deformed steel rod arranged along the entire length in the axial direction. A reinforcing bar cage consisting of a spiral bar of ordinary iron wire tightly wound so as to have a strength of The outer diameter is 300~
It is made up of 1000mm high-toughness concrete columns. [Function] This proposal has the effect of changing the PC steel bar to a PC steel wire and tightly winding the helical reinforcement to obtain greater toughness than ever before. Regarding the characteristics of the PC steel bar and the PC steel wire, After making short length marks on the PC steel rod and PC steel wire at equal intervals and pulling them until they broke, the elongation of each section was examined, and the results shown in Figure 3 were obtained. As shown in Figure 3, the elongation of the section adjacent to the fracture point is small for the PC steel bar and large for the PC steel wire. This is because in the case of a PC steel bar, the elongation at the fracture point is large and protrusive, while the elongation in the adjacent areas is small, making it a concentrated type.On the other hand, in the case of a PC steel wire, the elongation in the adjacent areas is also large and has a gentle shape, so it is not a concentrated type. PC steel bars tend to undergo local elongation, and because plastic deformation does not occur until near fracture, they are susceptible to stress concentration, and it can be said that they have the disadvantage that they are weaker than PC steel wires with respect to bending and tension in concrete cracks. Next, a test specimen with a length of 8 m and an outer diameter of 400 mm was made, and a progressively increasing displacement positive/negative alternating cyclic bending test was conducted under the load span shown in Fig. 4. The result is the fifth
As shown in the figure. The test specimens shown in Table 1 were used.

〔実施例〕〔Example〕

第2表は本考案を、外径300〜800mmの柱体に適
用する場合の構成例を示したものであり、第1
図、第2図はそのうちの外径400mmの柱体の縦断
面図、横断面図である。PC鋼線1と異形棒鋼2
とが交互に円筒面に沿つて配置され、その外周に
巻き付けたらせん筋3と溶接されて鉄筋かごが形
成され、これが遠心力成形され高温高圧蒸気養生
された圧縮強度850Kg/cm2のコンクリート体4中
に埋設されている。コンクリート体4はPC鋼線
1によりプレストレスが軸方向に与えられてい
る。異形棒鋼2は必ずしも両端まで延長せず、両
端が柱体の端面から若干内側に位置していても良
い。
Table 2 shows a configuration example when the present invention is applied to a column with an outer diameter of 300 to 800 mm.
Figure 2 shows a vertical cross-sectional view and a cross-sectional view of a column with an outer diameter of 400 mm. PC steel wire 1 and deformed steel bar 2
are arranged alternately along the cylindrical surface and welded with the spiral reinforcement 3 wrapped around the outer circumference to form a reinforcing bar cage, which is centrifugally formed and cured with high temperature and high pressure steam to form a concrete body with a compressive strength of 850 kg/cm 2. It is buried in 4. The concrete body 4 is prestressed in the axial direction by the PC steel wire 1. The deformed steel bar 2 does not necessarily extend to both ends, and both ends may be located slightly inside from the end surface of the column.

【表】【table】

〔考案の効果〕[Effect of idea]

第6図は外径600mmの柱体のN−M曲線を比較
して示したもので、SC9、SC6、SC4.5はそ
れぞれ鋼管の厚さが9mm、6mm、4.5mmのSC柱、
−1、−4は本考案による種、種(第2
表の外径600mmの欄の異形棒鋼としてD13、D22
を使用のもの)相当のもの、Hは一般のPHC柱
を示す。何れもコンクリートの圧縮強度は850
Kg/cm2である。 この図から判るようにSC及びPHC柱体に比
し、山の頂部が平らになつていることにより、短
期の柱体1本当りの曲げモーメントを設定する場
合、軸力の変動の最少側で決定されることから本
案柱体は経済的な設計ができる。 本考案によれば、鋼管コンクリート柱体よりも
安価で、即生産の対応ができる鋼管コンクリート
柱体に代えて使用できるプレストレストコンクリ
ート柱体を提供できる。
Figure 6 shows a comparison of the N-M curves of columns with an outer diameter of 600 mm, and SC9, SC6, and SC4.5 are SC columns with steel pipe thicknesses of 9 mm, 6 mm, and 4.5 mm, respectively.
-1 and -4 are seeds according to the present invention, seeds (second
D13, D22 as deformed steel bars in the column of outer diameter 600 mm in the table
equivalent), H indicates a general PHC pillar. In both cases, the compressive strength of concrete is 850
Kg/ cm2 . As can be seen from this figure, compared to SC and PHC columns, the top of the mountain is flat, so when setting the short-term bending moment per column, it is possible to Since this is determined, the proposed column can be designed economically. According to the present invention, it is possible to provide a prestressed concrete column that can be used in place of a steel tube concrete column, which is cheaper than a steel tube concrete column and can be readily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による高靱性コンクリート柱体
の縦断面図、第2図は第1図の横断面図、第3図
はPC鋼線と、PC鋼棒とを破断するまで引張つた
ときの長さ方向各区間毎の伸びひずみを示した
図、第4図は供試体の試験条件を示した図、第5
図は供試体の試験結果を示した図、第6図は本案
柱体と、SC柱、PHC柱とのN−M曲線を併せて
示した図である。 1……PC鋼線、2……異形棒鋼、3……らせ
ん筋、4……コンクリート体。
Figure 1 is a vertical cross-sectional view of a high-toughness concrete column according to the present invention, Figure 2 is a cross-sectional view of Figure 1, and Figure 3 is a cross-sectional view of a prestressed steel wire and a prestressed steel bar when they are stretched until they break. Figure 4 shows the elongation strain for each section in the length direction, Figure 4 shows the test conditions for the specimen, Figure 5
The figure shows the test results of the specimen, and Figure 6 shows the N-M curves of the proposed column, SC column, and PHC column. 1...PC steel wire, 2...deformed steel bar, 3...spiral bar, 4...concrete body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンクリート体の横断面積に対するPC鋼線の
比が0.6〜0.9%、同じく異形鋼棒の比が1.0〜6.0
%である、軸方向全長に配置したPC鋼線と異形
鋼棒と、その外周のほぼ全長にわたつてコンクリ
ート体中における縦断面積比が0.6〜0.9%となる
ように密に巻きつけた普通鉄線のらせん筋とから
なる鉄筋かごが、圧縮強度800Kg/cm2以上のコン
クリート体中に埋設され、コンクリート体に前記
PC鋼線によりプレストレスが与えられている外
径が300〜1000mmである高靭性コンクリート柱体。
The ratio of the PC steel wire to the cross-sectional area of the concrete body is 0.6 to 0.9%, and the ratio of the deformed steel bar is 1.0 to 6.0.
%, PC steel wire and deformed steel rod arranged along the entire length in the axial direction, and ordinary iron wire tightly wound around almost the entire length of the outer circumference so that the vertical cross-sectional area ratio in the concrete body is 0.6 to 0.9%. A reinforcing bar cage consisting of spiral bars is buried in a concrete body with a compressive strength of 800 kg/cm 2 or more, and the above-mentioned
High-toughness concrete columns with an outer diameter of 300 to 1000 mm prestressed by PC steel wire.
JP1986082841U 1986-05-30 1986-05-30 Expired - Lifetime JPH0545627Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986082841U JPH0545627Y2 (en) 1986-05-30 1986-05-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986082841U JPH0545627Y2 (en) 1986-05-30 1986-05-30

Publications (2)

Publication Number Publication Date
JPS62196236U JPS62196236U (en) 1987-12-14
JPH0545627Y2 true JPH0545627Y2 (en) 1993-11-24

Family

ID=30935863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986082841U Expired - Lifetime JPH0545627Y2 (en) 1986-05-30 1986-05-30

Country Status (1)

Country Link
JP (1) JPH0545627Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025567A (en) * 2015-07-22 2017-02-02 日本ヒューム株式会社 High flexural toughness PC pile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031674A (en) * 2000-10-23 2002-05-03 추후제출 Driveway for rapid transit
JP5154338B2 (en) * 2008-08-25 2013-02-27 ジャパンパイル株式会社 Prestressed reinforced concrete pile
JP2015203231A (en) * 2014-04-14 2015-11-16 日本コンクリート工業株式会社 Concrete pole
JP2019073907A (en) * 2017-10-16 2019-05-16 日本コンクリート工業株式会社 Reinforced concrete pile and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513390A (en) * 1978-04-18 1980-01-30 Procter & Gamble Stationary quantitative dispenser
JPS5622817A (en) * 1979-08-03 1981-03-04 Hasegawa Komuten Co Ltd Highly strong prestressed concrete pile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513390A (en) * 1978-04-18 1980-01-30 Procter & Gamble Stationary quantitative dispenser
JPS5622817A (en) * 1979-08-03 1981-03-04 Hasegawa Komuten Co Ltd Highly strong prestressed concrete pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025567A (en) * 2015-07-22 2017-02-02 日本ヒューム株式会社 High flexural toughness PC pile

Also Published As

Publication number Publication date
JPS62196236U (en) 1987-12-14

Similar Documents

Publication Publication Date Title
JPH0545627Y2 (en)
KR20100035787A (en) Manufacturing method of hollow cft with ribbed steel pipe
CN111428302B (en) Design method of rotary type reinforced concrete wet joint
CN106400784B (en) The construction method of bored concrete pile is made of filling pile cage of reinforcement
CN106400783B (en) The construction method of bored concrete pile is made of expansion steel reinforcement cage
CN104652430A (en) Composite reinforcement partially prestressed concrete solid square pile and manufacturing method thereof
CN85105541B (en) Reinforced conventional concrete pipe having an evenly distributed steel wire reinforcement and method for its manufacture
CN107893538B (en) Tensioning method of in-vivo prestressed glued wood beam
CN201010899Y (en) Corrugated pipe pile
CN110512802A (en) The compound tubular pole of PHC and preparation method thereof using FRP as hybrid reinforcement
CN216884551U (en) High-strength built-in post-tensioned reinforced concrete pole
CN201010898Y (en) Pipe pile with vertical convex rib
CN207727844U (en) A kind of steel core concrete column of high tensile steel wire mesh sheet enhancing
JP2947736B2 (en) Concrete columnar structure
JPH0723457Y2 (en) Square steel pipe concrete member
JPH0422996Y2 (en)
RU2796722C1 (en) Reinforcing rope from polymer composite reinforcement
JPH0598638A (en) Ultra-high-bending tenacity pc pile
JPH08326052A (en) Reinforced concrete pile
CN221646161U (en) Reinforced composite steel pipe concrete structure
CN213897485U (en) Cast-in-place square column precast square beam concrete frame node
CN220816841U (en) High-pressure water supply steel pipe with prestressed steel and concrete combined structure
Ozbakkaloglu et al. Seismic performance of high-strength concrete columns cast in stay-in-place FRP formwork
CN217381990U (en) Reinforced concrete pipe with special structure
JPS626202Y2 (en)