JPS6045567B2 - Method for manufacturing ultra-high strength PC pile with improved shear strength - Google Patents

Method for manufacturing ultra-high strength PC pile with improved shear strength

Info

Publication number
JPS6045567B2
JPS6045567B2 JP4106679A JP4106679A JPS6045567B2 JP S6045567 B2 JPS6045567 B2 JP S6045567B2 JP 4106679 A JP4106679 A JP 4106679A JP 4106679 A JP4106679 A JP 4106679A JP S6045567 B2 JPS6045567 B2 JP S6045567B2
Authority
JP
Japan
Prior art keywords
strength
concrete
reinforcement
pile
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4106679A
Other languages
Japanese (ja)
Other versions
JPS55133908A (en
Inventor
煕 六車
克久 水馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP4106679A priority Critical patent/JPS6045567B2/en
Publication of JPS55133908A publication Critical patent/JPS55133908A/en
Publication of JPS6045567B2 publication Critical patent/JPS6045567B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はプレテンシヨンエ法によつて製造されるプレス
トレスト●コンクリートくい体の製造方法においてプレ
ストレスト・コンクリート用鋼材(以下「PC鋼材」と
いう)てある縦筋群の周囲に降状点強度80に9/一以
上の鋼線を、くい体縦断面積に対する配筋比(Pw)が
0.53%以上で、10cm以下のピッチ間隔となるよ
うにスパイラル状に巻回して構成した鉄筋籠を用い、P
q鋼材を予め緊張した後、セメントとしては常圧蒸気養
生によつてきわめて早期に圧縮強度80Ok9/cイ以
上を得られる超早強混和剤を含有したものを使用して遠
心力締固めによつてコンクリートくい体を成形したのち
、常圧蒸気養生し、その後コンクリートに80に9/d
以上の有効プレスドレスが得られるようなプレスドレス
を導入することを特徴とする、曲げ耐力が格段に高く、
かつ剪断耐力を飛躍的に向上せしめたプレストレスト・
コンクリートくい体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing prestressed concrete piles manufactured by the pretensioner method, in which a prestressed concrete pile is manufactured by a pretensioner method, in which a steel material for prestressed concrete (hereinafter referred to as "PC steel material") is placed around a group of longitudinal reinforcements. Constructed by winding a steel wire with a descending point strength of 80 to 9/1 or more in a spiral shape with a reinforcement ratio (Pw) to the vertical cross-sectional area of the pile body of 0.53% or more and a pitch interval of 10 cm or less. P
q After pre-stressing the steel material, it is compacted by centrifugal force using a cement containing an ultra-early strength admixture that can quickly obtain a compressive strength of 80 Ok9/c or more through atmospheric pressure steam curing. After forming the concrete pile body, it is cured with atmospheric pressure steam, and then the concrete is 80 to 9/d.
The bending strength is significantly high, which is characterized by the introduction of a press dress that can obtain the above effective press dress.
Prestressed steel with dramatically improved shear strength.
This invention relates to a method for manufacturing a concrete pile.

本発明を第1図〜第2図をを引用しつゝ以下詳細に説明
する。
The present invention will be explained in detail below with reference to FIGS. 1 and 2.

まづ、本発明がなされた背景について述べる。First, the background of the present invention will be described.

プレストレスト・コンクリートくい体(以下「PCくい
体」という)の曲げ耐力を向上するにはコンクリートに
導入するプレストレス量を多くすればよいが、むやみに
その導入量を多くすることできず、導入プレストレス量
は使用するコンクリートの圧縮強度に応じた適切な大き
さの範囲内に制限される。従つて曲わ耐力を増加するた
めに導入するプレストレス量を多くする前提としてコン
クリートが高い圧縮強度を有することが必要てある。コ
ンクリートの圧縮強度を向上させる方法として従来から
オートクレーブ養生(高温、高圧蒸気養生)が行われて
いる。この方法によれば、800k9/Clt以上の圧
縮強度が得られる。
In order to improve the bending strength of prestressed concrete piles (hereinafter referred to as "PC piles"), it is possible to increase the amount of prestress introduced into the concrete. The amount of stress is limited to an appropriate amount depending on the compressive strength of the concrete used. Therefore, in order to increase the bending strength, it is necessary for the concrete to have high compressive strength in order to increase the amount of prestress introduced. Autoclave curing (high temperature, high pressure steam curing) has traditionally been used as a method to improve the compressive strength of concrete. According to this method, a compressive strength of 800k9/Clt or more can be obtained.

しかし200℃に近い高温中に数時間おかれる特殊養生
であるため、予め緊張されているPC鋼材のレラクセー
シヨン量が過大に増加する等により、養生後コンクリー
トに導入されるプレストレス量は異常に減退し、高プレ
ストレスの導入は不可能に近い。オートクレーブ養生後
にプレストレスを導入するポストテンション方式を用い
れば、PC鋼材は前述の高温条件の悪影響を受けず、従
つてプレストレス量の損失は防げるが、PCくいは基本
的に端部を切断する場合が多いので、ポストテンション
方式によるPCくいは一般には使用されていないのが現
状である。
However, since this is a special curing method in which the concrete is kept at a high temperature close to 200℃ for several hours, the amount of relaxation of the pre-tensioned prestressed steel material increases excessively, and the amount of prestress introduced into the concrete after curing decreases abnormally. However, it is nearly impossible to introduce high prestress. If a post-tensioning method is used in which prestress is introduced after autoclave curing, the prestressing steel material will not be adversely affected by the high temperature conditions mentioned above, and therefore the loss of prestress amount can be prevented, but the prestressing pile basically cuts the ends. For this reason, post-tensioning PC stakes are not generally used at present.

本願の発明者は上述のような事情にかんがみ、また最近
超早強混和剤の開発がなされたこととの関連において種
々の実験を行つた結果、オートクレーブ養生によらずオ
ートクレーブ養生によつて得られる以上に、曲げ耐力を
格段に向上せしめたくい体を効果的に得られる方法を発
明した(昭和.関年特許願第155748号)。
In view of the above-mentioned circumstances, and in connection with the recent development of super-fast-strengthening admixtures, the inventor of the present application has conducted various experiments, and has found that an admixture that can be obtained by autoclave curing instead of autoclave curing has been found. As described above, we have invented a method for effectively obtaining a concrete body with significantly improved bending strength (Showa era patent application No. 155748).

この方法は、プレテンシヨンエ法によつて製造されるプ
レストレスト・コンクリートくい体の製造方法において
使用するコンクリートとして常圧蒸気養生を行うだけで
きわめて早期にコンクリーjトの圧縮強度800k9/
c鑓以上を得られる、超早強混和剤を含有したものを用
い、又蒸気養生としては常圧蒸気養生を用い、かつ常圧
蒸気養生後、コンクリートに導入するプレストレスの有
効プレストレス量をコンクリートの圧縮強度のほ〈0.
1〜・0.3倍としたことを特徴とするものである。
In this method, the compressive strength of concrete used in the manufacturing method of prestressed concrete piles produced by the pretensioning method is simply subjected to normal pressure steam curing to achieve a compressive strength of 800 k9/cm at an extremely early stage.
Use an admixture that contains an ultra-early strength admixture that can give a strength of at least c. The compressive strength of concrete is about <0.
It is characterized by being 1 to 0.3 times larger.

この方法によれば、高強度コンクリートに高プレストレ
スを導入することが可能で、曲げ耐力の増強に非常に有
効であり、かつ健全なり学的性状を示すコンクリートく
い体の製造が可能であるが、当該発明の実験過程におい
て、剪断耐力に対する疑問が残つた。というのは上記方
法において縦筋群外周を巻回するスパイラル筋として通
常のPCくい体において用いられる、たとえば降状点強
度40kg/d程度の鉄線を用いた鉄筋籠を使用した実
験において、剪断スパン比a/D=1.5のような剪断
領域において曲げ破壊耐力によりはるかに低い荷重を受
けた〈けで剪断破壊を起してしまつたか”らである。一
方、本願の発明者は隆状点強度55kg/d以上の高強
度スパイラル筋を縦筋群の外周に配置した鉄筋籠を型枠
内に入れ、コンクリートの遠心締固め後、養生し、その
後、縦緊張筋によつてコンクリートに、たとえば100
k9/Cliのプレストレスカを導入することによつて
、捩り耐力、剪断耐力および靭性にすぐれた柱体を得る
方法を実験により確認している。
According to this method, it is possible to introduce high prestress into high-strength concrete, which is very effective in increasing bending strength, and it is also possible to manufacture concrete piles that exhibit sound mechanical properties. During the experimental process of the invention, doubts remained regarding the shear strength. This is because in the above method, in an experiment using a reinforcing bar cage made of iron wire with a descending point strength of about 40 kg/d, which is used in a normal PC pile as a spiral bar wound around the outer circumference of a group of longitudinal bars, the shear span In the shear region where the ratio a/D = 1.5, a much lower load was applied due to the bending failure strength, and the shear failure occurred.On the other hand, the inventor of the present application A reinforcing bar cage in which high-strength spiral bars with a point strength of 55 kg/d or more are placed around the outer periphery of the longitudinal bar group is placed in the formwork, and after the concrete is centrifugally compacted, it is cured, and then the longitudinal tension bars are used to tighten the concrete. , for example 100
Experiments have confirmed a method for obtaining columns with excellent torsional strength, shear strength, and toughness by introducing a k9/Cli prestressor.

本発明は上述した先行2発明を基礎としてなされたもの
である。
The present invention has been made based on the previous two inventions mentioned above.

すなわち前者の発明になる、高い曲げ耐力を有する高強
度かつ高プレストレスくい体のもつ、唯一の疑問点であ
る、低剪断耐力を、後者の発明になる、コンクリートと
しては通常強度のものを用いるが、スパイラル筋として
は降状点強度55k9/d以上のものを用いることによ
つて捩り耐力、剪断耐力を格段に向上せしめた柱体を実
現てきる技術によつて改善し得るか否か、改善しうると
すれば、いかなる条件によつて高曲げ耐力、高剪断耐力
のくい体が得られるかについて種々検討を加え、数多く
の実験を行つた。以下にその一部を第1図〜第2図bを
引用しつ)示す。実施例 1供試体 (1)鉄筋籠 供試体T.P.NO.3〜NOl4用の鉄筋籠として
は、下記寸法の縦筋1と補強筋(スパイラル筋)2を使
用し、各供試体毎に、第2表に示すごとく、それぞれピ
ッチ間隔を変えて、縦筋群の外周に補強筋2をスパイラ
ル状に巻回し、直径33cmの鉄筋籠を編成した。
In other words, the former invention, which is a high-strength, high-prestress pile with high bending strength, has a low shear strength, which is the only questionable point, and the latter invention, which uses ordinary strength concrete, However, by using a spiral reinforcement with a descending point strength of 55k9/d or more, it is difficult to see whether this can be improved by using technology to create columns with significantly improved torsional strength and shear strength. We investigated various conditions and conducted numerous experiments to find out under what conditions, if improvements could be made, we could obtain a body with high bending strength and high shear strength. A part of it is shown below with reference to FIGS. 1 to 2b. Example 1 Specimen (1) Rebar cage Specimen T. P. NO. As the reinforcing bar cage for 3 to NOl4, vertical bars 1 and reinforcing bars (spiral bars) 2 with the following dimensions were used, and for each specimen, the pitch interval was changed as shown in Table 2, and the vertical bars were Reinforcing bars 2 were spirally wound around the outer periphery of the group to form a reinforcing bar cage with a diameter of 33 cm.

縦筋1・・・・・・外径および本数は第2表に示すとお
り補強筋2・・・・・・外径7.4T$L 両者とも降状点強度・・・130k9/d以上破断強度
・・・・ ・・・・145kg/i以上供試体T.
P.NO.lおよびNO.2用の鉄筋籠としては、縦筋
1はNO.3〜NO.8と同一のものを使用し、補強筋
は直径3.27Tr1Tt1降状点強度37kg/dの
線材を用い上記と同様に鉄筋籠を編成した。
Vertical reinforcement 1: Outer diameter and number are as shown in Table 2 Reinforcement reinforcement 2: Outer diameter 7.4T$L Both have a descending point strength of 130k9/d or more and breakage Strength... 145kg/i or more Specimen T.
P. NO. l and NO. As for the reinforcing bar cage for 2, vertical bar 1 is NO. 3~NO. A reinforcing bar cage was knitted in the same manner as above, using the same reinforcing bars as in No. 8, and using wire rods having a diameter of 3.27 Tr1Tt1 and a descending point strength of 37 kg/d.

(2)使用したセメント等 第1表に示す配合比からなるものを用い た。(2) Cement, etc. used Using the compounding ratio shown in Table 1 Ta.

註:混和剤は超早強混和剤であつて、小野1)セメント
(株)製、商品名、小野田Σ1,000(化学組成、S
lO2、6−17、Al2O3;5以下、Fe2O32
以下、CaO;31−41、SO3;43−53、比重
;2.5以上、比表面積;5000cIL/ダ以上、I
g−10ss;5以下)を使用した。
Note: The admixture is an ultra-fast and strong admixture, manufactured by Ono 1) Cement Co., Ltd., trade name: Onoda Σ1,000 (chemical composition, S
lO2, 6-17, Al2O3; 5 or less, Fe2O32
Below, CaO: 31-41, SO3: 43-53, specific gravity: 2.5 or more, specific surface area: 5000 cIL/da or more, I
g-10ss; 5 or less) was used.

(3)上記鉄筋籠を型枠内に配置し型枠内に上記配合比
からなるセメント等を流し込み、ついで縦筋を予め緊張
した後、遠心力成形法によつてコンクリートを成型し、
コンクリート打設後、4時間を経て、第1図に示すサイ
クルに従つて常圧蒸気養生を行ない、直ちにプレ**
ストレスを導入し第2表に示す有効プレスト レス量
となし、下記寸法からなる、第2図a に示すような供
試体NO.l〜NO.l4を得た。
(3) Place the above-mentioned reinforcing bar cage in a formwork, pour cement etc. made of the above-mentioned mixture ratio into the formwork, then, after pre-tensioning the vertical reinforcements, form concrete by centrifugal force forming method,
Four hours after concrete was placed, atmospheric pressure steam curing was carried out according to the cycle shown in Figure 1, and immediately pre-preparation**
Stress was introduced and the effective prestress amounts shown in Table 2 were applied, and specimen No. 1 was prepared as shown in Figure 2a, consisting of the following dimensions. l~NO. 14 was obtained.

2実験方法 各供試体14本について、材令28日に第2図bに示す
ごとく剪断スパン比をa/D=60/40=1.5とし
た載荷方法によつて載荷試験を行つた。
2. Experimental Method A loading test was carried out on each of the 14 specimens on the 28th day of the test using a loading method in which the shear span ratio was set to a/D = 60/40 = 1.5 as shown in Figure 2b.

コンクリートの強度はO〜28=890〜1080k9
/CILに達していた。なお、第2図aにおいてLは5
00cm1Dは40α、支点Fl,f2とそれらに近接
する供試体T.P.の端面との距離11,12はそれぞ
れ50C7n1荷重点P.Pと支点Fl,f2との間の
間隔P−Fl,P−F2の距離A,aはそれぞれ60c
mであつた。
The strength of concrete is O~28=890~1080k9
/CIL had been reached. In addition, in Figure 2a, L is 5
00cm1D is 40α, the supporting points Fl, f2 and the specimen T. P. The distances 11 and 12 from the end face of 50C7n1 are respectively the load points P. The distances A and a of the intervals P-Fl and P-F2 between P and the fulcrums Fl and f2 are 60c, respectively.
It was m.

3実験結果 第2表に示すとおりであつた。3 Experimental results It was as shown in Table 2.

上記実験結果から明らかなごとく、供試体NO.l〜N
O.8において、高降状点強度のスパイラル補助筋を用
いない供試体NO.lおよびNO.2は計算上の曲わ破
壊荷重をはるかに下廻る荷重で剪断破壊しており、他は
計算上の曲げ破壊荷重に達して曲げ破壊している。
As is clear from the above experimental results, specimen No. l~N
O. 8, specimen No. 8 does not use spiral auxiliary bars with high descending point strength. l and NO. No. 2 underwent shear failure at a load far below the calculated bending failure load, and the others underwent bending failure when the calculated bending failure load was reached.

すなわち、上記供試体NO.lおよびNO.2は導入有
効プレストレス量は同一であるが、高降状点強度のスパ
イラル筋で補強した本発明にか)るNO。3〜NO.8
のPCくい体よりもはるかに低い荷重で破壊に至つてい
る。
That is, the above specimen No. l and NO. No. 2 is based on the present invention, in which the amount of effective prestress introduced is the same, but reinforced with spiral reinforcement with high descending point strength. 3~NO. 8
Failure occurred at a much lower load than the PC pile body.

また有効プレストレス量の少いNO.9〜NO.l4に
ついても充分な効果が得られていることも明確に現われ
ている。上記実験によつて上述した、前者の発明になる
、高強度かつ高プレストレスくい体に、後者の発明にな
る、通常の強度のコンクリートの捩り耐力、剪断耐力を
向上せしめる高強度スパイラル筋一の効果が有効に作用
していることが明確に認められる。
In addition, NO. with a small amount of effective prestress. 9~NO. It is also clearly shown that sufficient effects are obtained with respect to l4. The above experiments have shown that the former invention, which is a high-strength, high-prestress pile, and the latter invention, which is a high-strength spiral reinforcement that improves the torsional strength and shear strength of ordinary strength concrete, have been developed. It is clearly recognized that the effect is working effectively.

すなわち、本発明における高強度のスパイラル補助筋を
用いたものはa/D=1.5のごとき剪断スパイ比にお
いても曲げ破壊が剪断破壊に先行するか、または曲け破
壊と剪断破壊とが同時に−起つており、かつ破壊荷重も
曲げ破壊荷重とほぼ同等の高荷重で起つていることが確
認された。以上のことから有効プレストレス量を80k
9/CTl以上とし、かつスパイラル補強筋に降状点強
度80k9/i以上の鋼線を用いた鉄筋籠を使用した本
発明の場合、少くともスパイラル筋のピッチ間隔を10
cm以下、配筋比を0.53%以上、好ましくはピッチ
間隔7cm以下、配筋比0.76%以上に設定した鉄筋
籠を用いることによつて高い曲げ耐力を有する高強度か
つ高プレストレスくい体の剪断耐力を向・上せしめ、も
つてげ耐力以下の荷重で剪断破壊が先行するようなこと
のないようにすることが可能である。なお、本発明者の
他の実験によれば、スパイラル補強筋の配筋比が同一で
あるならば、細径の鋼線をもつてピッチ間隔を小に配筋
する方が剪断耐力の向上により効果的であるとが確認さ
れている。
That is, in the case of the present invention using high-strength spiral auxiliary reinforcement, even at a shear spy ratio such as a/D = 1.5, bending failure precedes shear failure, or bending failure and shear failure occur simultaneously. - It was confirmed that the fracture occurred at a high load almost equivalent to the bending fracture load. From the above, the effective prestress amount is 80k.
In the case of the present invention, in which the reinforcing bars are made of steel wire with a descending point strength of 80k9/i or more and are used as spiral reinforcing bars, the pitch interval of the spiral reinforcing bars is at least 10
cm or less, the reinforcement ratio is set to 0.53% or more, preferably the pitch interval is 7cm or less, and the reinforcement ratio is set to 0.76% or more. By using a reinforcing bar cage, high strength and high prestress with high bending strength can be achieved. It is possible to improve/increase the shear strength of the pile body and prevent shear failure from occurring under a load that is less than the tear strength. Furthermore, according to other experiments conducted by the present inventor, if the reinforcement ratio of spiral reinforcing bars is the same, shear strength is improved by arranging reinforcements with smaller diameter steel wires and smaller pitch intervals. It has been confirmed to be effective.

本発明によれば、ポストテンション方式でオートクレー
ブ養生により、くい体を製造する場合と比べて工程は簡
単であり、設備も簡易な常圧蒸気設備で足り、かつ早期
脱型が可能であるので生産性が高く、従つて経済的に高
曲げ耐力と高剪断耐力とを兼ね具えた高プレストレスト
・コンクリートくい体が得られ、地震時の初期に受ける
ような急激かつ高い水平荷重にも充分耐えうるくい体の
実現が可能となつた。
According to the present invention, the process is simpler compared to the case of manufacturing a wedge body by autoclave curing using a post-tensioning method, and simple atmospheric pressure steam equipment is sufficient, and early demolding is possible. Therefore, it is possible to obtain a highly prestressed concrete pile that has both high bending strength and high shear strength at an economical cost, and is able to withstand sudden and high horizontal loads such as those received in the early stages of an earthquake. It became possible to realize the body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における常圧蒸気養生のサイクル例を示
す線図、第2図aは本発明の実施例において用いた供試
体の断面図、第2図bは本発明の実施例における実験方
法を説明するための正面図である。 1・・・・・・縦筋、2・・・・・・縦筋群の周囲にス
パイラル状に巻回される鋼線、C・・・・・・セメント
Fig. 1 is a diagram showing an example of a normal pressure steam curing cycle in the present invention, Fig. 2a is a sectional view of a specimen used in an embodiment of the present invention, and Fig. 2b is an experiment in an embodiment of the present invention. It is a front view for explaining a method. 1... Vertical reinforcement, 2... Steel wire wound in a spiral around the vertical reinforcement group, C... Cement.

Claims (1)

【特許請求の範囲】 1 プレテンシヨン工法にもとづき、PC鋼材を予め緊
張した後、コンクリートを遠心力成形法によつて成形し
、蒸気養生後にコンクリートにプレストレスを導入して
プレストレスト・コンクリートくい体を製造する場合に
おいて、PC鋼材である縦筋群の周囲に鋼線(スパイラ
ル筋)をスパイラル状に巻回して鉄筋籠をえ、この場合
使用するスパイラル筋の降状点強度は80kg/mm^
2以上とし、かつスパイラル筋のくい体縦断面積に対す
る配筋比(Pw)は0.53%以上、スパイラルピッチ
は10cm以下に設定し、しかる後、上記縦筋に緊張を
与え、 ついで遠心力成形法によつてコンクリートくい体を得る
、当該コンクリートとしては超早強混和剤を含有したセ
メントを用い、得られたコンクリートくい体に常圧蒸気
養生を施し、当該コンクリートに80kg/cm^2以
上の有効プレストレスを導入するようにしたことを特徴
とする剪断耐力を向上させた超高強度PCくい体の製造
方法。
[Claims] 1 Based on the pretension method, prestressed concrete piles are formed by pre-tensioning the prestressed steel, forming the concrete using the centrifugal forming method, and introducing prestress into the concrete after steam curing. When manufacturing, steel wire (spiral reinforcement) is spirally wound around a group of longitudinal reinforcements made of prestressed steel to form a reinforcing bar cage, and the descending point strength of the spiral reinforcement used in this case is 80 kg/mm^
2 or more, the reinforcement ratio (Pw) of the spiral reinforcement to the longitudinal cross-sectional area of the pile body is set to 0.53% or more, and the spiral pitch is set to 10cm or less. After that, tension is applied to the longitudinal reinforcement, and then centrifugal force forming is performed. A concrete pile is obtained by the method. The concrete used is cement containing an ultra-early strength admixture, and the obtained concrete pile is subjected to normal pressure steam curing, and the concrete has a weight of 80 kg/cm^2 or more. A method for manufacturing an ultra-high strength PC frame with improved shear strength, characterized by introducing effective prestress.
JP4106679A 1979-04-06 1979-04-06 Method for manufacturing ultra-high strength PC pile with improved shear strength Expired JPS6045567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106679A JPS6045567B2 (en) 1979-04-06 1979-04-06 Method for manufacturing ultra-high strength PC pile with improved shear strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106679A JPS6045567B2 (en) 1979-04-06 1979-04-06 Method for manufacturing ultra-high strength PC pile with improved shear strength

Publications (2)

Publication Number Publication Date
JPS55133908A JPS55133908A (en) 1980-10-18
JPS6045567B2 true JPS6045567B2 (en) 1985-10-11

Family

ID=12598055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106679A Expired JPS6045567B2 (en) 1979-04-06 1979-04-06 Method for manufacturing ultra-high strength PC pile with improved shear strength

Country Status (1)

Country Link
JP (1) JPS6045567B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216924A (en) * 1985-03-22 1986-09-26 Ube Ind Ltd Superhigh-strength concrete pile
JPS62280418A (en) * 1986-05-30 1987-12-05 Kansai Asano Paul Kk High-bending yield, superhigh-bending yield, tough, centrifugally formed prestressed concrete pile
JPH0567629U (en) * 1992-03-26 1993-09-07 関西アサノポール株式会社 Ultra high bending toughness centrifugal forming prestressed concrete pile
JP2009097278A (en) * 2007-10-18 2009-05-07 Maeda Seikan Kk Centrifugal reinforced concrete pile with high bending resistance

Also Published As

Publication number Publication date
JPS55133908A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
Nematzadeh et al. Experimental study on modulus of elasticity of steel tube-confined concrete stub columns with active and passive confinement
Salau et al. Characteristic strength of concrete column reinforced with bamboo strips
Jabbar et al. The effect of using basalt fibers compared to steel fibers on the shear behavior of ultra-high performance concrete T-beam
KR20180122047A (en) High elongation fibres
JPS6045567B2 (en) Method for manufacturing ultra-high strength PC pile with improved shear strength
JPH07139090A (en) Reinforcing and repair method for concrete construction member
Tariq et al. Structural behavior of RC columns improved by different strengthening techniques
JPS5825806B2 (en) Concrete piles and columns using high-strength spiral reinforcement
JPH09177072A (en) Manufacture of centrifugal prestressed concrete pile
JPS62215717A (en) Touch pc pile of high bending and super high bending strength
JP2967018B2 (en) Tensile steel
JPH09174537A (en) Manufacture of centrifugal prestressed concrete pile
JPH0427183B2 (en)
Konczalski et al. Tensile properties of Portland cement reinforced with Kevlar fibers
JP2005226248A (en) Composite member
JPS5817052Y2 (en) reinforced concrete column
Ganesan et al. HFRHPC interior beam-column-joints with slab under reverse cyclic loading
JPS6049731B2 (en) Manufacturing method of steel pipe concrete pile
JPS60212514A (en) Concrete pile
JPH08246449A (en) Centrifugal reinforced concrete pile
Alsayed Confinement of reinforced concrete columns by rectangular ties and steel fibres
Swamy et al. Structural behaviour of high strength concrete beams
SU1679011A1 (en) Method for manufacture of precompressed reinforced concrete member
JPS6035700Y2 (en) reinforced concrete column
JP2009097278A (en) Centrifugal reinforced concrete pile with high bending resistance