JP2009097278A - Centrifugal reinforced concrete pile with high bending resistance - Google Patents
Centrifugal reinforced concrete pile with high bending resistance Download PDFInfo
- Publication number
- JP2009097278A JP2009097278A JP2007271623A JP2007271623A JP2009097278A JP 2009097278 A JP2009097278 A JP 2009097278A JP 2007271623 A JP2007271623 A JP 2007271623A JP 2007271623 A JP2007271623 A JP 2007271623A JP 2009097278 A JP2009097278 A JP 2009097278A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- concrete
- strength
- reinforced concrete
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
Abstract
Description
本発明は、遠心力鉄筋コンクリート杭の中空部にプレストレストコンクリート構造部を備えた高い曲げ耐力を有する鉄筋コンクリート杭に関する。 The present invention relates to a reinforced concrete pile having a high bending strength provided with a prestressed concrete structure in a hollow portion of a centrifugal reinforced concrete pile.
高強度コンクリート(設計基準強度が78.5N/mm2 を越えるコンクリート)を使用した高強度プレストレスト鉄筋コンクリート杭(高強度PRC杭)は、ひび割れ抵抗性や曲げ破壊耐力が大きく且つ高い靭性を具備しているため、耐震性の必要な上杭として使用されている。 High-strength prestressed reinforced concrete piles (high-strength PRC piles) using high-strength concrete (concrete with design basis strength exceeding 78.5 N / mm 2 ) have high cracking resistance and bending fracture resistance and high toughness. Therefore, it is used as an upper pile that requires earthquake resistance.
この従来の高強度PRC杭Bは、図2に示すように、遠心力高強度プレストレストコンクリート杭(高強度PHC杭)の杭体肉厚部10内にあって、PC鋼材11,11の間にこれと平行する軸方向の補強鉄筋12,12をほゞ全長にわたって配設するとゝもに、スパイラル鉄筋13の量もPHC杭よりも多く使用した構造のものである。
As shown in FIG. 2, this conventional high strength PRC pile B is located in a pile body
しかし、前記従来の高強度PRC杭Bにあって、杭体にプレストレスを与える前記PC鋼材11は、中空杭の杭体肉厚部10に位置している。したがって、このPRC杭Bの曲げに対する抵抗は、遠心力成形により造られる中空杭の杭体肉厚部10の高強度コンクリート10aと、この杭体肉厚部10の中に配筋される軸方向の補強鉄筋12によって決定される。したがって、従来の前記高強度PRC杭Bにあって、曲げ耐力を向上させるためにはこの軸方向の補強鉄筋12やスパイラル鉄筋13等の補強筋量を増やさざるを得ないのが現状である。
However, in the conventional high-strength PRC pile B, the
本発明は、コンクリート圧縮強度を高強度化すること、そして高強度RC杭の中空部にPC鋼材を介してプレストレスを一様に導入したプレストレストコンクリート構造部を設置することで、高強度RC杭が曲げを受けたときに中立軸位置が引張縁に近づいて、断面内の多くが圧縮領域に変わる構成とすることで、軸方向鉄筋を増やすことなく、高い曲げ耐力を具備した鉄筋コンクリート杭を得ようとするものであり、その要旨は、遠心力鉄筋コンクリート杭(RC杭)の中空部に、PC鋼材を介してプレストレスを導入したプレストレストコンクリート構造部を全長又は作用曲げモーメントが大きい領域に備えたことを特徴とする高曲げ耐力遠心力鉄筋コンクリート杭にある。 The present invention provides a high-strength RC pile by increasing the compressive strength of the concrete and installing a prestressed concrete structure in which prestress is uniformly introduced into the hollow portion of the high-strength RC pile via PC steel. Reinforced concrete piles with high bending strength can be obtained without increasing the number of axial rebars by adopting a structure in which the neutral axis position approaches the tensile edge when bending is applied, and most of the cross section changes to the compression region. The gist is to provide a prestressed concrete structure in which prestress is introduced via a PC steel material in a region having a large total length or a large acting bending moment in the hollow part of a centrifugal reinforced concrete pile (RC pile). It is in a high bending strength centrifugal reinforced concrete pile characterized by that.
上記構成からなる高曲げ耐力遠心力鉄筋コンクリート杭を開発するに至った経緯を図3によって説明すると、軸力が小さい遠心力鉄筋コンクリート杭(RC杭)14は曲げを受けると、同図(イ)のひずみ分布に示すように、中立軸位置が圧縮縁に近づき過ぎる。その結果、中空杭の断面内の曲げ圧縮を受ける領域(圧縮領域)が小さくなり、逆に、断面内の多くが引張領域となる。したがって、RC杭では断面の曲げ耐力にコンクリート圧縮強度は殆ど影響せず、引張側鉄筋の量と強度で曲げ耐力は決定される。 The process of developing a high bending strength centrifugal reinforced concrete pile having the above configuration will be described with reference to FIG. 3. When the centrifugal reinforced concrete pile (RC pile) 14 having a small axial force is subjected to bending, As shown in the strain distribution, the neutral axis position is too close to the compression edge. As a result, the region (compression region) that receives bending compression in the cross section of the hollow pile becomes smaller, and conversely, most of the cross section becomes the tensile region. Therefore, in RC piles, the concrete compressive strength hardly influences the bending strength of the cross section, and the bending strength is determined by the amount and strength of the tension side reinforcing bars.
土木構造物では、作用軸力(死荷重)が小さいことを利用し、図3(ロ)のひずみ分布に示すように、PC鋼材を介したプレストレスにより断面に一様な軸ひずみを与えることで、部材(RC杭)が曲げを受けたときに、図3(ハ)のひずみ分布に示すように、中立軸位置が引張縁に近づき、断面内の多くが圧縮領域となる。 In civil engineering structures, the fact that the acting axial force (dead load) is small is used, and as shown in the strain distribution in Fig. 3 (b), uniform axial strain is given to the cross section by pre-stress via PC steel. Thus, when the member (RC pile) is bent, as shown in the strain distribution of FIG. 3 (c), the neutral axis position approaches the tensile edge, and most of the cross section becomes the compression region.
そこで、従来の高強度PRC杭Bのように、曲げ耐力を向上させるために軸方向鉄筋を増やすのではなく、中空杭の杭体肉厚部を形成するコンクリートの圧縮強度を高強度化すること(高強度コンクリートを使用すること)、高強度の杭体肉厚部が曲げ圧縮を受けて横膨張することに対して中空杭の中空部に設置した中詰コンクリートが抵抗してくれることで、高強度の杭体肉厚部が高い曲げ圧縮力を負担できる。これにより、軸方向鉄筋を増やすことなく高い曲げ耐力を備えた鉄筋コンクリート杭を得ることが可能となる。 Therefore, as in the case of the conventional high-strength PRC pile B, the compressive strength of the concrete that forms the pile body thick part of the hollow pile is increased rather than increasing the axial rebar to improve the bending strength. (Use high-strength concrete), and the solid concrete installed in the hollow part of the hollow pile resists that the thick part of the high-strength pile body undergoes bending compression and expands laterally, High strength pile body thick part can bear high bending compression force. Thereby, it becomes possible to obtain the reinforced concrete pile provided with the high bending strength, without increasing an axial direction reinforcing bar.
以下、本発明を図面に示す説明図によって詳細に説明するに、図1において、Aは本発明に係る高強度PRC杭で、1は遠心力成形により造られる中空杭の杭体肉厚部であり、設計基準強度がおおむね50N/mm2 以上の高強度コンクリートで形成されている。2は前記杭体肉厚部1の断面内に位置する軸方向鉄筋である。なお、図中、3は高強度スパイラル鉄筋である。
Hereinafter, the present invention will be described in detail with reference to the explanatory drawings shown in the drawings. In FIG. 1, A is a high-strength PRC pile according to the present invention, and 1 is a pile body thick part of a hollow pile made by centrifugal force molding. Yes, it is made of high-strength concrete with a design standard strength of approximately 50 N / mm 2 or more.
4は中空杭の中空部5に設置したプレストレストコンクリート構造部で、前記中空部5に充填した中詰めコンクリート6と、この中詰めコンクリート6にプレストレスを導入したPC鋼材7とから構成されており、本実施形態ではPC鋼材7を介して0〜50N/mm2 のプレストレスが前記中詰めコンクリート6に導入されている。なお、図中8はナット又は定着コーン、9はワッシャ又はアンカープレートであり、前記PC鋼材7の定着の例である。
4 is a prestressed concrete structure part installed in the
次に、本発明に係る高い曲げ耐力を有する鉄筋コンクリート杭A(以下、本発明杭と言う)の諸条件について、従来の既成PHC杭と比較した表1に基づいて以下に説明する。 Next, various conditions of the reinforced concrete pile A (hereinafter referred to as the present invention pile) having a high bending strength according to the present invention will be described based on Table 1 compared with the conventional preformed PHC pile.
表 1
Table 1
本発明杭にあっては、前記中詰めコンクリート6にPC鋼材7によりプレストレスを与える。PC鋼材は、それにより与えられるプレストレスの合力がおおむね中心位置となるように配置し、曲げに対する抵抗は期待せず、あくまでもプレストレスを与えるためだけに利用する。従来の既製PHC杭がPC鋼材に曲げの負担も期待していたのとは対照的である。 In the pile according to the present invention, pre-stress is applied to the filling concrete 6 by the PC steel material 7. The PC steel material is arranged so that the resultant stress of prestress applied thereto is approximately at the center position, and resistance to bending is not expected, and is used only for prestressing. This is in contrast to the conventional off-the-shelf PHC piles that also expected the PC steel to be bent.
これにより、(1)PC鋼材7が弾性状態にとどまることで、荷重除荷後にひび割れ幅や残留変位の低減を期待することができる。(2)従来の既製PHC杭では、導入プレストレスを大きくしてもそれ程曲げ耐力は変化しないのに対して、本発明杭の構造では導入プレストレスの大きさが曲げ耐力の向上に直結する。 Thereby, (1) Since the PC steel material 7 remains in an elastic state, it is possible to expect a reduction in crack width and residual displacement after unloading. (2) In the conventional off-the-shelf PHC pile, even if the prestress is increased, the bending strength does not change that much. On the other hand, in the structure of the pile of the present invention, the size of the prestress directly leads to the improvement of the bending strength.
また、本発明杭にあって、曲げに対する抵抗は、遠心力成形により造られる杭体肉厚部のコンクリートとその中に配筋される軸方向鉄筋である。前記したとおり、本発明杭の構造では、コンクリート圧縮強度の大きさが曲げ耐力の向上に直結することから、おおむね50N/mm2 以上の高強度コンクリートを使用する。軸方向鉄筋に関してはSD345以上の高強度鉄筋を使用し、効果的に曲げ耐力を向上させる。 Moreover, in this invention pile, the resistance with respect to a bending is the concrete of the thick part of a pile body produced by centrifugal force shaping | molding, and the axial direction reinforcing bar arranged in it. As described above, in the structure of the pile of the present invention, since the magnitude of the concrete compressive strength is directly linked to the improvement of the bending strength, high-strength concrete of approximately 50 N / mm 2 or more is generally used. For axial rebars, use high-strength rebars of SD345 or higher to effectively improve bending strength.
なお、通常の既製PHC杭は、遠心力成形後は中空構造となるが、本発明杭の構造では中空部分にコンクリートを充填する。通常の既製PHC杭では、中空部分にコンクリートを中詰めしても曲げ耐力はほとんど向上しないが(肉厚部コンクリートで曲げ圧縮を受ける領域が小さいため、肉厚部コンクリートが膨張することがない)、本発明杭の構造の場合、肉厚部1のおおむね50N/mm2 以上の高強度コンクリートが曲げ圧縮を受けて横膨張することに対して前記プレストレスト中詰めコンクリート6が抵抗してくれることで、肉厚部1のコンクリートが高い曲げ圧縮力を負担できる。なお、中空部5に充填するコンクリートは高強度コンクリートである必要はなく、おおむね30N/mm2 以上の通常のスランプを有するコンクリート又は、施工が容易な自己充填に優れるコンクリートを用いてよい。
In addition, although a normal ready-made PHC pile becomes a hollow structure after centrifugal force shaping | molding, in the structure of this invention pile, a hollow part is filled with concrete. In ordinary off-the-shelf PHC piles, bending strength is hardly improved even if concrete is packed in the hollow part (thick part concrete will not expand because the area subjected to bending compression in thick part concrete is small). In the case of the structure of the pile according to the present invention, the prestressed filled concrete 6 resists the high-strength concrete of the
高い曲げ耐力を発揮する本発明杭の構造では、必然的に作用せん断力も大きくなってしまう。そのため、スパイラル鉄筋3には、高強度スパイラル鉄筋を使用する必要がある。このスパイラル鉄筋3には、せん断補強のほか軸方向鉄筋2のはらみ出し防止、さらには肉厚部コンクリート1の拘束効果も期待する。これらを期待するためにはスパイラル鉄筋比(ρS)と降伏点強度(σy)の積が5.0N/mm2 以上が必要である。
In the pile structure of the present invention that exhibits high bending strength, the acting shear force is inevitably increased. Therefore, it is necessary to use a high-strength spiral reinforcement for the spiral reinforcement 3. In addition to shear reinforcement, the spiral rebar 3 is also expected to prevent the
なお、本発明杭にあって、かぶりコンクリートの剥落を防止するため、炭素繊維シートなどで被覆することにより曲げ耐力がさらに向上する。 In addition, in this invention pile, in order to prevent peeling of covering concrete, a bending proof stress further improves by coat | covering with a carbon fiber sheet.
つぎに、本発明杭の曲げ耐力の算定法について述べるに、以下の条件により得ることができる。(1)断面のひずみ分布は平面保持を仮定。(2)断面中心位置に配置したPC鋼材は、曲げ荷重の増加によりプレストレス導入直後のひずみ状態から若干の変動が生じるが、その影響は小さい。そのため、曲げ耐力の計算にPC鋼材は考慮せず、単にPC鋼材から与えられるプレストレスのみを考慮する。 Next, the calculation method of the bending strength of the pile according to the present invention can be described under the following conditions. (1) The cross-sectional strain distribution is assumed to be flat. (2) Although the PC steel material arranged at the center position of the cross section slightly fluctuates from the strain state immediately after the prestress is introduced due to an increase in the bending load, the influence is small. Therefore, PC steel is not considered in the calculation of bending strength, but only prestress given from PC steel is considered.
また、構成則については以下のとおりである。(3)かぶりコンクリート:プレーンコンクリートの構成則。(4)コアコンクリート:「秋山 充良,渡邉 正俊,阿部 諭史,崔 松涛,前田 直己,鈴木 基行:一軸圧縮を受ける高強度RC杭の破壊性状および力学的特性に関する研究,土木学会論文集E,Vol.62, No.3, pp.477-496, 2006.8」等を参考に応力−ひずみ関係を適切に評価する。(5)軸方向鉄筋:バイリニアモデル The constitutive rules are as follows. (3) Cover concrete: Constitutive law of plain concrete. (4) Core concrete: “Matsuyoshi Akiyama, Masatoshi Watanabe, Atsushi Abe, Matsuoka Tsuji, Naoki Maeda, Motoyuki Suzuki: Research on fracture properties and mechanical properties of high-strength RC piles subjected to uniaxial compression. Vol.62, No.3, pp.477-496, 2006.8 "etc., to evaluate the stress-strain relationship appropriately. (5) Axial rebar: bilinear model
1 杭体肉厚部
2 軸方向鉄筋
3 スパイラル鉄筋
4 プレストレストコンクリート構造部
5 中空部
6 充填した中詰めコンクリート
7 PC鋼材
8 ナット又は定着コーン
9 ワッシャ又はアンカープレート
10 杭体肉厚部
11 PC鋼材
12 軸方向鉄筋
13 スパイラル鉄筋
14 遠心力鉄筋コンクリート杭
A 鉄筋コンクリート杭
B 高強度PRC杭
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271623A JP2009097278A (en) | 2007-10-18 | 2007-10-18 | Centrifugal reinforced concrete pile with high bending resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271623A JP2009097278A (en) | 2007-10-18 | 2007-10-18 | Centrifugal reinforced concrete pile with high bending resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009097278A true JP2009097278A (en) | 2009-05-07 |
Family
ID=40700541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007271623A Pending JP2009097278A (en) | 2007-10-18 | 2007-10-18 | Centrifugal reinforced concrete pile with high bending resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009097278A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102373803A (en) * | 2011-11-15 | 2012-03-14 | 天津大学 | Novel precast concrete pipe die and construction method thereof |
CN104652430A (en) * | 2014-12-30 | 2015-05-27 | 青岛昊河水泥制品有限责任公司 | Composite reinforcement partially prestressed concrete solid square pile and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55133908A (en) * | 1979-04-06 | 1980-10-18 | Koshuha Netsuren Kk | Preparation of pc pile body with superhigh strength* whose proof stress is improved* and its pc pile body |
JPS61216924A (en) * | 1985-03-22 | 1986-09-26 | Ube Ind Ltd | Superhigh-strength concrete pile |
JPH09242066A (en) * | 1996-03-08 | 1997-09-16 | Rootarii Consultant:Kk | Construction method for synthetic pile |
JP2000230232A (en) * | 1999-02-09 | 2000-08-22 | Taisei Corp | Tenacity improving method for prestressed reinforced concrete pile |
JP2002201636A (en) * | 2000-12-28 | 2002-07-19 | Nippon Koatsu Concrete Kk | High flexural toughness and high strength pile |
JP2005113413A (en) * | 2003-10-03 | 2005-04-28 | Maeda Seikan Kk | Shearing reinforcing structure of ready-made concrete pile |
-
2007
- 2007-10-18 JP JP2007271623A patent/JP2009097278A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55133908A (en) * | 1979-04-06 | 1980-10-18 | Koshuha Netsuren Kk | Preparation of pc pile body with superhigh strength* whose proof stress is improved* and its pc pile body |
JPS61216924A (en) * | 1985-03-22 | 1986-09-26 | Ube Ind Ltd | Superhigh-strength concrete pile |
JPH09242066A (en) * | 1996-03-08 | 1997-09-16 | Rootarii Consultant:Kk | Construction method for synthetic pile |
JP2000230232A (en) * | 1999-02-09 | 2000-08-22 | Taisei Corp | Tenacity improving method for prestressed reinforced concrete pile |
JP2002201636A (en) * | 2000-12-28 | 2002-07-19 | Nippon Koatsu Concrete Kk | High flexural toughness and high strength pile |
JP2005113413A (en) * | 2003-10-03 | 2005-04-28 | Maeda Seikan Kk | Shearing reinforcing structure of ready-made concrete pile |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102373803A (en) * | 2011-11-15 | 2012-03-14 | 天津大学 | Novel precast concrete pipe die and construction method thereof |
CN104652430A (en) * | 2014-12-30 | 2015-05-27 | 青岛昊河水泥制品有限责任公司 | Composite reinforcement partially prestressed concrete solid square pile and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gunasekaran et al. | Study on reinforced lightweight coconut shell concrete beam behavior under flexure | |
Li et al. | Experimental investigation on reinforced concrete interior beam–column joints rehabilitated by ferrocement jackets | |
Leung et al. | Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars | |
Kaish et al. | Improved ferrocement jacketing for restrengthening of square RC short column | |
Choi et al. | Monotonic and cyclic bond behavior of confined concrete using NiTiNb SMA wires | |
Nguyen et al. | Seismic response of a rocking bridge column using a precast hybrid fiber-reinforced concrete (HyFRC) tube | |
Foster | The application of steel-fibres as concrete reinforcement in Australia: from material to structure | |
CN107605103A (en) | A kind of FRP tendons reinforcing bar composite strengthening ECC/ concrete combination columns | |
Rockson et al. | Effect of cover on bond strength of structural concrete using commercially produced recycled coarse and fine aggregates | |
Li et al. | Behavior of hybrid FRP-concrete-steel multitube hollow columns under axial compression | |
Ahmed et al. | Steel fiber as replacement of minimum shear reinforcement for one-way thick bridge slab | |
Sachdeva et al. | Behaviour of steel fibers reinforced exterior beam-column joint using headed bars under reverse cyclic loading | |
JP4255852B2 (en) | Method of constructing concrete structure with axial prestressed structure using spiral hoop and its concrete structure | |
JP2009097278A (en) | Centrifugal reinforced concrete pile with high bending resistance | |
JP5922993B2 (en) | Structure and lining method using multiple fine crack type fiber reinforced cement composites | |
Lin et al. | Multi-scale pull-out resistance of steel reinforcing bar embedded in hybrid fiber reinforced concrete (HyFRC) | |
JPH1193160A (en) | Hollow reinforced concrete pile | |
Allawi et al. | Experimental behavior of laced reinforced concrete one way slab under static load | |
AU2021102873A4 (en) | A system and a method to provide ductile detailing in reinforced concrete wall–flat slab joint | |
Fan et al. | Evaluation of grout materials for CFRP ground anchors with strap ends | |
Bediwy et al. | Structural behavior of FRCC layered deep beams reinforced with GFRP headed-end bars | |
CN116479741A (en) | Beam body structure of UHPC (ultra Violet) filling part of shearing and bending section and prefabricating method thereof | |
JP3910976B2 (en) | Concrete member and method for reinforcing concrete member | |
JP6784355B2 (en) | Shear reinforcement PC pile | |
JP2981151B2 (en) | Reinforced concrete pile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20101018 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120306 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120619 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130115 |