JP4519088B2 - Reinforced concrete member lap joint reinforcement method - Google Patents

Reinforced concrete member lap joint reinforcement method Download PDF

Info

Publication number
JP4519088B2
JP4519088B2 JP2006062073A JP2006062073A JP4519088B2 JP 4519088 B2 JP4519088 B2 JP 4519088B2 JP 2006062073 A JP2006062073 A JP 2006062073A JP 2006062073 A JP2006062073 A JP 2006062073A JP 4519088 B2 JP4519088 B2 JP 4519088B2
Authority
JP
Japan
Prior art keywords
lap joint
reinforcing
axial
reinforcing bars
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006062073A
Other languages
Japanese (ja)
Other versions
JP2007239282A (en
Inventor
忠良 石橋
毅 津吉
伸一 田附
光商 大庭
巧悦 丸山
浩一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2006062073A priority Critical patent/JP4519088B2/en
Publication of JP2007239282A publication Critical patent/JP2007239282A/en
Application granted granted Critical
Publication of JP4519088B2 publication Critical patent/JP4519088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は複数の鉄筋コンクリート部材の重ね継手部を補強する方法に関する。   The present invention relates to a method for reinforcing a lap joint portion of a plurality of reinforced concrete members.

鉄筋コンクリート(RC)ラーメン高架橋において、杭と柱の接合部或いは柱等の継手部は、所要の耐震性能を確保する必要がある。しかし、このような形態の接合部を施工するためには、仮土留工の施工を要し、狭隘な作業空間で杭施工時のスライムを含んだ低強度のコンクリート(杭頭スライム)を除去し、鉄筋組立と型枠の組立、解体を行う必要がある。   In reinforced concrete (RC) ramen viaducts, it is necessary to ensure the required seismic performance at joints between piles and columns or joints such as columns. However, in order to construct such a joint, temporary earth retaining work is required, and low-strength concrete (pile head slime) containing slime during pile construction is removed in a narrow work space. It is necessary to assemble and disassemble the rebar and formwork.

これを解決する工法として、従来、杭と柱の接合部は施工時に鋼管を地中に押し込み、完成時にはこの鋼管を杭と柱の接合部の補強として本体利用する方法(根巻き鋼管)が用いられ、本出願人は既に提案している(特許文献1)。この工法では杭の杭頭スライムの除去が不要で、杭と柱鉄筋の接合も不要となるが、根巻き鋼管が高価であるという問題がある。   As a method of solving this, conventionally, the method of using the steel pipe to reinforce the joint between the pile and the column (root-wrapped steel pipe) has been used for the joint between the pile and the column at the time of construction. The applicant has already proposed (Patent Document 1). This method does not require the pile head slime removal of the pile, and does not require the connection between the pile and the column reinforcement, but there is a problem that the steel pipe is expensive.

そこで、高価な根巻き鋼管を使用せず、杭と柱の鉄筋の重ね継手部の周囲をスパイラル鋼材で囲み、コンクリートを打設する工法も本出願人は提案している(特許文献2)。
特開平9−328759号公報 特開2004−76362号公報
Therefore, the present applicant has also proposed a construction method in which the periphery of the lap joint between the pile and the column reinforcing bar is surrounded by a spiral steel material without using an expensive root-wound steel pipe and concrete is placed (Patent Document 2).
JP 9-328759 A JP 2004-76362 A

既提案の杭と柱の鉄筋の重ね継手部の周囲をスパイラル鋼材で囲む工法は、根巻き鋼管の工法に比して安価であるが、十分な強度とじん性率を確保する点でさらに十分な対策を講ずる必要がある。   The proposed method of surrounding the lap joints of piles and pillars with spiral steel is cheaper than the method of rooted steel pipe, but it is more sufficient to ensure sufficient strength and toughness rate. It is necessary to take appropriate measures.

本発明は上記課題を解決しようとするものであり、複数の軸方向鉄筋の重ね継手部を補強鉄筋で囲む鉄筋コンクリート部材の補強方法において、経済的な補強で、かつ十分な強度とじん性率を確保することを目的とする。
本発明は、複数の軸方向鉄筋の重ね継手部を補強鉄筋で内包する鉄筋コンクリート部材の補強方法であって、前記補強鉄筋は軸方向鉄筋と離間し、かつ補強鉄筋は相互に接する、又は補強鉄筋の直径以下の間隔で配置され、重ね継手部の耐力比が5以上のとき、重ね継手長を軸方向鉄筋の直径の25倍以上としてじん性率10以上を確保するようにしたことを特徴とする。
また、本発明は、複数の軸方向鉄筋の重ね継手部を補強鉄筋で内包する鉄筋コンクリート部材の補強方法であって、前記補強鉄筋は軸方向鉄筋と離間し、かつ補強鉄筋は相互に接する、又は補強鉄筋の直径以下の間隔で配置され、重ね継手部の耐力比が2以上のとき、重ね継手長を軸方向鉄筋の直径の30倍以上としてじん性率10以上を確保するようにしたことを特徴とする。
また、本発明は、重ね継手部の軸方向鉄筋は相互に密着又は離間された状態で配置することを特徴とする。
The present invention is intended to solve the above-mentioned problem, and in a method for reinforcing a reinforced concrete member in which a lap joint portion of a plurality of axial rebars is surrounded by a reinforcing rebar, economical reinforcement and sufficient strength and toughness ratio are achieved. The purpose is to secure.
The present invention is a method for reinforcing a reinforced concrete member including a reinforced joint of a plurality of axially reinforced joints, wherein the reinforcing reinforcing bars are separated from the axial reinforcing bars and the reinforcing reinforcing bars are in contact with each other, or the reinforcing reinforcing bars When the yield ratio of the lap joint part is 5 or more, the lap joint length is 25 times or more of the diameter of the axial rebar to ensure a toughness ratio of 10 or more. To do.
Further, the present invention is a method for reinforcing a reinforced concrete member including a reinforced joint of a plurality of axially reinforced joints, wherein the reinforcing reinforcing bars are separated from the axial reinforcing bars and the reinforcing reinforcing bars are in contact with each other, or When the strength ratio of the lap joint is 2 or more, the lap joint length is 30 times or more of the diameter of the axial rebar, and a toughness ratio of 10 or more is ensured. Features.
Moreover, this invention is arrange | positioned in the state which the axial direction reinforcement of the lap joint part mutually_contact | adhered or spaced apart.

本発明は、軸方向鉄筋の重ね継手部を補強鋼材で囲むことで経済的な補強が可能であり、重ね継手部の耐力比が5以上のとき重ね継手長を軸方向鉄筋の直径の25倍以上、重ね継手部の耐力比が2以上のとき、重ね継手長を軸方向鉄筋の直径の30倍以上とすることでじん性率10以上を確保することが可能となる。   The present invention can economically reinforce the lap joint portion of the axial rebar with a reinforcing steel material. When the yield ratio of the lap joint portion is 5 or more, the lap joint length is 25 times the diameter of the axial rebar. As described above, when the proof joint ratio of the lap joint is 2 or more, it is possible to ensure a toughness ratio of 10 or more by setting the lap joint length to 30 times or more of the diameter of the axial reinforcing bar.

以下、本発明の実施の形態について説明する。
本発明は、例えば、図1に示すような鉄道高架橋1を支える杭2と柱3の接合部(重ね継手部)4における補強方法を提案するものであり、重ね継手部の補強鋼材としてスパイラル鉄筋を用いた例について以下に説明する。なお、本発明は、補強鋼材としてスパイラル鉄筋に限らずフープ筋等を用いるようにしてもよい。
Embodiments of the present invention will be described below.
The present invention proposes, for example, a reinforcing method in a joint portion (lap joint portion) 4 between a pile 2 and a column 3 that supports a railway viaduct 1 as shown in FIG. An example using this will be described below. In the present invention, not only spiral reinforcing bars but also hoop bars may be used as the reinforcing steel material.

図2は重ね継手部を説明する概念図であり、図2(a)は縦断面図、図2(b)は横断面図である。
図示の例では、鉄筋コンクリート部材10の軸方向鉄筋11を内側、鉄筋コンクリート部材20の軸方向鉄筋21を外側にして継手長Lに渡って軸方向鉄筋が相互に重なっていて、これを包囲して重ね継手長Lより長い範囲に渡って補強鋼材としてのスパイラル鉄筋30が所定のピッチで巻回され、その周囲に型枠を配置してコンクリートを打設することで鉄筋コンクリート部材10、20を接合する。なお、ここでは重ね継手部の帯鉄筋等は図示を省略している。重ね継手部は直近の軸方向鉄筋11、21が対となって相互に力の伝達を行うが、対をなしている軸方向鉄筋間は密着又は相互に離間してもよい。すなわち、継手周囲のコンクリートを介して相互に鉄筋に加わる力を伝達するため、重ね継手に引張り力または圧縮力が作用した場合、重ね継手周囲のコンクリートがこの力を伝達する。このとき重ね継手部のコンクリートの周囲をスパイラル鉄筋で包囲し、閉合してコンクリートの変形を拘束している。その結果、鉄筋の引張力および圧縮力の伝達に必要な鉄筋−コンクリート間の付着力を確保することができる。スパイラル鉄筋は、その鉄筋相互を密着させて巻回しても間隔を開けて巻回してもよく、間隔を開ける場合は鉄筋の直径以下の間隔とすることが望ましい。また、間隔を開ける場合その間隔は一定でなくてもよい。
2A and 2B are conceptual diagrams for explaining the lap joint portion. FIG. 2A is a longitudinal sectional view, and FIG. 2B is a transverse sectional view.
In the illustrated example, the axial reinforcing bars 11 overlap each other over the joint length L with the axial reinforcing bar 11 of the reinforced concrete member 10 inside and the axial reinforcing bar 21 of the reinforced concrete member 20 facing outside. Spiral rebar 30 as a reinforcing steel material is wound at a predetermined pitch over a range longer than the joint length L, and the reinforced concrete members 10 and 20 are joined by placing a formwork around them and placing concrete. Here, illustration of the reinforcing bars and the like of the lap joint portion is omitted. In the lap joint portion, the nearest axial rebars 11 and 21 are paired to transmit force to each other, but the paired axial rebars may be in close contact with each other or separated from each other. That is, since a force applied to the reinforcing bars is transmitted to each other through the concrete around the joint, when a tensile force or a compressive force acts on the lap joint, the concrete around the lap joint transmits this force. At this time, the periphery of the concrete in the lap joint is surrounded by a spiral reinforcing bar and closed to restrain the deformation of the concrete. As a result, it is possible to ensure adhesion between the reinforcing bar and the concrete necessary for transmission of the tensile force and compressive force of the reinforcing bar. The spiral reinforcing bars may be wound with the reinforcing bars in close contact with each other, or may be wound with an interval between them. Further, when the interval is opened, the interval may not be constant.

次に本実施形態における具体的仕様を決定するために行った実験について説明する。
まず、試験体形状について説明する。
図3はフーチング40直上の柱部に低強度のスライム部を設け、スライム部の上に杭と柱の重ね継手を設けた試験体形状A(スライム有)であり、図3(a)は縦断面図、図3(b)は横断面図である。試験体形状Aでは柱鉄筋を外側、杭鉄筋を内側に配置し、重ね継手部を包囲する外巻きスパイラルに加えて、一部杭鉄筋を包囲して内巻きスパイラルを設けている(図3(b))。
図4はフーチング40直上に杭と柱の重ね継手を設けた試験体形状B(スライム無)であり、図4(a)は縦断面図、図4(b)は横断面図である。試験体形状Bでは柱鉄筋を内側、杭鉄筋を外側に配置している。
Next, an experiment performed to determine specific specifications in the present embodiment will be described.
First, the specimen shape will be described.
FIG. 3 shows a specimen shape A (with slime) in which a low-strength slime portion is provided in the column portion immediately above the footing 40, and a pile and column lap joint is provided on the slime portion. FIG. FIG. 3B is a cross-sectional view of the front view. In the test body shape A, the column reinforcing bars are arranged outside and the pile reinforcing bars are arranged inside, and in addition to the outer winding spiral surrounding the lap joint portion, part of the pile reinforcing bars are surrounded to provide the inner winding spiral (FIG. 3 ( b)).
FIG. 4 shows a specimen shape B (no slime) provided with a pile and column lap joint immediately above the footing 40, FIG. 4 (a) is a longitudinal sectional view, and FIG. 4 (b) is a transverse sectional view. In the test body shape B, the column reinforcing bars are arranged on the inner side and the pile reinforcing bars are arranged on the outer side.

試験体形状A、Bともスパイラル高さ(スパイラル鉄筋の高さ)は柱の径(D)に等しく、柱に所定の軸力(荷重)を加え、所定のせん断スパンの位置に左右方向に水平力を交番的に加えるようにしている。   For both test specimen shapes A and B, the spiral height (spiral rebar height) is equal to the diameter (D) of the column, a predetermined axial force (load) is applied to the column, and it is horizontally horizontal at a predetermined shear span position. The power is applied alternately.

表1は試験体パラメータ一覧、表2は試験結果一覧をそれぞれ示している。   Table 1 shows a list of specimen parameters, and Table 2 shows a list of test results.

Figure 0004519088
Figure 0004519088

Figure 0004519088
Figure 0004519088

表1において、試験体No.1〜4は試験体形状A(図3)、試験体No.5〜18は試験体形状B(図4)で試験を行った。柱径(図3、図4参照)は、試験体No18が700mmで、それ以外は500mmである。せん断スパンはフーチング天端から水平力を加える位置までの距離、SP径はスパイラル鉄筋の径、SP断面はスパイラル鉄筋の太さ、SPピッチはスパイラル鉄筋の巻回ピッチでカッコ内は内巻きスパイラルのピッチである。なお、No.1、No.3は内巻きスパイラルを設けていない。   In Table 1, Specimen No. 1-4 are specimen shape A (FIG. 3), specimen no. 5-18 performed the test by the test body shape B (FIG. 4). The column diameter (see FIGS. 3 and 4) is 700 mm for specimen No. 18 and 500 mm for the other specimens. The shear span is the distance from the top of the footing to the position where the horizontal force is applied, the SP diameter is the diameter of the spiral reinforcing bar, the SP cross section is the thickness of the spiral reinforcing bar, the SP pitch is the winding pitch of the spiral reinforcing bar, and the parenthesis is the inner winding spiral Is the pitch. In addition, No. 1, no. No. 3 does not have an inner spiral.

SP筋比はスパイラル鉄筋によるせん断補強度を示し、これを図5により説明する。
図5において、スパイラル鉄筋の断面積(太さ)をAsp、らせん直径をb、らせんピッチをsとしたとき、SP筋比は、図の斜線部の面積(b・s)に対する鉄筋の断面積の比Asp/b・sで表される。
The SP reinforcing bar ratio indicates the degree of shear reinforcement by spiral reinforcing bars, which will be described with reference to FIG.
In FIG. 5, when the cross-sectional area (thickness) of the spiral reinforcing bar is Asp, the helical diameter is b, and the helical pitch is s, the SP reinforcing bar ratio is the cross-sectional area of the reinforcing bar with respect to the area (b · s) of the shaded portion in the figure. The ratio Asp / b · s.

鉄筋径はD13(mm)、D16(mm)、D19(mm)を使用した。鉄筋本数は柱、杭それぞれ同数であり、軸方向鉄筋比は、柱断面積に対して鉄筋が占める面積の比である。   The diameter of the reinforcing bar used was D13 (mm), D16 (mm), or D19 (mm). The number of rebars is the same for each column and pile, and the axial rebar ratio is the ratio of the area occupied by the rebar to the column cross-sectional area.

継手の空きは、軸方向鉄筋同士が重なっている長さ(LS)を継手、軸方向鉄筋の芯間隔に軸方向鉄筋の径を差し引いた正味の離隔を空きとしている。重ね継手長は、継手のあきを加味して正味の継手長Lsとしており、これを図6により説明する。
図6において、軸方向鉄筋の離隔(各鉄筋の中心線間の距離)が5φ(鉄筋径の5倍)である場合、あきは4φである。そして、軸方向鉄筋間は45度線で力の伝達がなされていることを考慮して上下の部分を差し引いて、重ね継手長Ls=LS−2×4φとしている。表1において、試験体No.1〜4はこのように補正をしており、カッコ内は補正前の値である。なお、試験体No.5〜18は継手の空きが1φであるため、LSをそのまま継手長Lsの値とした。
As for the vacancy of the joint, the length (LS) where the axial rebars overlap each other is the joint, and the net separation obtained by subtracting the diameter of the axial rebar from the core interval of the axial rebar is vacant. The lap joint length is defined as a net joint length Ls in consideration of the joint clearance, which will be described with reference to FIG.
In FIG. 6, when the distance between the axial reinforcing bars (the distance between the center lines of the reinforcing bars) is 5φ (5 times the diameter of the reinforcing bar), the clearance is 4φ. Then, considering that force is transmitted along the 45-degree line between the axial rebars, the upper and lower portions are subtracted to obtain the lap joint length Ls = LS−2 × 4φ. In Table 1, Specimen No. 1 to 4 are corrected in this way, and the values in parentheses are values before correction. Specimen No. In 5-18, since the vacancy of the joint is 1φ, LS is used as the value of the joint length Ls as it is.

次に試験方法について表3により説明する。   Next, the test method will be described with reference to Table 3.

Figure 0004519088
Figure 0004519088

試験は水平交番載荷試験により行った。柱頭部に鉛直ジャッキで表2に示す軸方向圧縮力を作用させ、フーチング天端から高さ1.15m(No.18は1.70m)の載荷点で静的に水平交番載荷試験を行った。水平交番載荷試験時の降伏変位δyは、最外縁の軸方向鉄筋のひずみが材料試験結果から求めた降伏ひずみ(表2の降伏ひずみ参照)に達したときの水平変位を1δとした。その後、降伏変位(δy)の整数倍について繰り返し水平載荷を行った。表3は、各試験体における載荷した水平変位を示している。 The test was conducted by a horizontal alternating loading test. The axial compressive force shown in Table 2 was applied to the column head with a vertical jack, and a horizontal alternating loading test was performed statically at a loading point of 1.15 m in height (No. 18 is 1.70 m) from the top of the footing. . The yield displacement δy at the time of the horizontal alternating loading test was set to 1δ when the strain of the axial rebar at the outermost edge reached the yield strain obtained from the material test result (see the yield strain in Table 2). Thereafter, horizontal loading was repeated for an integral multiple of the yield displacement (δy). Table 3 shows the loaded horizontal displacement in each specimen.

試験体の各パラメータの決定には、柱の根本における耐力比ならびに柱と杭の軸方向鉄筋継手長について考慮した。耐力比は、次のように定義される。
Vy/Vmu:耐力比
Vy:設計せん断耐力
Vy=Vc+Vs
Vc:せん断補強鋼材を用いない棒部材の設計せん断耐力(主にコンクリートが受け持 つせん断耐力で、有効高さ、軸方向鉄筋、軸力の影響を加味)
Vs:せん断補強鋼材により受け持たれる棒部材の設計せん断耐力(スパイラル鉄筋が 受け持つせん断耐力)
Vmu:部材が曲げ耐力に達する時のせん断力
Vmu=Mu /a
Mu :曲げ応力
a :せん断スパン
表2において、軸力は、実際に柱に作用させた荷重であり、押・引は、水平交番裁荷試験で水平アクチュエータが押すときを押し、引くときを引きとし、各荷重は以下の通りである。
In determining the parameters of the test body, the strength ratio at the base of the column and the axial rebar joint length of the column and pile were considered. The yield strength ratio is defined as follows.
Vy / Vmu: Strength ratio Vy: Design shear strength Vy = Vc + Vs
Vc: Design shear strength of a bar member that does not use shear-reinforced steel (mainly the shear strength that concrete handles, taking into account the effects of effective height, axial rebar, and axial force)
Vs: Design shear strength of the bar member supported by the shear reinforcement steel material (shear strength of the spiral rebar)
Vmu: Shear force when the member reaches the bending strength Vmu = Mu / a
Mu: Bending stress a: Shear span In Table 2, the axial force is the load actually applied to the column, and the push / pull is pushed when the horizontal actuator is pushed in the horizontal alternating load test, and pulled when pulled. Each load is as follows.

降伏荷重(押側):押したときの柱断面の最外縁の鉄筋が降伏するときの荷重
降伏荷重(引側):引いたときの柱断面の最外縁の鉄筋が降伏するときの荷重
最大荷重(押側):押したときで荷重が最も大きいときの値
最大荷重(引側):引いたときで荷重が最も大きいときの値
また、Vc、Vs、Vmuは次の通りである。
Yield load (push side): Load when the outermost reinforcing bar of the column cross-section when it is pressed Yield load (pull-side): Load when the outermost reinforcing bar of the column cross-section when it is pulled Maximum load ( Push side): The value when the load is the largest when pushed The maximum load (pull side): The value when the load is the largest when pulled The Vc, Vs, and Vmu are as follows.

Vc:計算結果でコンクリート、軸方向鉄筋等が受け持つせん断耐力
Vs:計算結果でせん断補強鉄筋(ここではスパイラル鉄筋)が受け持つせん断耐力
Vmu:曲げモーメントが最大となるときのせん断力
耐力比は上記したように、(Vc+Vs)/Vmuである。
Vc: Shear strength of concrete, axial rebar, etc. as calculated, Vs: Shear strength of shear reinforcement (here, spiral rebar) as calculated Vmu: Shear strength ratio when bending moment is maximized Thus, (Vc + Vs) / Vmu.

じん性率は、正負交番裁荷試験で得られる荷重変位曲線において、降伏荷重裁荷後、裁荷重が降伏荷重を下回るときの裁荷変位を降伏変位で除した値であり、これを図7により説明する。
図7は荷重と変位の関係の例を示す図である。試験方法は、試験体の根元部分の軸方向鉄筋が降伏するまで、正負1回ずつの裁荷とし、以後は降伏変位の整数倍の変位を変位制御で正負1回ずつ裁荷し、最大荷重が降伏荷重を下回った時点で試験終了とする。図において軸方向鉄筋が降伏する荷重Pyにおける変位をδyとし、以後は降伏変位をδyとしてその整数倍の変位を正負1回ずつ裁荷し、最大荷重が降伏荷重Pyを下回った時点で試験終了であり、このときの変位がδuであり、じん性率はδu/δyである。じん性率が大きいと、部材が降伏してからの粘り強さが大きいことになる。
The toughness rate is a value obtained by dividing the yield displacement when the yield load is lower than the yield load after yield yield is divided by the yield displacement in the load displacement curve obtained in the positive / negative alternating load test. Will be described.
FIG. 7 is a diagram showing an example of the relationship between load and displacement. The test method is that each load is positive and negative once until the axial rebar at the base of the specimen yields. After that, a displacement that is an integral multiple of the yield displacement is positive and negative once per displacement control, and the maximum load The test ends when the value falls below the yield load. In the figure, the displacement at the load Py at which the axial reinforcing bar yields is δy, and after that, the yield displacement is δy and the integral multiple of displacement is discharged one by one positive and negative, and the test ends when the maximum load falls below the yield load Py. The displacement at this time is δu, and the toughness rate is δu / δy. When the toughness rate is large, the tenacity after the member yields is large.

No.10、7、17の試験体は、耐力比が4.2〜5.1とほぼ同程度で、重ね継手長がそれぞれ20φ、25φ、30φである。このときのじん性率は、5.9、13.5、21.1となっており、重ね継手長が長いほど降伏荷重裁荷後のエネルギ吸収容量が大きいことが分かる。   No. The test specimens 10, 7, and 17 have a yield ratio of approximately the same as 4.2 to 5.1, and lap joint lengths of 20φ, 25φ, and 30φ, respectively. The toughness rates at this time are 5.9, 13.5, and 21.1. It can be seen that the longer the lap joint length, the greater the energy absorption capacity after yield load application.

図8はNo.10、7、17の試験体における柱の軸方向鉄筋高さ500mmのひずみの推移を示したものである。図から、変位が増大するにもかかわらずひずみが減少しており、付着破壊を起こしているものと考えられる。このときのひずみのピークに着目すると、No.10は4δ、No.7は7δ、No.17は16δとなっている。このことから、重ね継手長が長いほど付着破壊が起こりにくく、重ね継手長が長いものは軸方向鉄筋が健全なコンクリートに付着していることが分かる。   FIG. The transition of the strain of the axial rebar height of 500 mm of the column in the test bodies of 10, 7, and 17 is shown. From the figure, it is considered that although the displacement is increased, the strain is decreased and the adhesion failure is caused. When attention is paid to the peak of strain at this time, no. 10 is 4δ, no. 7 is 7δ, no. 17 is 16δ. From this, it can be seen that the longer the lap joint length, the less likely the adhesion failure occurs, and the longer the lap joint length, the axial rebar is attached to healthy concrete.

図9はNo.7、No.9の変位と荷重の関係を示したものである。
No.7とNo.9の試験体は、重ね継手長が25φでコンクリート強度が約29N/mm2 とほぼ同等であるが、スパイラル鉄筋の径とピッチを変えて耐力比を変化させた試験体である。この場合、耐力比はそれぞれ5.1、13.1であり、No.9の方が降伏荷重裁荷後のエネルギ吸収容量が大きく、じん性率は22.9(表2)である。そして、No.7の試験後に、フーチングからの高さ300mmの位置において横方向のひび割れが発生していた。また、ひずみは図8に示したように、最大荷重時以降の7δにおいてピークとなり、それ以降減少傾向となった。このため、高さ300mm以下で付着破壊を起こしているものと考えられる。
FIG. 7, no. 9 shows the relationship between the displacement 9 and the load.
No. 7 and no. The test body of No. 9 is a test body in which the lap joint length is 25φ and the concrete strength is substantially equal to about 29 N / mm 2 , but the strength ratio is changed by changing the diameter and pitch of the spiral reinforcing bar. In this case, the yield strength ratios are 5.1 and 13.1, respectively. No. 9 has a larger energy absorption capacity after yield load, and the toughness is 22.9 (Table 2). And No. After the test of No. 7, a lateral crack occurred at a height of 300 mm from the footing. Further, as shown in FIG. 8, the strain peaked at 7δ after the maximum load, and thereafter decreased. For this reason, it is considered that adhesion failure occurs at a height of 300 mm or less.

一方、No.9の試験後の軸方向鉄筋は、切断されて実験が終了している。これは継手部の付着破壊が起こる前に低サイクル疲労による鉄筋破断が生じたと考えられる。このことからスパイラル鉄筋によるコアコンクリートが健全で、拘束力が小さい(耐力比が小さい)と付着破壊が生じやすく、拘束力が大きい(耐力比が大きい)と、継手部における付着が大きくなると考えられる。   On the other hand, no. The axial rebar after 9 tests was cut and the experiment was completed. This is thought to be due to the breakage of the rebar due to low cycle fatigue before the joint failure occurred. From this, it is considered that the core concrete with spiral rebar is healthy and the binding force is small (the yield strength ratio is small), and adhesion failure is likely to occur. .

図10は継手長と耐力比との関係を示し、図11は全試験体の重ね継手長、耐力比、じん性率の関係を示している。
上記に示したように、じん性率が大きいと部材が降伏してからの粘り強さが大きいことになり、じん性率10を確保すれば急激な耐力低下がなく、十分な変形性能を保持することが可能である。そこで、本発明ではじん性率10以上を確保する条件を考慮した。
FIG. 10 shows the relationship between the joint length and the yield ratio, and FIG. 11 shows the relationship between the lap joint length, the yield ratio, and the toughness ratio of all the specimens.
As shown above, if the toughness ratio is large, the toughness after the yielding of the member will be large, and if the toughness ratio is 10 it will not be abruptly reduced in yield strength and will retain sufficient deformation performance. It is possible. Therefore, in the present invention, a condition for ensuring a toughness rate of 10 or more is considered.

図11に示すように、重ね継手長ごとに耐力比とじん性率には線形関係が見られた。このうち試験体No.3,4,8,18については、表2に示したとおり試験機の能力上、終局時のじん性率の確認が不可能であったため、実際は示しているじん性率より大きい値をとる。この結果から、耐力比が5以上で、重ね継手長が25φ以上となるようにスパイラル鉄筋を補強すればじん性率10以上を確保することがわかり、このことは図8、図9の結果からも結論できる。   As shown in FIG. 11, a linear relationship was observed between the yield strength ratio and the toughness ratio for each lap joint length. Of these, specimen No. As shown in Table 2, for 3, 4, 8, and 18, it was impossible to confirm the toughness rate at the end of the test due to the capability of the testing machine. From this result, it can be seen that reinforcing the spiral rebar so that the yield strength ratio is 5 or more and the lap joint length is 25φ or more ensures a toughness ratio of 10 or more. This is based on the results of FIGS. Can also conclude.

また、試験体No.8、17の線形関係(図11)に着目し、さらに試験を行った結果、耐力比が2以上のとき、重ね継手長が30φ以上であればじん性率10以上を確保できることも分かった。   In addition, the specimen No. Focusing on the linear relationship between FIGS. 8 and 17 (FIG. 11) and further testing, it was found that when the proof stress ratio is 2 or more, a toughness ratio of 10 or more can be secured if the lap joint length is 30φ or more.

なお、No.1〜No.4ではスライム部を有し、No.2とNo.4は内巻きスパイラルを有している。No.1、No.2の試験体のじん性率はそれぞれ9.6、14.8で内巻きスパイラルを有する試験体の方が大きいが、No.3、No.4の試験体のじん性率は両者ともじん性率が20以上でほぼ同じである。このことから、耐力比が20以上の条件、重ね継手長が12φ以上であれば、内巻きスパイラルの存在の有無に関係なく、じん性率が20以上となることが分かった。   In addition, No. 1-No. No. 4 has a slime part. 2 and No. 4 has an inner spiral. No. 1, no. No. 2 specimens had a toughness ratio of 9.6 and 14.8, respectively, and the specimens with the inner winding spiral were larger. 3, no. The toughness rates of the specimens No. 4 are almost the same when the toughness rate is 20 or more. From this, it was found that if the yield ratio is 20 or more and the lap joint length is 12φ or more, the toughness ratio is 20 or more regardless of the presence or absence of the inner spiral.

本発明によれば経済的な補強が可能であり、じん性率10以上を確保することが可能となるので産業上の利用価値は大きい。   According to the present invention, economical reinforcement is possible, and a toughness ratio of 10 or more can be ensured, so the industrial utility value is great.

鉄道高架橋の杭と柱の接合部への本発明の適用を説明する図である。It is a figure explaining application of the present invention to a joint part of a railway viaduct pile and a pillar. 重ね継手部を説明する概念図である。It is a conceptual diagram explaining a lap joint part. 試験体形状を説明する図である。It is a figure explaining a test body shape. 試験体形状を説明する図である。It is a figure explaining a test body shape. SP筋比を説明する図である。It is a figure explaining SP muscle ratio. 重ね継手長を説明する図である。It is a figure explaining the lap joint length. 荷重と変位の関係の例を示す図である。It is a figure which shows the example of the relationship between a load and a displacement. ひずみの推移を示した図である。It is the figure which showed transition of distortion. 変位と荷重の関係を示した図である。It is the figure which showed the relationship between a displacement and a load. 継手長と耐力比との関係を示した図である。It is the figure which showed the relationship between joint length and yield strength ratio. 全試験体の重ね継手長、耐力比、じん性率の関係を示した図である。It is the figure which showed the relationship of the lap joint length of all the test bodies, a yield strength ratio, and a toughness rate.

符号の説明Explanation of symbols

10,20…鉄筋コンクリート部材、11,21…軸方向鉄筋、30…スパイラル鉄筋。 DESCRIPTION OF SYMBOLS 10,20 ... Reinforced concrete member, 11, 21 ... Axial rebar, 30 ... Spiral rebar.

Claims (3)

複数の軸方向鉄筋の重ね継手部を補強鉄筋で内包する鉄筋コンクリート部材の補強方法であって、
前記補強鉄筋は軸方向鉄筋と離間し、かつ補強鉄筋は相互に接する、又は補強鉄筋の直径以下の間隔で配置され、
重ね継手部の耐力比が5以上のとき、重ね継手長を軸方向鉄筋の直径の25倍以上としてじん性率10以上を確保するようにしたことを特徴とする鉄筋コンクリート部材の重ね継手部補強方法。
A method for reinforcing a reinforced concrete member including a reinforced joint of a lap joint portion of a plurality of axial rebars,
The reinforcing reinforcing bars are spaced apart from the axial reinforcing bars, and the reinforcing reinforcing bars are in contact with each other or arranged at intervals equal to or less than the diameter of the reinforcing reinforcing bars,
When strength ratio of the lap joint portion is 5 or more, lap joint portion of the reinforced concrete member, characterized in that the lap joint length so as a more than 25 times the diameter of the longitudinal bars to secure more toughness index 10 Reinforcement method.
複数の軸方向鉄筋の重ね継手部を補強鉄筋で内包する鉄筋コンクリート部材の補強方法であって、
前記補強鉄筋は軸方向鉄筋と離間し、かつ補強鉄筋は相互に接する、又は補強鉄筋の直径以下の間隔で配置され、
重ね継手部の耐力比が2以上のとき、重ね継手長を軸方向鉄筋の直径の30倍以上としてじん性率10以上を確保するようにしたことを特徴とする鉄筋コンクリート部材の重ね継手部補強方法。
A method for reinforcing a reinforced concrete member including a reinforced joint of a lap joint portion of a plurality of axial rebars,
The reinforcing reinforcing bars are spaced apart from the axial reinforcing bars, and the reinforcing reinforcing bars are in contact with each other or arranged at intervals equal to or less than the diameter of the reinforcing reinforcing bars,
When strength ratio of the lap joint portion is 2 or more, lap joint portion of the reinforced concrete member, characterized in that the lap joint length so as a more than 30 times the diameter of the longitudinal bars to secure more toughness index 10 Reinforcement method.
請求項1又は2記載の方法において、重ね継手部の軸方向鉄筋は相互に密着又は離間された状態で配置することを特徴とする鉄筋コンクリート部材の重ね継手部補強方法。 The method according to claim 1 or 2, wherein the axial reinforcing bars of the lap joint portion are arranged in a state of being in close contact with or spaced apart from each other.
JP2006062073A 2006-03-08 2006-03-08 Reinforced concrete member lap joint reinforcement method Expired - Fee Related JP4519088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062073A JP4519088B2 (en) 2006-03-08 2006-03-08 Reinforced concrete member lap joint reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062073A JP4519088B2 (en) 2006-03-08 2006-03-08 Reinforced concrete member lap joint reinforcement method

Publications (2)

Publication Number Publication Date
JP2007239282A JP2007239282A (en) 2007-09-20
JP4519088B2 true JP4519088B2 (en) 2010-08-04

Family

ID=38585084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062073A Expired - Fee Related JP4519088B2 (en) 2006-03-08 2006-03-08 Reinforced concrete member lap joint reinforcement method

Country Status (1)

Country Link
JP (1) JP4519088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112227208B (en) * 2020-09-23 2022-03-29 中铁大桥局集团有限公司 Monitoring and forecasting method for construction period and operation period of suspension bridge cable clamp screw

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965149A (en) * 1982-10-06 1984-04-13 株式会社坪井善勝研究室 Joint structure of iron wire
JPS61110713U (en) * 1984-12-26 1986-07-14
JPH01244053A (en) * 1988-03-23 1989-09-28 Ohbayashi Corp Lap joint structure for column main reinforcing bar
JPH10137884A (en) * 1996-11-06 1998-05-26 Sumikura Kozai Kk Method for arranging rc structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965149A (en) * 1982-10-06 1984-04-13 株式会社坪井善勝研究室 Joint structure of iron wire
JPS61110713U (en) * 1984-12-26 1986-07-14
JPH01244053A (en) * 1988-03-23 1989-09-28 Ohbayashi Corp Lap joint structure for column main reinforcing bar
JPH10137884A (en) * 1996-11-06 1998-05-26 Sumikura Kozai Kk Method for arranging rc structure

Also Published As

Publication number Publication date
JP2007239282A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Stephens et al. Design of CFST column-to-foundation/cap beam connections for moderate and high seismic regions
CN110717211B (en) Method for calculating bending resistance of underground continuous wall steel bar lap joint
JP6023476B2 (en) Rebar structure
CN103541437B (en) Reinforced concrete frame node district additional steel plates and gauze wire cloth parcel strengthen structure and preparation method
JP4519088B2 (en) Reinforced concrete member lap joint reinforcement method
JP2008081971A (en) Reinforced concrete beam
JP6646206B2 (en) Joint structure of RC members
Ruangrassamee et al. Seismic enhancement of reinforced-concrete columns by rebar-restraining collars
JP4708296B2 (en) Pile-column connection structure
JP2011202471A (en) Structural member
JP2019019664A (en) High-rise building and precast pre-stressed concrete column
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP4708295B2 (en) Pile-column connection structure
JP3759995B2 (en) Concrete structure
JP3892152B2 (en) Seismic reinforcement structure for existing columns and seismic reinforcement method for existing columns
JPH08338104A (en) Reinforced concrete pillar and its reinforcing method
JP7195793B2 (en) Slope rebar connection structure
KR100956518B1 (en) A Reinforcing Structure For Improved Transmission Of Slab-Column Joint
Ajim et al. Structural Design of Reinforced Steel Bar for Coupling
JP2010106600A (en) Column with reinforced concrete-filled steel tube structure
KR20090017083A (en) A reinforcing structure for improved transmission of joint and method for it
CN106760204A (en) Concrete beam or column capable of improving torsional bearing capacity and construction method thereof
JP7012525B2 (en) Beam structure
JP2023079439A (en) Design method for base plate
Weng et al. Experimental investigation on rectangular SRC columns with multi-spiral confinements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees