JP3759995B2 - Concrete structure - Google Patents

Concrete structure Download PDF

Info

Publication number
JP3759995B2
JP3759995B2 JP12752996A JP12752996A JP3759995B2 JP 3759995 B2 JP3759995 B2 JP 3759995B2 JP 12752996 A JP12752996 A JP 12752996A JP 12752996 A JP12752996 A JP 12752996A JP 3759995 B2 JP3759995 B2 JP 3759995B2
Authority
JP
Japan
Prior art keywords
concrete
reinforcing bars
rebar
main
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12752996A
Other languages
Japanese (ja)
Other versions
JPH09310448A (en
Inventor
敏 夫 林
谷 卓 雄 森
藤 雅 春 斎
岡 茂 松
Original Assignee
鉄建建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄建建設株式会社 filed Critical 鉄建建設株式会社
Priority to JP12752996A priority Critical patent/JP3759995B2/en
Publication of JPH09310448A publication Critical patent/JPH09310448A/en
Application granted granted Critical
Publication of JP3759995B2 publication Critical patent/JP3759995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋼繊維補強コンクリートを改善し、構造物の曲げ強度と靭性を飛躍的に向上するとともに、帯鉄筋を廃し、その配筋作業の煩雑を解消して、施工の迅速化と工費の低減を図れ、しかも緻密かつ平滑なコンクリート面を得られるコンクリート構造物およびその施工法に関する。
【0002】
【従来の技術】
従来、コンクリート構造物を構築する場合、主鉄筋を組み立て、これに剪断力を補強する目的で帯鉄筋を所定ピッチに配置し、この外側に型枠を組み立て後、型枠内にコンクリートを打設していた。
この場合、帯鉄筋の量と配置については、一般に曲げ耐力よりも剪断耐力が大きくなるように施工され、したがってコンクリート構造物は、曲げ破壊先行型の破壊形態となり、引張り力を補強する主鉄筋の引張り靭性によって、降伏荷重に達した後も耐荷力を保持するようにされている。
【0003】
しかし、この従来のコンクリート構造物の施工法は、帯鉄筋とその配筋を要し、帯鉄筋の製作と鉄線またはクリップ等による緊結を要して、作業が煩雑かつ手間が掛かり、しかもこうして構築したコンクリート構造物も、その立地条件や帯鉄筋の量および施工の如何によっては、帯鉄筋が剪断して構造物が剪断破壊する惧れがあり、この点は先の阪神淡路大地震において例証されている。
【0004】
そこで、コンクリート構造物の剪断力を強化する手段として、帯鉄筋を増量するとともに、主鉄筋との交差部を全て溶接する方法が考えられる。
しかし、この場合は帯鉄筋の配筋作業が著しく煩雑で手間が掛かり、工費の高騰と工期の長期化を招くとともに、コンクリート打設時にコンクリートの移動が帯鉄筋に遮られて流動性が低下し、ジャンカを生じ易い、という問題が予想される。
【0005】
ところで、従来、道路や滑走路、トンネル等において、コンクリートの引張強度や曲げ強度、ひび割れ強度、靭性または耐衝撃性の改善を図るために、例えば炭素鋼やステンレス鋼等の短い鋼繊維を均等に分散配置した鋼繊維補強コンクリートが使用されている。
【0006】
しかし、この従来の鋼繊維補強コンクリートは、主にひび割れの改善を目的とし、その強度は専ら鋼繊維の強度に依存して低く、これを曲げと剪断力の双方を受ける耐震構造物の柱や梁、壁に直ちに採用することはできない。
【0007】
【発明が解決しようとする課題】
本発明はこのような問題を解決し、鋼繊維補強コンクリ−トを改善し、構造物の曲げ強度と靭性率を飛躍的に向上するとともに、帯鉄筋を廃し、その配筋作業の煩雑を解消して、施工の迅速化と工費の低減を図れ、しかも緻密かつ平滑なコンクリ−ト面を得られるコンクリ−ト構造物を提供することを目的とする。
【0008】
【課題を解決するための手段】
このため、請求項1の発明は、コンクリ−トの内部に、複数の主鉄筋を無拘束、かつ複数列に配置するとともに、鋼繊維を分散配置したコンクリ−ト構造物において、前記コンクリ−トの全域に亘って、アスペクト比約50の鋼繊維を全打設コンクリ−ト容積の約1.0パ−セントに分散配置して、帯鉄筋を廃し、鋼繊維を小形軽量化し、その均一な分散とコンクリ−ト構造物の軽量化を図るとともに、緻密かつ平滑なコンクリ−ト面を得られ、しかも鋼繊維の混入率を高めて構造物の曲げ強度と靭性率を向上し、曲げと剪断力の双方を受ける実用的な耐震構造物を提供するようにしている。
【0009】
【発明の実施の形態】
以下、本発明をコンクリート構造物であるビルやマンション等の建造物の柱に適用した図示の実施の形態について説明すると、図1乃至図6において1はコンクリート製の基台で、その上部に複数の主鉄筋2が所定位置に無拘束状態、つまり該鉄筋2を従来の帯鉄筋で拘束することなく立設されている。
この場合、主鉄筋2の材質、寸法、配置、数量等は柱に作用する最大荷重および安全率を考慮し、その建築設計基準に基いて決定されている。
なお、図2のように主鉄筋2に帯鉄筋3を粗ピッチに配置し、これを適宜拘束してもよい。
【0010】
基台1上には主鉄筋2の外側に型枠4が組み立てられ、該枠4の内側に鋼繊維5を所定量混入したコンクリート6が打設されている。
鋼繊維5は、直径は0.6mmの炭素鋼またはステンレス鋼を30mm(アスペクト比50)の長さに切断し、その表面を鋸歯状または波状に形成して構成され、その混入率は全打設コンクリート容積の約1.0%に設定されている。
【0011】
コンクリート6の硬化後の状況は図4のようで、鋼繊維5がコンクリート構造物である柱7の断面の全域に亙って、均一かつランダムな方向に配置されている
【0012】
このように構成した柱7はビルやマンション等建造物の建造時に構築され、これは先ず造成した土地にコンクリートを打設して基台1を作成し、同時に基台1に複数の主鉄筋2を所定間隔に配置して組み立てる。
柱以外の梁や壁を構築する場合は、それらの長さ方向に主鉄筋2を所定間隔に配置して組み立てる。
【0013】
この場合、必要に応じて少量の帯鉄筋3を使用して、主鉄筋2の所定位置を拘束してもよく、そのようにすることで主鉄筋2の動揺と、占有スペースの広がりを防止し得るとともに、柱7に作用する剪断力を帯鉄筋3に負担させ、その剪断強度を強化することができる。
このように本発明は、従来多用されていた帯鉄筋3を廃し、帯鉄筋3の製作とその煩雑な配筋作業から解消され、施工の迅速化と工費の低減を図れる。
【0014】
こうして主鉄筋2の組み立て後、それらの外側位置に型枠4を組み立て、該型枠4の内側にコンクリート6を打設する。
コンクリート6には所定量の鋼繊維5が混入され、その混入率は全打設コンクリート容積の約1.0%に設定され、これがコンクリート6と一緒に投入されて、型枠4内を移動し填充する。
【0015】
この場合、型枠4内には複数の主鉄筋2だけが配置されているから、主鉄筋2に多数の帯鉄筋3を取付けたものに比べて、コンクリート6の回り込みや流動性が良く、型枠4内を緻密かつ確実に填充する。
したがって、ジャンカの発生が防止され、またコンクリート面が平滑に形成されて、それらの補修の手間をなくせる。
【0016】
コンクリート6の硬化後、型枠4を取外し、適宜その表面を仕上げれば、柱7の一連の構築作業が終了する。
こうして構築した柱7の横断面は図4のようで、鋼繊維5が柱7の全域に亙って均一に分散配置され、かつその方向はランダムに配置されている。
【0017】
こうして構築した柱7について、その剪断耐力を調べるため、出願人はこれと同様な供試体を作成して実験した。
この剪断耐力実験は、上記供試体を垂直に保持し、その上端部に一定の軸圧縮応力を作用し、その上部に水平荷重、つまり剪断荷重を交番して作用させ、該荷重は主鉄筋2の降伏荷重、180kN以上に設定され、これを漸次降伏荷重の整数倍に増加して、柱7の変位と水平荷重との関係を求め、一方、水平荷重が降伏荷重の80%以下になるか、または前記圧縮荷重を保持できなくなった時点で、実験を終了することとした。
【0018】
そこで、この実験において、先ず前記降伏荷重相当の水平荷重を上記供試体に負荷させると、供試体表面の数カ所に約0.1mm程度のひび割れが軸方向と略直角方向に発生し、これらは供試体の上下位置に斜状に分散していて、これらが水平荷重の増加に伴って剪断方向、つまり供試体の軸方向と略45°に次第に成長し、その割れ幅を広げるとともに、供試体の内部に徐々に進行する。
【0019】
この場合、上記ひび割れが連通しても、主鉄筋2と鋼繊維5とが健全に介在している間は、これらが前記荷重を保持し、この後主鉄筋2が自身の曲げ耐力に抗し破断したところで、供試体がその軸方向と直角方向の切断面に沿って曲げ破壊する。
このときの水平荷重は約200kNであった。
したがって、この場合の破壊形態は曲げ破壊先行型となり、この破壊に至るまでに主鉄筋2と鋼繊維5とが剪断エネルギーを吸収して持ち堪え、破壊の速度を抑制する。
【0020】
図5は上記実験結果を示すもので、主鉄筋2の降伏後、荷重があまり増加しないにも拘らず変位が増加し、したがってエネルギーの吸収能力が大きく、その靭性および靭性率(荷重ー変位曲線と横軸とで囲まれる面積の大きさ)が大きいことを示唆している。
実験結果では、主鉄筋2の降伏変位の10倍で降伏水平荷重の80%を下回り、靭性率は10程度まで期待できることが判明した。
【0021】
次に主鉄筋2を配置しない供試体を作成し、該供試体について同様な実験を行なったところ、その靭性率は零で、破壊時の水平荷重は約100kNであった。したがって、鋼繊維5のみを配置したコンクリート構造物は、これに主鉄筋2を配置した構造物に比べて、靭性は期待できず略脆性部材に相当し、また曲げ強度は後者の約1/6であった。
これは、鋼繊維5とコンクリート6との結合が連続性と方向性とを欠き、結果的にモザイク状の結合体を形成していることによるものと考えられる。
【0022】
更に、同様な実験をプレーンコンクリートで行なったところ、図6の結果を得た。
この実験では、主鉄筋2が降伏変位に達した後、早い段階で剪断力によるものと推定される斜めひび割れが供試体に発生し、これが成長して水平荷重が急速に失われていった。
【0023】
このように鋼繊維5に主鉄筋2を配置した本発明の構造物は、鋼繊維5のみを配置したコンクリート構造物に比べて、靭性率が飛躍的に向上し、またその破壊形態は曲げ破壊先行型であるから、耐震強度が大幅に向上し、剪断荷重を受ける建造物の柱、壁、床、橋脚等に好適である。
【0024】
したがって、上記柱7を構築後に例えば大地震が発生し、柱7が水平方向に剪断力を受けた場合、主鉄筋2と鋼繊維5とが剪断力と曲げに対抗し、柱7のひび割れを防止するとともに、ひび割れの分散を促して、柱7の変形と破壊を抑制する。
【0025】
また、鋼繊維5の混入によって柱7の靭性が向上し、地震による衝撃ないし剪断荷重を吸収して、柱7の変形と破壊速度を抑制する。
そして、地震の衝撃および振幅が次第に増加すると、ひび割れが分散して発生し始め、これが成長して開口幅が増加し、遂に主鉄筋2が降伏して曲げ破壊するこの場合、ひび割れが成長して柱7が曲げ破壊するまでの間、鋼繊維5と主鉄筋2が地震の衝撃、振動に堪え、主鉄筋2が降伏し破断したところで、柱7が曲げ破壊する。
しかも、ひび割れ面では鋼繊維5によって引張応力を伝達されるため、コンクリート6自体の剪断耐力が向上し、曲げ破壊先行型の破壊形態を促して、耐震強度を増進する。
【0026】
このように本発明は、剪断力を受けるコンクリート構造物において、従来より多用されている帯鉄筋を廃したから、該鉄筋の材料費の節減と工費の低減を図れ、帯鉄筋の製作とその配筋作業の煩雑と手間を解消して、これを迅速に施工でき、工期の短縮化と工費の低減を図れるとともに、コンクリートを緻密かつ確実に打設できる。
【0027】
また、本発明は、帯鉄筋の代わりに鋼繊維5をコンクリート6に分散配置し、該繊維5と主鉄筋2とによって、構造物に作用する剪断力と曲げに抗するようにしたから、構造物の靭性率と曲げ強度が飛躍的に向上し、十分な耐震強度を有するコンクリート構造物を得られる。
しかも、鋼繊維5と主鉄筋2とを配置することによって、従来の鋼繊維補強コンクリートの強度、特に靭性率が飛躍的に向上し、実用的な耐震コンクリート構造物を提供できる。
【0028】
【発明の効果】
以上のように請求項1の発明は、コンクリ−トの全域に亘って、アスペクト比約50の鋼繊維を全打設コンクリ−ト容積の約1.0パ−セントに分散配置したから、帯鉄筋を廃し、鋼繊維を小形軽量化し、その均一な分散とコンクリ−ト構造物の軽量化を図り、緻密かつ平滑なコンクリ−ト面を得られるとともに、鋼繊維の混入率を高めて構造物の曲げ強度と靭性率を向上し、曲げと剪断力の双方を受ける実用的な耐震構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明による施工法を順に示す斜視図である。
【図2】本発明による施工法の別の実施形態を示す斜視図で、主鉄筋を少数の帯鉄筋で拘束した状態を示している。
【図3】本発明による構築された構造物の状況を示す斜視図である。
【図4】図3のAーA線に沿う断面図である。
【図5】本発明を適用した柱の剪断耐力実験において、荷重と変位との関係を示す実験図である。
【図6】プレーンコンクリートの剪断耐力実験において、荷重と変位との関係を示す実験図である。
【符号の説明】
2 主鉄筋
5 鋼繊維
6 コンクリート
7 コンクリート構造物(柱)
[0001]
BACKGROUND OF THE INVENTION
The present invention improves the steel fiber reinforced concrete, dramatically improves the bending strength and toughness of the structure, eliminates the rebar, eliminates the complexity of the bar arrangement work, speeds up the construction and reduces the construction cost Further, the present invention relates to a concrete structure capable of obtaining a dense and smooth concrete surface and a method for constructing the same.
[0002]
[Prior art]
Conventionally, when constructing a concrete structure, the main reinforcing bars are assembled, band reinforcing bars are arranged at a predetermined pitch for the purpose of reinforcing the shearing force, and after the formwork is assembled outside this, the concrete is placed in the formwork Was.
In this case, the amount and arrangement of the strip reinforcing bars are generally constructed so that the shear strength is larger than the bending strength. Therefore, the concrete structure becomes a failure mode of the bending failure preceding type, and the main reinforcing bars that reinforce the tensile force are used. The tensile toughness keeps the load bearing capacity after reaching the yield load.
[0003]
However, this conventional method for constructing a concrete structure requires a band rebar and its arrangement, and requires the production of the band rebar and the tightening with a steel wire or clip, which is cumbersome and laborious, and is thus constructed. Depending on the location conditions, the amount of rebar, and the construction of the concrete structure, there is a risk that the rebar will shear and the structure may be sheared and destroyed, which was demonstrated in the Great Hanshin-Awaji Earthquake. ing.
[0004]
Therefore, as a means for enhancing the shearing force of the concrete structure, a method of increasing the amount of the reinforcing bars and welding all the intersections with the main reinforcing bars can be considered.
However, in this case, the work of bar rebar placement is extremely complicated and time-consuming, resulting in an increase in construction costs and a prolonged construction period, as well as a decrease in fluidity because the movement of the concrete is blocked by the band rebar when placing concrete. The problem that it is easy to produce a jumper is expected.
[0005]
By the way, conventionally, in order to improve the tensile strength, bending strength, crack strength, toughness or impact resistance of concrete in roads, runways, tunnels, etc., short steel fibers such as carbon steel and stainless steel are evenly distributed. Distributed steel fiber reinforced concrete is used.
[0006]
However, this conventional steel fiber reinforced concrete is mainly for the purpose of improving cracks, and its strength is low depending on the strength of the steel fiber. It cannot be used immediately for beams and walls.
[0007]
[Problems to be solved by the invention]
The present invention solves such problems, improves the steel fiber reinforced concrete, dramatically improves the bending strength and toughness of the structure, eliminates the rebar, and eliminates the complexity of the bar arrangement work. and, Hakare reduction of faster and construction costs of construction, yet dense and smooth concrete - concrete obtained the up surface - and to provide the door structure.
[0008]
[Means for Solving the Problems]
Therefore, the invention of claim 1 is a concrete structure in which a plurality of main reinforcing bars are unconstrained and arranged in a plurality of rows inside a concrete, and steel fibers are dispersedly arranged . The steel fibers with an aspect ratio of about 50 are distributed and arranged at about 1.0 percent of the total cast concrete volume over the entire area, eliminating the steel bars and reducing the size and weight of the steel fibers. In addition to reducing the weight of the concrete structure and reducing the weight of the concrete structure, providing a dense and smooth concrete surface, increasing the mixing rate of steel fibers and improving the bending strength and toughness ratio of the structure. A practical seismic structure that receives both shear forces is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to a pillar of a building such as a building or a condominium that is a concrete structure will be described below. In FIGS. The main reinforcing bar 2 is erected in a non-restrained state at a predetermined position, that is, without restricting the reinforcing bar 2 with a conventional band reinforcing bar.
In this case, the material, dimensions, arrangement, quantity, and the like of the main reinforcing bars 2 are determined based on the building design standard in consideration of the maximum load acting on the column and the safety factor.
In addition, as shown in FIG. 2, the band reinforcement 3 may be arrange | positioned to the main reinforcement 2 at a rough pitch, and this may be restrained suitably.
[0010]
On the base 1, a mold 4 is assembled outside the main rebar 2, and concrete 6 mixed with a predetermined amount of steel fibers 5 is placed inside the frame 4.
The steel fiber 5 is formed by cutting carbon steel or stainless steel having a diameter of 0.6 mm into a length of 30 mm (aspect ratio: 50) and forming the surface in a sawtooth shape or a wave shape, and the mixing rate is the total beat. It is set to about 1.0% of the installed concrete volume.
[0011]
The condition after the concrete 6 is hardened is as shown in FIG. 4, and the steel fibers 5 are arranged in a uniform and random direction over the entire cross section of the column 7 which is a concrete structure.
The pillar 7 constructed in this way is constructed when a building such as a building or a condominium is constructed. First, concrete is placed on the constructed land to create a base 1, and at the same time a plurality of main reinforcing bars 2 are mounted on the base 1. Are assembled at predetermined intervals.
When constructing beams and walls other than columns, the main reinforcing bars 2 are assembled at predetermined intervals in the length direction thereof.
[0013]
In this case, if necessary, a small amount of rebar 3 may be used to constrain the predetermined position of the main rebar 2, so that the main rebar 2 can be prevented from shaking and the space occupied. In addition, the shear strength acting on the column 7 can be borne by the band reinforcing bar 3 and the shear strength can be enhanced.
As described above, the present invention eliminates the conventionally used band rebar 3 and eliminates the production of the band rebar 3 and its complicated bar arrangement work, thereby speeding up the construction and reducing the construction cost.
[0014]
After the main reinforcing bars 2 are assembled in this way, the mold frames 4 are assembled at positions outside them, and the concrete 6 is placed inside the mold frames 4.
A predetermined amount of steel fiber 5 is mixed in the concrete 6, and the mixing rate is set to about 1.0% of the total cast concrete volume, which is thrown together with the concrete 6 and moves in the mold 4. To fill.
[0015]
In this case, since only the plurality of main reinforcing bars 2 are arranged in the mold 4, the wraparound and fluidity of the concrete 6 are better than those in which a large number of strip reinforcing bars 3 are attached to the main reinforcing bars 2. Fill the inside of the frame 4 precisely and reliably.
Therefore, generation | occurrence | production of a jumper is prevented and a concrete surface is formed smoothly, and the effort of those repairs can be eliminated.
[0016]
If the formwork 4 is removed after the concrete 6 is hardened and the surface thereof is appropriately finished, a series of construction work of the pillars 7 is completed.
The cross section of the pillar 7 thus constructed is as shown in FIG. 4, and the steel fibers 5 are uniformly distributed over the entire area of the pillar 7, and the directions thereof are randomly arranged.
[0017]
In order to examine the shear strength of the column 7 thus constructed, the applicant made an experiment with a similar specimen.
In this shear strength test, the specimen is held vertically, a certain axial compressive stress is applied to the upper end portion thereof, and a horizontal load, that is, a shear load is applied alternately to the upper portion thereof. The yield load is set to 180 kN or more, and this is gradually increased to an integral multiple of the yield load to obtain the relationship between the displacement of the column 7 and the horizontal load. On the other hand, is the horizontal load less than 80% of the yield load? Alternatively, the experiment was terminated when the compressive load could not be maintained.
[0018]
Therefore, in this experiment, when a horizontal load corresponding to the yield load is first applied to the specimen, cracks of about 0.1 mm are generated at several locations on the specimen surface in a direction substantially perpendicular to the axial direction. The specimens are distributed obliquely at the upper and lower positions of the specimen, and these grow gradually in the shear direction, that is, approximately 45 ° with the axial direction of the specimen as the horizontal load increases. Progress gradually inside.
[0019]
In this case, even if the cracks communicate with each other, while the main rebar 2 and the steel fiber 5 are soundly interposed, they retain the load, and then the main rebar 2 resists its bending strength. When the specimen breaks, the specimen is bent and fractured along the cut surface perpendicular to the axial direction.
The horizontal load at this time was about 200 kN.
Therefore, the fracture form in this case is a bending fracture leading type, and the main rebar 2 and the steel fiber 5 absorb and hold the shear energy before the fracture, and the fracture speed is suppressed.
[0020]
FIG. 5 shows the result of the above experiment. After the yield of the main reinforcing bar 2, the displacement increases despite the fact that the load does not increase so much, and therefore the energy absorption capacity is large, and its toughness and toughness ratio (load-displacement curve). The size of the area surrounded by the horizontal axis is suggested to be large.
From the experimental results, it was found that 10 times the yield displacement of the main rebar 2 is less than 80% of the yield horizontal load, and the toughness rate can be expected to about 10.
[0021]
Next, a specimen having no main reinforcing bar 2 was prepared, and the same experiment was conducted on the specimen. As a result, the toughness ratio was zero and the horizontal load at the time of failure was about 100 kN. Therefore, the concrete structure in which only the steel fibers 5 are arranged is equivalent to a substantially brittle member because the toughness cannot be expected compared to the structure in which the main reinforcing bars 2 are arranged, and the bending strength is about 1/6 of the latter. Met.
This is considered to be due to the fact that the bond between the steel fibers 5 and the concrete 6 lacks continuity and directionality, resulting in the formation of a mosaic-like bonded body.
[0022]
Further, when a similar experiment was performed on plain concrete, the result shown in FIG. 6 was obtained.
In this experiment, after the main rebar 2 reached the yield displacement, oblique cracks presumed to be caused by shearing force occurred in the specimen at an early stage, which grew and the horizontal load was rapidly lost.
[0023]
Thus, the structure of the present invention in which the main reinforcing bar 2 is disposed on the steel fiber 5 has a toughness ratio dramatically improved as compared with a concrete structure in which only the steel fiber 5 is disposed, and its fracture mode is bending fracture. Since it is a leading type, the seismic strength is greatly improved, and it is suitable for pillars, walls, floors, piers, etc. of buildings subjected to shear loads.
[0024]
Therefore, for example, when a large earthquake occurs after the column 7 is constructed and the column 7 receives a shearing force in the horizontal direction, the main reinforcing bar 2 and the steel fiber 5 resist the shearing force and bending, and the column 7 is cracked. While preventing, the dispersion | distribution of a crack is promoted and the deformation | transformation and destruction of the pillar 7 are suppressed.
[0025]
Moreover, the toughness of the column 7 is improved by mixing the steel fibers 5 and the shock or shear load due to the earthquake is absorbed, so that the deformation and the breaking speed of the column 7 are suppressed.
As the impact and amplitude of the earthquake gradually increase, cracks begin to disperse, which grows and increases the opening width. Finally, the main rebar 2 yields and bends and breaks. In this case, cracks grow. Until the column 7 is bent and broken, the steel fiber 5 and the main rebar 2 withstand the impact and vibration of the earthquake, and when the main rebar 2 yields and breaks, the column 7 is bent and broken.
In addition, since the tensile stress is transmitted by the steel fiber 5 on the cracked surface, the shear strength of the concrete 6 itself is improved, and the failure mode of the bending failure preceding type is promoted to increase the seismic strength.
[0026]
As described above, the present invention eliminates the conventionally used band reinforcing bars in the concrete structure subjected to the shearing force. Therefore, the material cost of the reinforcing bars can be reduced and the construction cost can be reduced. This eliminates the complexity and labor of muscular work, and can be applied quickly, shortening the construction period and reducing construction costs, and placing concrete precisely and reliably.
[0027]
Further, according to the present invention, the steel fibers 5 are dispersed and arranged in the concrete 6 instead of the band reinforcing bars, and the fibers 5 and the main reinforcing bars 2 resist the shearing force and bending acting on the structure. The toughness rate and bending strength of the object are dramatically improved, and a concrete structure having sufficient seismic strength can be obtained.
In addition, by arranging the steel fibers 5 and the main rebar 2, the strength, particularly the toughness rate, of the conventional steel fiber reinforced concrete is dramatically improved, and a practical seismic concrete structure can be provided.
[0028]
【The invention's effect】
As described above, according to the first aspect of the present invention, the steel fibers having an aspect ratio of about 50 are dispersed and arranged at about 1.0 percent of the total cast concrete volume over the entire area of the concrete. Eliminate reinforcing bars, reduce the size and weight of steel fibers, achieve uniform dispersion and light weight of the concrete structure, obtain a dense and smooth concrete surface, and increase the mixing rate of steel fibers It is possible to provide a practical seismic structure that improves both the bending strength and toughness rate of the object and receives both bending and shearing forces .
[Brief description of the drawings]
FIG. 1 is a perspective view sequentially illustrating a construction method according to the present invention.
FIG. 2 is a perspective view showing another embodiment of the construction method according to the present invention, and shows a state in which the main reinforcing bars are constrained by a small number of reinforcing bars.
FIG. 3 is a perspective view showing a state of a constructed structure according to the present invention.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is an experimental diagram showing the relationship between load and displacement in a column shear strength experiment to which the present invention is applied.
FIG. 6 is an experimental diagram showing a relationship between load and displacement in a shear strength test of plain concrete.
[Explanation of symbols]
2 Main reinforcement 5 Steel fiber 6 Concrete 7 Concrete structure (column)

Claims (1)

コンクリ−トの内部に、複数の主鉄筋を無拘束、かつ複数列に配置するとともに、鋼繊維を分散配置したコンクリ−ト構造物において、前記コンクリ−トの全域に亘って、アスペクト比約50の鋼繊維を全打設コンクリ−ト容積の約1.0パ−セントに分散配置したことを特徴とするコンクリ−ト構造物。 In a concrete structure in which a plurality of main reinforcing bars are arranged in a plurality of rows in an unconstrained manner in a concrete and steel fibers are dispersedly arranged , an aspect ratio of about 50 is provided over the entire area of the concrete. A concrete structure characterized in that the steel fibers are distributed at about 1.0 percent of the total cast concrete volume .
JP12752996A 1996-05-22 1996-05-22 Concrete structure Expired - Fee Related JP3759995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12752996A JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12752996A JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Publications (2)

Publication Number Publication Date
JPH09310448A JPH09310448A (en) 1997-12-02
JP3759995B2 true JP3759995B2 (en) 2006-03-29

Family

ID=14962281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12752996A Expired - Fee Related JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Country Status (1)

Country Link
JP (1) JP3759995B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644082B1 (en) * 2005-06-28 2006-11-10 삼성물산 주식회사 The reinforced concrete column improved fire resistance
JP2009114695A (en) * 2007-11-05 2009-05-28 Ohbayashi Corp Underground structure
JP7199859B2 (en) * 2018-07-13 2023-01-06 清水建設株式会社 concrete pillar
CN109098446A (en) * 2018-10-17 2018-12-28 中交第公路工程局有限公司 Concrete component constructing device and concrete component construction method

Also Published As

Publication number Publication date
JPH09310448A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US9765521B1 (en) Precast reinforced concrete construction elements with pre-stressing connectors
US6385930B1 (en) Concrete structure and method of making it
CN108487461A (en) Precast prestressed concrete frame bean column node with additional bar and sleeve
CN106869367A (en) A kind of concrete filled steel tube organ timbering shear wall with type steel support and preparation method thereof
CN1333141C (en) Combined concrete shear wall with built-in eccentric supporting steel truss and its making method
JP5607892B2 (en) Reinforcement method for reinforced concrete column beam joints
CN108589969A (en) A kind of combination assembled shear wall and preparation method thereof of the vertical ECC energy consumptions band of band
CN108678225A (en) The built-in steel plate combined shear wall of built-in presstressed reinforcing steel steel pipe concrete frame and the practice
US20030154674A1 (en) Reinforced or pre-stressed concrete part which is subjected to a transverse force
JP3759995B2 (en) Concrete structure
JP3834637B2 (en) Permanent and emergency seismic reinforcement method for wall columns
JP2000017615A (en) Prestressed concrete bridge pier
KR102274663B1 (en) Punching shear reinforcing-bar and foundation structure construction method therewith
CN113863295A (en) Anti-seismic anti-cracking precast concrete pile and processing method thereof
KR200263281Y1 (en) Apparatus for reinforcing a construction by enlarging its' size
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
KR20030006681A (en) Apparatus and method for reinforcing a construction by enlarging its' size
CN210342417U (en) Prestressed special-shaped groove plate
JP3708874B2 (en) Columnar structure and its construction method
JPH08338104A (en) Reinforced concrete pillar and its reinforcing method
JP7482803B2 (en) Column and beam structure
JP2509162B2 (en) Slope stable structure as in-plane structure
JP3755118B2 (en) Cast-in-place reinforced concrete piles resisting drawing and compressive forces and methods of construction
JP7397752B2 (en) concrete member structure
JP2885397B2 (en) Seismic concrete structure and its construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees